
ADSP-BF7xx Blackfin+ Processor

Programming Reference

Revision 1.0, October 2016

Part Number
82-100123-01

Analog Devices, Inc.
Three Technology Way
Norwood MA , 02062

Notices

Copyright Information

© 2016 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form
without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-Board, EZ-KIT Lite, EZ-Extender, SHARC, and
VisualDSP++ are registered trademarks of Analog Devices, Inc.

Blackfin+, SHARC+, and EZ-KIT Mini are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

ADSP-BF7xx Blackfin+ Processor i

Contents

Introduction

Core Architecture... 1–1

Memory Architecture... 1–3

Internal Memory .. 1–3

External Memory.. 1–4

I/O Memory Space ... 1–4

Event Handling.. 1–4

Syntax Conventions ... 1–5

Case Sensitivity... 1–5

Free Format .. 1–5

Instruction Delimiting.. 1–5

Comments.. 1–5

Notation Conventions ... 1–6

Glossary... 1–7

Register Names... 1–7

Functional Units... 1–8

Arithmetic Status Bits... 1–8

Fractional Convention .. 1–9

Saturation... 1–10

Rounding and Truncating... 1–11

Automatic Circular Addressing ... 1–12

Computational Units

Using Data Formats ... 2–2

Binary String .. 2–2

Unsigned Numbers... 2–2

ii ADSP-BF7xx Blackfin+ Processor

Signed Numbers: Two's-Complement .. 2–3

Fractional Representation: 1.15 and 1.31 ... 2–3

Complex Numbers ... 2–3

Register Files.. 2–3

Data Register File ... 2–4

Accumulator Registers .. 2–4

Register File Instruction Summary ... 2–5

Data Types... 2–7

Endianness ... 2–8

ALU Data Types ... 2–8

MAC Data Types.. 2–9

Shifter Data Types .. 2–10

Arithmetic Formats Summary... 2–11

Rounding MAC Results.. 2–12

Unbiased Rounding... 2–12

Biased Rounding ... 2–14

Truncation... 2–14

Special Rounding Instructions .. 2–14

Using Computational Status .. 2–15

ASTAT Register ... 2–15

Arithmetic Logic Unit (ALU)... 2–15

ALU Operations ... 2–16

Single 16-Bit Operations... 2–16

Dual 16-Bit Operations... 2–16

Quad 16-Bit Operations.. 2–17

Single 32-Bit Operations... 2–17

Dual 32-Bit Operations... 2–18

ALU Division Support Features... 2–18

Special SIMD Video ALU Operations ... 2–18

ADSP-BF7xx Blackfin+ Processor iii

ALU Instruction Summary ... 2–19

Multiply Accumulators (MACs)... 2–21

MAC Operation ... 2–22

Placing MAC Results in Accumulator Registers .. 2–22

Rounding or Saturating MAC Results ... 2–23

Saturating MAC Results on Overflow ... 2–23

32-bit MAC Data Flow Details .. 2–24

32-bit Multiply Without Accumulate .. 2–24

16-bit MAC Data Flow Details ... 2–26

16-bit Multiply Without Accumulate .. 2–27

Dual 16-bit MAC Operations ... 2–28

MAC Instruction Summary.. 2–30

MAC Instruction Options... 2–31

Barrel Shifter (Shifter).. 2–33

Shifter Operations .. 2–33

Two-Operand Shifts .. 2–34

Three-Operand Shifts.. 2–34

Bit Test, Set, Clear, and Toggle.. 2–35

Field Extract and Field Deposit ... 2–36

Packing Operation... 2–37

Shifter Instruction Summary .. 2–38

ADSP-BF70x Computational Unit Register Descriptions ... 2–40

Data Registers ... 2–42

Accumulator 0 Register ... 2–43

Accumulator 1 Register ... 2–44

Accumulator 0 Extension Register ... 2–45

Accumulator 1 Extension Register ... 2–46

Arithmetic Status Register ... 2–47

Operating Modes and States

iv ADSP-BF7xx Blackfin+ Processor

User Mode ... 3–3

Protected Resources and Instructions ... 3–3

Protected Memory.. 3–4

Entering User Mode ... 3–4

Example Code to Enter User Mode Upon Reset .. 3–4

Return Instructions That Invoke User Mode... 3–5

Supervisor Mode.. 3–5

Non-OS Environments... 3–6

Example Code for Supervisor Mode Coming Out of Reset.. 3–6

Emulation Mode.. 3–7

Idle State.. 3–7

Example Code for Transition to Idle State .. 3–8

Reset State ... 3–8

System Reset and Power Up... 3–9

ADSP-BF70x Mode-Related Register Descriptions ... 3–9

System Configuration Register .. 3–10

Program Sequencer

Introduction .. 4–1

Sequencer-Related Registers ... 4–3

Instruction Pipeline ... 4–4

Branches .. 4–6

Direct Jumps (Short, Long and Extra-Long) ... 4–7

Direct Call (Long and Extra-Long) ... 4–8

Indirect Jump and Call (Absolute) .. 4–8

Indirect Jump and Call (PC-Relative) ... 4–8

Subroutines .. 4–8

Stack Variables and Parameter Passing... 4–10

Conditional Processing ... 4–12

ADSP-BF7xx Blackfin+ Processor v

Conditional Code Status Bit.. 4–12

Conditional Branches .. 4–13

Branch Prediction.. 4–13

Dynamic Branch Prediction .. 4–15

Speculative Instruction Fetches.. 4–26

Conditional Register Move.. 4–27

Hardware Loops... 4–27

Two-Dimensional Loops... 4–29

Loop Unrolling... 4–30

Saving and Resuming Loops ... 4–30

Example Code for Using Hardware Loops in an ISR... 4–31

Events and Interrupts... 4–32

Core Event Controller Registers ... 4–33

Interrupt Pending Register (IPEND) .. 4–33

Interrupt Latch Register (ILAT) .. 4–33

Interrupt Mask Register (IMASK)... 4–34

Event Vector Table (EVT)... 4–34

Return Registers and Instructions... 4–35

Executing RTX, RTN, or RTE in a Lower-Priority Event.. 4–37

Emulation Interrupt ... 4–37

Reset Interrupt ... 4–38

Non-Maskable Interrupt (NMI) ... 4–38

Exceptions .. 4–39

Hardware Error Interrupt ... 4–39

Core Timer Interrupt ... 4–39

General-Purpose Core Interrupts (IVG7-IVG15) ... 4–39

Interrupt Processing... 4–39

Globally Enabling/Disabling Interrupts.. 4–39

Servicing Interrupts .. 4–40

Interrupt Nesting.. 4–40

vi ADSP-BF7xx Blackfin+ Processor

Non-Nested Interrupts .. 4–41

Nested Interrupts .. 4–41

Self-Nesting of Core Interrupts ... 4–43

Servicing System Interrupts .. 4–43

Clearing Interrupt Requests.. 4–45

Software Interrupts... 4–45

Latency in Servicing Events .. 4–46

Hardware Errors and Exception Handling ... 4–47

SEQSTAT Register ... 4–47

Hardware Error Interrupt ... 4–47

Exceptions (Events)... 4–48

Exceptions While Executing an Exception Handler ... 4–51

Allocating the System Stack... 4–52

Exceptions and the Pipeline... 4–52

Deferring Exception Processing... 4–53

Example Code for an Exception Handler... 4–53

Example Code for an Exception Routine ... 4–54

ADSP-BF70x Sequencer-Related Register Descriptions .. 4–55

Sequencer Status Register .. 4–56

Return from Subroutine Register ... 4–60

Return from Interrupt Register .. 4–61

Return from Exception Register ... 4–62

Return from NMI Register .. 4–63

Return from Emulator Register ... 4–64

Loop Top Register ... 4–65

Loop Bottom Register ... 4–66

Loop Count Register ... 4–67

Blackfin+ ICU Register Descriptions .. 4–67

System ID Register .. 4–68

Context ID Register .. 4–69

ADSP-BF7xx Blackfin+ Processor vii

Event Vector Table Registers .. 4–70

Event Vector Table Override Register .. 4–71

Interrupt Latch Register .. 4–73

Interrupt Mask Register ... 4–76

Interrupt Pending Register .. 4–78

Blackfin+ BP Register Descriptions .. 4–80

BP Configuration Register .. 4–81

BP Status Register ... 4–83

Core Timer (TMR)

TMR Features.. 5–1

TMR Functional Description .. 5–1

Blackfin+ TMR Register List.. 5–1

TMR Block Diagram.. 5–2

External Interfaces... 5–2

Internal Interfaces ... 5–2

TMR Operation .. 5–2

Interrupt Processing ... 5–3

Blackfin+ TMR Register Descriptions .. 5–3

Core Timer Control Register (TCNTL) .. 5–4

Core Timer Count Register (TCOUNT) ... 5–5

Core Timer Period Register (TPERIOD) .. 5–6

Core Timer Scale Register (TSCALE) .. 5–7

Address Arithmetic Unit

Addressing with the AAU... 6–3

Pointer Register File ... 6–4

Frame and Stack Pointers .. 6–4

DAG Register Set ... 6–5

Indexed Addressing with Index and Pointer Registers... 6–5

viii ADSP-BF7xx Blackfin+ Processor

Loads with Zero- or Sign-Extension .. 6–6

Indexed Addressing with Immediate Offset ... 6–6

Auto-increment and Auto-decrement Addressing.. 6–6

Pre-modify Stack Pointer Addressing .. 6–7

Post-modify Addressing .. 6–7

Direct Addressing .. 6–7

Addressing Circular Buffers .. 6–8

Addressing with Bit-reversed Addresses .. 6–9

Modifying Index and Pointer Registers... 6–10

Addressing Mode Summary ... 6–10

AAU Instruction Summary ... 6–12

ADSP-BF70x Address Arithmetic Unit Register Descriptions ... 6–16

Pointer Register ... 6–18

Frame Pointer Register .. 6–19

Stack Pointer Register .. 6–20

User Stack Pointer Register .. 6–21

Index (Circular Buffer) Register ... 6–22

Modify (Circular Buffer) Register .. 6–23

Base (Circular Buffer) Register .. 6–24

Length (Circular Buffer) Register .. 6–25

Memory

Memory Architecture... 7–1

Overview of On-Chip Level-1 (L1) Memory .. 7–2

Overview of Other On-Chip (L2) and Off-Chip (L3) Memories .. 7–3

L1 Instruction Memory ... 7–3

L1 Instruction SRAM... 7–3

L1 Instruction Cache.. 7–4

Enabling L1 Instruction Cache.. 7–4

Cache Lines ... 7–5

ADSP-BF7xx Blackfin+ Processor ix

Cache Hits and Misses .. 7–6

Instruction Cache Management .. 7–6

L1 Data Memory ... 7–8

L1 Data SRAM... 7–8

L1 Data Cache.. 7–8

Enabling L1 Data Cache ... 7–9

Data Cache Access... 7–9

Cache Write Method ... 7–10

Data Cache Block Select.. 7–10

Data Cache Bypass Mode .. 7–11

Data Cache Control Instructions... 7–12

Data Cache Invalidation.. 7–12

Extended Data Access .. 7–12

Memory Protection and Properties .. 7–13

Memory Management Unit (MMU) .. 7–13

Instruction CPLB... 7–14

Data CPLB... 7–14

CPLB Page Descriptors .. 7–15

Memory Page Properties ... 7–15

Default Memory Properties... 7–16

CPLB Status Registers... 7–17

DCPLB and ICPLB Fault Address Registers ... 7–17

CPLB Management.. 7–17

CPLB Exception Cause... 7–18

L1 Parity Protection... 7–19

Parity Protection Coverage ... 7–19

Parity Error Detection and Notification ... 7–19

Parity Error Recovery ... 7–20

Parity Errors Simultaneous with Exceptions and Interrupts.. 7–21

Direct Access To Parity Bits for L1 SRAM.. 7–21

x ADSP-BF7xx Blackfin+ Processor

L1 Initialization Requirements ... 7–22

Additional Notes on Parity Errors... 7–22

Example Parity Handler.. 7–22

Memory Transaction Model... 7–25

Load/Store Operation .. 7–25

Interlocked Pipeline.. 7–26

Alignment... 7–26

Ordering of Loads and Stores ... 7–26

Speculative Load Execution .. 7–27

Interruptible Load Behavior ... 7–27

Hazards of the High-Performance Memory Architecture .. 7–27

Synchronizing Instructions ... 7–29

Cache Coherency.. 7–29

I/O Device Space.. 7–30

Memory-Mapped Registers... 7–30

Non-Speculative, Non-Interruptible Loads ... 7–30

Exclusive Load, Store, and Sync (Spin Lock Example) .. 7–31

Atomic TESTSET Instruction (Spin Lock Example) .. 7–33

L1 Memory Microarchitecture ... 7–33

L1 Memory Access.. 7–33

Memory Logical Sub-Bank Arrangement... 7–34

Misaligned Data Access to L1.. 7–35

L1 Data Stores... 7–35

System Slave Interface ... 7–36

Core MMR Access.. 7–36

System Memory Access... 7–36

System Memory Interface.. 7–37

System MMR Interface ... 7–38

L1 Cache Details .. 7–38

Extended Data Access to L1 Caches .. 7–38

ADSP-BF7xx Blackfin+ Processor xi

Cache Fills and Victims ... 7–42

Terminology .. 7–42

Blackfin+ L1IM Register Descriptions .. 7–45

Instruction Memory CPLB Address Registers .. 7–46

Instruction Memory CPLB Data Registers .. 7–47

Instruction Memory CPLB Default Settings Register .. 7–49

Instruction Memory CPLB Fault Address Register .. 7–51

Instruction Memory Control Register ... 7–52

Instruction Parity Error Status Register ... 7–54

Instruction Memory CPLB Status Register .. 7–56

Blackfin+ L1DM Register Descriptions .. 7–56

Data Memory CPLB Address Registers ... 7–58

Data Memory CPLB Data Registers .. 7–59

Data Memory CPLB Default Settings Register .. 7–62

Data Memory CPLB Fault Address Register .. 7–65

Data Memory Control Register ... 7–66

Data Memory Parity Error Status Register ... 7–68

Data Memory CPLB Status Register ... 7–70

SRAM Base Address Register ... 7–72

Instruction Reference Pages

Arithmetic Instructions.. 8–2

Add and Subtract Operations ... 8–3

16-Bit Add or Subtract (AddSub16) .. 8–4

Vectored 16-Bit Add or Subtract (AddSubVec16) .. 8–5

32-bit Add Constant (AddImm).. 8–7

32-bit Add or Subtract (AddSub32)... 8–8

32-bit Add and Subtract (AddSub32Dual) .. 8–9

32-Bit Add or Subtract with Carry (AddSubAC0) ... 8–10

Accumulator Add and Extract (AddAccExt)... 8–11

xii ADSP-BF7xx Blackfin+ Processor

Accumulator Add or Subtract (AddSubAcc)... 8–12

Dual Accumulator Add and Subtract to Registers (AddSubAccExt) ... 8–13

32-bit Add then Shift (AddSubShift) ... 8–14

Bit Operations.. 8–15

Ones Count (Shift_Ones).. 8–16

Redundant Sign Bits (Shift_SignBits32).. 8–16

Redundant Sign Bits (Shift_SignBitsAcc) .. 8–17

Bit Mux (BitMux) ... 8–18

Bit Modify (Shift_BitMod) ... 8–21

Bit Test (Shift_BitTst) ... 8–22

Deposit Bits (Shift_Deposit) ... 8–23

Extract Bits (Shift_Extract).. 8–26

Comparison Operations ... 8–29

Vectored 16-Bit Maximum (Max16Vec) .. 8–30

Vectored 16-Bit Minimum (Min16Vec)... 8–31

32-bit Maximum (Max32) .. 8–32

32-Bit Minimum (Min32)... 8–33

Vectored 16-Bit Search (Search)... 8–34

Conversion Operations... 8–36

Vectored 16-Bit Absolute Value (Abs2x16) .. 8–36

32-bit Absolute Value (Abs32)... 8–38

Accumulator0 Absolute Value (AbsAcc0)... 8–39

Accumulator Absolute Value (AbsAcc1)... 8–40

Accumulator Absolute Value (AbsAccDual) ... 8–41

Vectored 16-bit Negate (Neg16Vec)... 8–42

32-Bit Negate (Neg32) .. 8–42

Accumulator0 Negate (NegAcc0)... 8–44

Accumulator1 Negate (NegAcc1)... 8–44

Dual Accumulator Negate (NegAccDual) .. 8–45

Fractional 32-bit to 16-Bit Conversion (Pass32Rnd16) ... 8–46

Accumulator0 32-Bit Saturate (ALU_SatAcc0).. 8–47

Accumulator1 32-Bit Saturate (ALU_SatAcc1).. 8–48

ADSP-BF7xx Blackfin+ Processor xiii

Dual Accumulator 32-Bit Saturate (ALU_SatAccDual) ... 8–49

Logic Operations .. 8–50

32-Bit Logic Operations (Logic32).. 8–50

32-Bit One's Complement (Not32)... 8–51

Move Operations .. 8–52

Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE) ... 8–52

Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL).. 8–53

Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH).. 8–54

Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO)... 8–56

Move Register to Accumulator0 (MvAxToAx) ... 8–57

Move Accumulator to Register (MvAxToDreg) ... 8–57

Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL) ... 8–58

Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg).. 8–59

Move Register Half to 16-Bit Accumulator Section (MvDregHLToAxHL).. 8–60

Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX) .. 8–61

Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg) .. 8–62

Move Register to Accumulator1 (MvDregToAx) ... 8–63

Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual) .. 8–64

Move Register to Register (MvRegToReg)... 8–64

Conditional Move Register to Register (MvRegToRegCond) .. 8–65

Dual Move Accumulators to Half Registers (ParaMvA1ToDregHwithMvA0ToDregL) 8–66

Dual Move Accumulators to Register (ParaMvA1ToDregOwithMvA0ToDregE) 8–67

Multiplication Operations .. 8–68

16 x 16-Bit MAC (Mac16) .. 8–69

16 x 16-Bit MAC with Move to Register (Mac16WithMv) ... 8–70

32 x 32-Bit MAC (Mac32) .. 8–72

32 x 32-Bit MAC with Move to Register (Mac32WithMv) ... 8–74

Complex Multiply to Accumulator (Mac32Cmplx) ... 8–76

Complex Multiply to Register (Mac32CmplxWithMv)... 8–78

Complex Multiply to Register with Narrowing (Mac32CmplxWithMvN) .. 8–80

16 x 16-Bit Multiply (Mult16) .. 8–83

32 x 32-bit Multiply (Mult32)... 8–85

xiv ADSP-BF7xx Blackfin+ Processor

32 x 32-Bit Multiply, Integer (MultInt)... 8–86

Dual 16 x 16-Bit MAC (ParaMac16AndMac16) ... 8–87

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMac16WithMv) 8–88

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAndMac16) 8–89

Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMac16WithMv) 8–90

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMv) ... 8–91

Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMv) 8–92

Dual 16 x 16-Bit Multiply (ParaMult16AndMult16) .. 8–93

Dual Move to Register and 16 x 16-Bit MAC (ParaMvAndMac16) .. 8–94

Dual Move to Register and 16 x 16-Bit MAC with Move to Register (ParaMvAndMac16WithMv)...... 8–95

Pointer Math Operations.. 8–96

32-bit Add or Subtract (DagAdd32) .. 8–97

32-bit Add or Subtract Constant (DagAddImm) ... 8–98

32-bit Add then Shift (DagAddSubShift) .. 8–99

32-bit Add Shifted Pointer (PtrOp)... 8–100

Pointer Logical Shift (LShiftPtr).. 8–101

Rotate Operations .. 8–101

32-Bit Rotate (Shift_Rot32) .. 8–102

Accumulator Rotate (Shift_RotAcc) .. 8–103

Shift Operations ... 8–104

16-Bit Arithmetic Shift (AShift16) .. 8–105

Vectored 16-Bit Arithmetic (AShift16Vec)... 8–108

32-Bit Arithmetic Shift (AShift32) .. 8–110

Accumulator Arithmetic Shift (AShiftAcc)... 8–113

16-Bit Logical Shift (LShift16) .. 8–115

Vectored 16-Bit Logical Shift (LShift16Vec) .. 8–117

32-Bit Logical Shift (LShift) .. 8–119

Accumulator Logical Shift (LShiftA) ... 8–121

Sequencer Instructions... 8–123

Branch Operations ... 8–124

Conditional Jump Immediate (BrCC) ... 8–125

ADSP-BF7xx Blackfin+ Processor xv

Jump (Jump) ... 8–126

Jump Immediate (JumpAbs).. 8–127

Call (Call).. 8–128

Return from Branch (Return).. 8–129

Hardware Loop Set Up (LoopSetup) ... 8–130

Control Code Bit Management Operations.. 8–134

Compute Move CC to a D Register (CCToDreg).. 8–134

Move CC To/From ASTAT (CCToStat16) .. 8–135

Move Status to CC (MvToCC).. 8–136

Move Status to CC (MvToCC_STAT)... 8–137

32-Bit Pointer Register Compare and Set CC (CCFlagP).. 8–138

Accumulator Compare and Set CC (CompAccumulators)... 8–139

32-Bit Register Compare and Set CC (CompRegisters)... 8–140

Event Management Operations .. 8–142

Interrupt Control (IMaskMv) ... 8–142

Sequencer Mode (Mode) ... 8–143

Raise Interrupt (Raise) .. 8–144

Stack Operations .. 8–145

Linkage (Linkage).. 8–146

Stack Pop (Pop) ... 8–148

Stack Push (Push).. 8–150

Stack Push/Pop Multiple Registers (PushPopMul16) .. 8–151

Synchronization Operations ... 8–155

Cache Control (CacheCtrl).. 8–155

Sync (Sync).. 8–157

SyncExcl (SyncExcl)... 8–160

NOP (NOP) ... 8–160

32-Bit No Operation (NOP32)... 8–161

TestSet (TestSet).. 8–162

Memory or Pointer Instructions .. 8–163

Load from Immediate (Value) Operations .. 8–163

xvi ADSP-BF7xx Blackfin+ Processor

Accumulator Register Initialization (LdImmToAx).. 8–164

32-Bit Accumulator Register (.w) Initialization (LdImmToAxW).. 8–164

32-Bit Accumulator Register (.x) Initialization (LdImmToAxX).. 8–165

16-Bit Register Initialization (LdImmToDregHL)... 8–166

32-Bit Register Initialization (LdImmToReg).. 8–167

Dual Accumulator 0 and 1 Registers Initialization (LdImmToAxDual) ... 8–168

Memory Load Operations .. 8–169

8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg) .. 8–169

16-Bit Load from Memory to 32-Bit Register (LdM16bitToDreg).. 8–170

16-Bit Load from Memory (LdM16bitToDregH) ... 8–173

16-Bit Load from Memory (LdM16bitToDregL) .. 8–175

32-Bit Load from Memory (LdM32bitToDreg)... 8–177

32-Bit Pointer Load from Memory (LdM32bitToPreg) ... 8–180

Memory Load (Exclusive) Operations... 8–181

8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg) ... 8–182

16-Bit Load from Memory to 32-Bit Register (LdX16bitToDreg)... 8–183

16-Bit Load from Memory (LdX16bitToDregH) .. 8–183

16-Bit Load from Memory (LdX16bitToDregL) ... 8–184

32-Bit Load from Memory (LdX32bitToDreg).. 8–184

Pack Operations ... 8–185

Pack 8-Bit to 32-Bit (BytePack)... 8–185

Spread 8-Bit to 16-Bit (ByteUnPack)... 8–186

Pack 16-Bit to 32-Bit (Pack16Vec) .. 8–189

Memory Store Operations .. 8–190

16-Bit Store to Memory (StDregHToM16bit)... 8–190

16-Bit Store to Memory (StDregLToM16bit) .. 8–192

8-Bit Store to Memory (StDregToM08bit).. 8–194

32-Bit Store to Memory (StDregToM32bit).. 8–195

Store Pointer (StPregToM32bit).. 8–198

Memory Store (Exclusive) Operations... 8–199

16-Bit Store to Memory (StDregHToX16bit).. 8–201

16-Bit Store to Memory (StDregLToX16bit) ... 8–202

ADSP-BF7xx Blackfin+ Processor xvii

8-Bit Store to Memory (StDregToX08bit) ... 8–203

32-Bit Store to Memory (StDregToX32bit) ... 8–203

Specialized Compute Instructions.. 8–204

Block Floating Point Operations... 8–205

Exponent Detection (Shift_ExpAdj32) .. 8–205

DCT Operations .. 8–207

32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12)... 8–207

32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20) ... 8–208

Divide Operations .. 8–209

DIVS and DIVQ Divide Primitives (Divide) ... 8–210

Linear Feedback Shift Register LFSR Operations ... 8–213

40-Bit BXOR LSFR with Feedback to a Register (BXOR)... 8–213

40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF).................................. 8–219

32-Bit BXOR or BXORShift LSFR without Feedback (BXOR_NF) ... 8–220

Video Operations ... 8–220

Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (AddClip) .. 8–221

Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (AddSub4x8) ... 8–223

Disable Alignment Exception (DisAlignExcept) .. 8–225

Byte Align (Shift_Align) .. 8–226

Quad Byte Average (Byteop2P) (Avg4x8Vec)... 8–227

Vector Byte Average (Byteop1P) (Avg8Vec) ... 8–230

Dual Accumulator Extraction with Addition (AddAccHalf) .. 8–233

Vectored 8-Bit Sum of Absolute Differences (SAD8Vec).. 8–234

Viterbi Operations.. 8–236

16-Bit Add on Sign (AddOnSign) ... 8–236

Dual 16-Bit Modulo Maximum with History (Shift_DualVitMax) ... 8–238

16-Bit Modulo Maximum with History (Shift_VitMax) ... 8–239

Instruction Page Tables.. 8–243

ALU Binary Operations (ALU2op)... 8–243

Conditional Branch PC relative on CC (BrCC).. 8–244

Move CC conditional bit, to and from dreg (CC2Dreg) ... 8–245

xviii ADSP-BF7xx Blackfin+ Processor

Copy CC conditional bit, from status (CC2Stat).. 8–246

CBIT... 8–246

Set CC conditional bit (CCFlag) .. 8–247

Conditional Move (CCMV) ... 8–249

GDST ... 8–249

GSRC.. 8–250

Cache Control (CacheCtrl)... 8–250

PREGA ... 8–250

Call function with pcrel address (CallA) ... 8–251

Compute with 3 operands (Comp3op) ... 8–251

Destructive Binary Operations, dreg with 7bit immediate (CompI2opD) .. 8–252

Destructive Binary Operations, preg with 7bit immediate (CompI2opP)... 8–253

DAG Arithmetic (DAGModIk) .. 8–253

DAG Arithmetic (DAGModIm) ... 8–254

ALU Operations (Dsp32Alu).. 8–255

A0_HL.. 8–259

A1_HL.. 8–260

AOPL.. 8–260

DDST0_HL.. 8–260

DSRC0_HL .. 8–260

NSAT.. 8–261

PAIR0 ... 8–261

PAIR1 ... 8–261

RS ... 8–261

RSC... 8–262

SAT... 8–262

SAT2 ... 8–262

SMODE.. 8–262

SX ... 8–263

SXA... 8–263

XMODE ... 8–264

ADSP-BF7xx Blackfin+ Processor xix

Multiply Accumulate (Dsp32Mac) ... 8–264

CMODE... 8–265

CMPLXMAC.. 8–266

CMPLXOP ... 8–266

MAC0 ... 8–266

MAC0S ... 8–267

MAC1 ... 8–267

MAC1S ... 8–267

MML .. 8–268

MMLMMOD0... 8–268

MMLMMOD1... 8–270

MMLMMODE... 8–273

MMOD0 .. 8–275

MMOD1 .. 8–276

MMODE .. 8–278

NARROWING_CMODE .. 8–280

TRADMAC .. 8–280

Multiply with 3 operands (Dsp32Mult).. 8–285

M32MMOD... 8–287

M32MMOD1... 8–288

M32MMOD2... 8–289

MML .. 8–291

MMLMMOD1... 8–292

MMLMMODE... 8–295

MMOD1 .. 8–297

MMODE .. 8–299

MUL0 ... 8–300

MUL1 ... 8–301

Shift (Dsp32Shf) .. 8–301

Shift Immediate (Dsp32ShfImm) ... 8–305

AHSH4... 8–306

AHSH4S ... 8–307

xx ADSP-BF7xx Blackfin+ Processor

AHSH4VS .. 8–307

ASH5 .. 8–307

ASH5S .. 8–307

LHSH4 ... 8–308

LSH5 .. 8–308

Load/Store (DspLdSt)... 8–308

Jump/Call to 32-bit Immediate (Jump32) .. 8–310

Load Immediate Word (LdImm)... 8–311

Load Immediate Half Word (LdImmHalf) ... 8–312

DST .. 8–313

DST_H... 8–313

DST_L.. 8–313

Load/Store (LdSt) ... 8–314

Load/Store 32-bit Absolute Address (LdStAbs) ... 8–316

Long Load/Store with indexed addressing (LdStExcl) ... 8–317

Load/Store indexed with small immediate offset (LdStII) ... 8–318

Load/Store indexed with small immediate offset FP (LdStIIFP) ... 8–319

Long Load/Store with indexed addressing (LdStIdxI) ... 8–320

Load/Store postmodify addressing, pregister based (LdStPmod)... 8–321

Load/Store (Ldp) .. 8–322

Load/Store indexed with small immediate offset (LdpII) .. 8–322

Load/Store indexed with small immediate offset FP (LdpIIFP) .. 8–323

Save/restore registers and link/unlink frame, multiple cycles (Linkage)... 8–323

Logic Binary Operations (Logi2Op) ... 8–324

Virtually Zero Overhead Loop Mechanism (LoopSetup) .. 8–325

LC... 8–326

64-bit Instruction Shell (Multi) .. 8–326

16-bit Slot Nop (NOP16) .. 8–327

32-bit Slot Nop (NOP32) .. 8–327

Basic Program Sequencer Control Functions (ProgCtrl) ... 8–328

ADSP-BF7xx Blackfin+ Processor xxi

Pointer Arithmetic Operations (Ptr2op) ... 8–329

Push or Pop Multiple contiguous registers (PushPopMult)... 8–330

Push or Pop register, to and from the stack pointed to by sp (PushPopReg) ... 8–331

POPREG .. 8–331

PUSHREG.. 8–332

Register to register transfer operation (RegMv) .. 8–332

GDST ... 8–333

GSRC.. 8–333

Unconditional Branch PC relative with 12bit offset (UJump) .. 8–334

bimm32 Register Type ... 8–334

buimm32 Register Type ... 8–334

huimm16 Register Type ... 8–335

imm10s2 Register Type .. 8–335

imm12nxs2 Register Type .. 8–335

imm12s2 Register Type .. 8–335

imm12xs2 Register Type .. 8–335

imm16 Register Type ... 8–336

imm16negpos Register Type... 8–336

imm16reloc Register Type .. 8–336

imm16s2 Register Type .. 8–336

imm16s2negpos Register Type ... 8–336

imm16s4 Register Type .. 8–337

imm16s4negpos Register Type ... 8–337

imm24nxs2 Register Type .. 8–337

imm24s2 Register Type .. 8–337

imm24xs2 Register Type .. 8–337

imm3 Register Type ... 8–338

imm32 Register Type ... 8–338

imm5nzs4negpos Register Type.. 8–338

imm6 Register Type ... 8–338

xxii ADSP-BF7xx Blackfin+ Processor

imm7 Register Type ... 8–338

luimm16 Register Type .. 8–339

negimm5s4 Register Type... 8–339

rimm16 Register Type .. 8–339

uimm10 Register Type ... 8–339

uimm10s2o4 Register Type .. 8–339

uimm16s4 Register Type .. 8–340

uimm3 Register Type ... 8–340

uimm32 Register Type ... 8–340

uimm4 Register Type ... 8–340

uimm4nz Register Type.. 8–340

uimm4nznegpos Register Type ... 8–341

uimm4s2 Register Type .. 8–341

uimm4s2o4 Register Type .. 8–341

uimm4s4 Register Type .. 8–341

uimm5 Register Type ... 8–341

uimm5nz Register Type.. 8–342

uimm5nznegpos Register Type ... 8–342

BREG Register Type... 8–342

BREG_H Register Type ... 8–342

BREG_L Register Type .. 8–343

DREG Register Type .. 8–343

DREG_B Register Type.. 8–343

DREG_E Register Type.. 8–344

DREG_H Register Type... 8–344

DREG_L Register Type.. 8–344

DREG_O Register Type... 8–345

DREG_PAIR Register Type.. 8–345

DREG_RANGE Register Type... 8–345

IREG Register Type.. 8–346

ADSP-BF7xx Blackfin+ Processor xxiii

IREG_H Register Type... 8–346

IREG_L Register Type ... 8–346

LREG Register Type... 8–346

LREG_H Register Type.. 8–347

LREG_L Register Type... 8–347

MREG Register Type ... 8–347

MREG_H Register Type .. 8–348

MREG_L Register Type ... 8–348

PREG Register Type... 8–348

PREGP Register Type .. 8–349

PREG_H Register Type.. 8–349

PREG_L Register Type... 8–349

PREG_RANGE Register Type ... 8–350

SYSREG2 Register Type... 8–350

SYSREG3 Register Type... 8–350

Issuing Parallel Instructions ... 8–351

Supported Parallel Combinations ... 8–351

Parallel Issue Syntax ... 8–351

32-Bit ALU/MAC Instructions... 8–352

16-Bit Instructions ... 8–355

Parallel Operation Examples... 8–357

Debug

Watchpoint Unit.. 9–1

Instruction Watchpoints ... 9–2

WPIAx Registers .. 9–3

WPIACNTx Registers .. 9–4

WPIACTL Register .. 9–4

Data Address Watchpoints.. 9–4

WPDAx Registers... 9–5

xxiv ADSP-BF7xx Blackfin+ Processor

WPDACNTx Registers .. 9–5

WPDACTL Register .. 9–5

WPSTAT Register .. 9–5

Performance Monitor Unit (PMU) .. 9–5

Functional Description ... 9–6

PFCNTRx Registers ... 9–6

PFCTL Register ... 9–6

Count Event Mode.. 9–7

Monitor Event Types... 9–7

EVENTx - Counter Overflow Condition .. 9–7

Programming Example ... 9–7

Cycle Counters .. 9–9

CYCLES and CYCLES2 Registers .. 9–9

SYSCFG Register ... 9–10

Product Identification Register .. 9–10

DSPID Register.. 9–10

Blackfin+ DBG Register Descriptions ... 9–10

DSP Identification Register ... 9–11

Blackfin+ WP Register Descriptions ... 9–11

Watchpoint Data Address Count Register ... 9–12

Watchpoint Data Address Control Register ... 9–13

Watchpoint Data Address Register .. 9–15

Watchpoint Instruction Address Count Register .. 9–16

Watchpoint Instruction Address Control Register ... 9–17

Watchpoint Instruction Address Register ... 9–24

Watchpoint Status Register .. 9–25

Blackfin+ PF Register Descriptions ... 9–26

Counter 0 Register .. 9–27

Counter 1 Register .. 9–28

ADSP-BF7xx Blackfin+ Processor xxv

Control Register .. 9–29

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions .. 9–35

Cycle Count (32 LSBs) Register .. 9–37

Cycle Count (32 MSBs) Register ... 9–38

Blackfin+ OPT Register Descriptions ... 9–38

Feature Core 0 Register ... 9–39

Program Trace Macrocell (PTM)

Features.. 10–1

Functional Description .. 10–1

Address Comparators.. 10–1

Context ID Comparators.. 10–2

Events... 10–2

Counters... 10–2

Trace Security ... 10–3

Programming Model.. 10–3

References.. 10–3

Numeric Formats

Unsigned or Signed: Two's-complement Format.. 11–1

Integer or Fractional Data Formats .. 11–1

Binary Multiplication .. 11–3

Fractional Mode And Integer Mode.. 11–3

Block Floating-Point Format.. 11–4

xxvi ADSP-BF7xx Blackfin+ Processor

Preface

Thank you for purchasing and developing systems using an ADSP-BF70x Blackfin+ processor from Analog Devices,
Inc.

Purpose of This Manual
The ADSP-BF70x Blackfin+ Processor Programming Reference provides core architecture and programming informa-
tion about the ADSP-BF70x processors. This programming reference provides the main architectural information
about the core of these processors. The architectural descriptions cover computational units, the control units, the
address arithmetic unit, and control unit, including all features and processes that they support. For hardware (sys-
tem design) information, see the Blackfin+ Processor Hardware Reference. For timing, electrical, and package specifi-
cations, see the ADSP-BF70x Blackfin+ Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar with Analog Devices processors. The manual
assumes the audience has a working knowledge of the appropriate processor architecture and instruction set. Pro-
grammers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it with
other texts, such as programming reference books and data sheets, that describe their target architecture.

Manual Contents
This manual consists of the following chapters:

• Introduction - provides a general description of the processor core architecture, memory architecture, instruc-
tion syntax, and notation conventions.

• Computational Units - describes the arithmetic/logic units (ALUs), multiplier/accumulator units (MACs),
shifter, and the set of video ALUs. The chapter also discusses data formats, data types, and register files.

• Operating Modes and States - describes the operating modes of the processor, as well as the Idle and Reset
states.

• Program Sequencer - describes the operation of the program sequencer, which controls program flow by pro-
viding the address of the next instruction to be executed. The chapter also discusses loops, subroutines, jumps,
interrupts, and exceptions.

• Address Arithmetic Unit - describes the Address Arithmetic Unit (AAU), including Data Address Generators
(DAGs), addressing modes, how to modify DAG and pointer registers, memory address alignment, and DAG
instructions.

ADSP-BF7xx Blackfin+ Processor xxvii

• Memory - describes L1 memories, particularly memory architecture, memory model, memory transaction mod-
el, and memory-mapped registers (MMRs). It also discusses instruction, data, and scratchpad memory, which
are part of the Blackfin+ processor core.

• Instruction Set Reference - describes each assembly instruction and its execution, as well as any impact to the
Arithmetic Status (ASTAT) register. The reference is broken into the following sections:

• Arithmetic Instructions

• Sequencer Instructions

• Memory/Pointer Instructions

• Specialized Compute Instructions

• Arithmetic Status Register

• Instruction Page Tables (including instruction opcode information)

• Issuing Parallel Instructions

• Debug - provides a description of the processor’s debug functionality, which is used for software debugging and
complements some services often found in operating system (OS) kernels.

• Numeric Formats - describes various aspects of the 16-bit data format and describes how to implement a block
floating-point format in software.

What's New in This Manual
This revision (1.0) is the first publicly released version revision of the ADSP-BF70x Blackfin+ Processor Programming
Reference. It includes corrected errata and updated register diagrams associated with this processor.

Technical or Customer Support
You can reach customer and technical support for processors from Analog Devices in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone:

http://ez.analog.com/community/dsp

• Submit your questions to technical support at Connect with ADI Specialists:

http://www.analog.com/support

• E-mail your questions about software/hardware development tools to:

processor.tools.support@analog.com

• E-mail your questions about processors and DSPs to:

processor.support@analog.com (world wide support)

ADSP-BF7xx Blackfin+ Processor xxviii

http://ez.analog.com/community/dsp
http://www.analog.com/support
http://mailto:processor.tools.support@analog.com
http://mailto:processor.support@analog.com

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD (USA only)

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

• Send questions by mail to:

Analog Devices, Inc.

Three Technology Way

P.O. Box 9106

Norwood, MA 02062-9106 USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported by the CrossCore Embedded Studio® develop-
ment tools suite.

Blackfin+® (ADSP-BF7xx) Processors

The name Blackfin+ refers to the enhanced fixed-point Blackfin core architecture featured by the ADSP-
BF70x processor product line, which is a family of 16-bit embedded processors.

Blackfin® (ADSP-BF6xx/BF5xx) Processors

The name Blackfin refers to the fixed-point core architecture featured on the following processors: ADSP-
BF5xx and ADSP-BF6xx.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to the high-performance, 32-bit, floating-point core architecture featured on the fol-
lowing processors: ADSP-2106x, ADSP-2116x, ADSP-2126x, ADSP-213xx, and ADSP-214xx. These pro-
cessors can be used in speech, sound, graphics, and imaging applications.

SHARC+® (ADSP-SC5xx, ADSP-215xx) Processors

The name SHARC+ refers to the enhanced high-performance, 32-bit, floating-point core architecture featured
on the following processors: ADSP-215xx/ADSP-SC5xx. The connected SHARC+ ADSP-SC5xx processors
also contain an ARM® Cortex-A5® core. These products can be used in speech, sound, graphics, and imag-
ing applications.

ADSP-BF7xx Blackfin+ Processor xxix

http://mailto:processor.china@analog.com
http://www.analog.com/adi-sales

The following is the list of Analog Devices, Inc. processors supported by the IAR Embedded WorkBench® develop-
ment tools. For information about the IAR Embedded WorkBench product and software download, go to http://
www.iar.com/en/Products/IAR-Embedded-Workbench .

Mixed-Signal Control Processors

The ADSP-CM40x processors are based on the ARM Cortex®-M4 core and are designed for motor control
and industrial applications.

The ADSP-CM41x processors are based on the ARM Cortex-M4 and ARM Cortex-M0 cores and are de-
signed for motor control and industrial applications.

Product Information
Product information can be obtained from the Analog Devices Web site and CrossCore Embedded Studio online
Help system.

Analog Devices Web Site
The Analog Devices Web site, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to: http://www.analog.com/processors/techni-
cal_library The manuals selection opens a list of current manuals related to the product as well as a link to the previ-
ous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the title
that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page
to display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the Web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical sup-
port engineers. You can search FAQs and technical information to get quick answers to your embedded processing
and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

ADSP-BF7xx Blackfin+ Processor xxx

http://www.iar.com/en/Products/IAR-Embedded-Workbench
http://www.iar.com/en/Products/IAR-Embedded-Workbench
http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com/welcome
http://ez.analog.com
http://ez.analog.com

Notation Conventions
Text conventions used in this manual are identified and described as follows. Additional conventions, which apply
only to specific chapters, may appear throughout this document.

Example Description

File > Close Titles in reference sections indicate the location of an item within the CrossCore
Embedded Studio IDE's menu system (for example, the Close command appears
on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly brackets and
separated by vertical bars; read the example as this or that. One or the other is
required.

[this | that] Optional items in syntax descriptions appear within brackets and separated by
vertical bars; read the example as an optional this or that.

[this, …] Optional item lists in syntax descriptions appear within brackets delimited by
commas and terminated with an ellipse; read the example as an optional comma-
separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with Letter
Gothic font.

filename Non-keyword placeholders appear in text with italic style format.

NOTE:

NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online ver-
sion of this book, the word NOTE: appears instead of this symbol.

CAUTION:

CAUTION: Incorrect device operation may result if ...

CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could
lead to undesirable results or product damage. In the online version of this book,
the word CAUTION: appears instead of this symbol.

ATTENTION:

ATTENTION: Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could
lead to conditions that are potentially hazardous for devices users. In the online
version of this book, the word ATTENTION: appears instead of this symbol.

Register Documentation Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top with the short form of the name.

• If a bit has a short name, the short name appears first in the bit description, followed by the long name.

• The reset value appears in binary in the individual bits and in hexadecimal to the left of the register.

• Bits marked X have an unknown reset value. Consequently, the reset value of registers that contain such bits is
undefined or dependent on pin values at reset.

ADSP-BF7xx Blackfin+ Processor xxxi

• Shaded bits are reserved

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for re-
served bits in a register, unless otherwise specified.

Register description tables use the following conventions:

• Each bit's or bit field's access type appears beneath the bit number in the table in the form (read-access/write-
access). The access types include:

• R = read, RC = read clear, RS = read set, R0 = read zero, R1 = read one, Rx = read undefined

• W = write, NW = no write, W1C = write one to clear, W1S = write one to set, W0C = write zero to clear,
W0S = write zero to set, WS = write to set, WC = write to clear, W1A = write one action

• Many bit and bit field descriptions include enumerations, identifying bit values and related functionality. Un-
less otherwise indicated (with a prefix), these enumerations are decimal values.

ADSP-BF7xx Blackfin+ Processor xxxii

1 Introduction

This Blackfin+ Processor Programming Reference provides details on the assembly language instructions used by Black-
fin+ processors. The Blackfin+ architecture extends the Micro Signal Architecture (MSA) core developed jointly by
Analog Devices, Inc. and Intel Corporation. This manual applies to all ADSP-BF7xx processor derivatives. All devi-
ces provide an identical core architecture and instruction set. Additional architectural features are only supported by
some devices and are identified in the manual as being optional features. A read-only memory-mapped register,
FEATURE0, enables run-time software to query the optional features implemented in a particular derivative. Some
details of the implementation may vary between derivatives. This is generally not visible to software, but system and
test code may depend on very specific aspects of the memory microarchitecture. Differences and commonalities at a
global level are discussed in the Memory chapter. For a full description of the system architecture beyond the Black-
fin+ core, refer to the specific hardware reference manual for your derivative. This section points out some of the
conventions used in this document.

The Blackfin+ processor combines a dual-MAC signal processing engine, an orthogonal RISC-like microprocessor
instruction set, flexible Single Instruction, Multiple Data (SIMD) capabilities, and multimedia features into a single
instruction set architecture.

Core Architecture
The Blackfin+ processor core contains two 16-bit multipliers (MACs), one 32-bit MAC, two 40-bit accumulators,
one 72-bit accumulator, two 40-bit Arithmetic Logic Units (ALUs), four 8-bit video ALUs, and a 40-bit shifter,
shown in the Processor Core Architecture figure. The Blackfin+ processors work on 8-, 16-, or 32-bit data from the
register file.

Introduction

ADSP-BF7xx Blackfin+ Processor 1–1

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 1-1: Processor Core Architecture

The compute register file contains eight 32-bit registers. When performing compute operations on 16-bit operand
data, the register file operates as 16 independent 16-bit registers. All operands for compute operations come from
the multi-ported register file and instruction constant fields.

Each 16-bit MAC can perform a 16- by 16-bit multiply per cycle, with accumulation to a 40-bit result. The 32-bit
MAC can perform a 32- by 32-bit multiply, with accumulation to 72-bits, or a 16-bit complex multiplication. Sign-
ed and unsigned formats, rounding, and saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations on 16-bit or 32-bit data. Many special in-
structions are included to accelerate various signal processing tasks, including bit operations such as field extract and
population count, divide primitives, saturation and rounding, and sign/exponent detection. The set of video instruc-
tions include byte-alignment and packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations,
and 8-bit Subtract/Absolute value/Accumulate (SAA) operations. Also provided are the compare/select and vector
search instructions. For some instructions, two 16-bit ALU operations can be performed simultaneously on register
pairs (a 16-bit high half and 16-bit low half of a compute register). By also using the second ALU, quad-16-bit
operations are possible.

The 40-bit shifter can deposit data and perform shifting, rotating, normalization, and extraction operations.

A program sequencer controls the instruction execution flow, including instruction alignment and decoding. For
program flow control, the sequencer supports PC-relative and indirect conditional jumps (with static branch predic-
tion) and subroutine calls. Hardware is provided to support zero-overhead looping. The architecture is fully inter-
locked, meaning there are no visible pipeline effects when executing instructions with data dependencies.

Core Architecture

1–2 ADSP-BF7xx Blackfin+ Processor

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multi-
ported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering)
and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).

Blackfin+ processors support a modified Harvard architecture in combination with a hierarchical memory structure.
Level 1 (L1) memories typically operate at the full processor speed with little or no latency. At the L1 level, the
instruction memory holds instructions only. The two data memories hold data, and a dedicated scratchpad data
memory can be used to store stack and local variable information.

In addition, multiple L1 memory blocks are provided, which may be configured as a mix of SRAM and cache. The
Memory Management Unit (MMU) provides memory protection for individual tasks that may be operating on the
core.

The architecture provides three modes of operation: User, Supervisor, and Emulation. User mode has restricted ac-
cess to a subset of system resources, thus providing a protected software environment. Supervisor and Emulation
modes have unrestricted access to the system and core resources.

The Blackfin+ processor instruction set is optimized so that 16-bit opcodes represent the most frequently used in-
structions. Complex DSP instructions are encoded into 32-bit opcodes as multi-function instructions, and some in-
structions with very large immediate values are encoded into 64-bit opcodes. Blackfin+ products support a limited
multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions. This allows
the programmer to use many of the core resources in a single instruction cycle.

The Blackfin+ processor assembly language uses an algebraic syntax. The architecture is optimized for use with the
C compiler.

Memory Architecture
The Blackfin+ processor architecture structures memory as a single, unified 4 GB address space using 32-bit address-
es. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of
this common address space. The memory portions of this address space are arranged in a hierarchical structure to
provide a good cost/performance balance of some very fast, low-latency on-chip memory (as cache or SRAM) and
larger, lower-cost and lower-performance off-chip memory systems.

The memory DMA controller provides high-bandwidth data movement capabilities. It can perform block transfers
of code or data between the internal and external memory spaces.

Internal Memory

The L1 memory system is the primary, highest-performance memory available to the core. At a minimum, each
Blackfin+ processor has two blocks of on-chip memory that provide high-bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and/or an instruction cache. This memory is accessed at the full
core clock rate.

• L1 data memory, consisting of SRAM and/or a data cache. This memory block is also accessed at the full core
clock rate.

Memory Architecture

ADSP-BF7xx Blackfin+ Processor 1–3

On-chip Level 2 (L2) memory forms an on-chip memory hierarchy with L1 memory and provides much more ca-
pacity, but the latency is higher. The on-chip L2 memory may be made cacheable in L1 and is capable of storing
both instructions and data.

External Memory

External (off-chip) memory is accessed via on-chip memory peripherals such as DDR controllers.

I/O Memory Space

Blackfin+ processors do not define a separate I/O space. All resources are mapped through the flat 32-bit address
space. Control registers for on-chip I/O devices are mapped into memory-mapped registers (MMRs) at addresses in
a reserved part of the 4 GB address space. These are separated into two smaller blocks, one containing the control
MMRs for all core functions (core MMRs) and the other containing the registers needed for setup and control of
the on-chip peripherals outside of the core (system MMRs). All MMRs are accessible only in Supervisor mode.

Event Handling
The event controller on the Blackfin+ processor handles all asynchronous and synchronous events in the system. It
supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously,
and prioritization ensures that servicing a higher-priority event takes precedence over servicing a lower-priority
event. The controller provides support for five different types of events:

• Emulation - causes the processor to enter Emulation mode, allowing command and control of the processor via
the JTAG interface.

• Reset - resets the processor.

• Non-Maskable Interrupt (NMI) - the software watchdog timer or the NMI input signal to the processor can
generate this event. The NMI event is frequently used as a power-down indicator to initiate an orderly shut-
down of the system.

• Exceptions - synchronous to program flow, an exception is taken before the instruction is allowed to complete.
Conditions such as data alignment violations and undefined instructions cause exceptions.

• Interrupts - asynchronous to program flow. These events can be caused by input pins, timers, other peripherals,
and software.

Each event has an associated register to hold the return address and an associated return-from-event instruction.
When an event is triggered, the state of the processor is saved on the supervisor stack.

The processor event controller consists of two stages, the Core Event Controller (CEC) and the System Event Con-
troller (SEC). The CEC works with the SEC to prioritize and control all system events. Conceptually, interrupts
from the peripherals arrive at the SEC and are routed directly into a general-purpose interrupt of the CEC.

Memory Architecture

1–4 ADSP-BF7xx Blackfin+ Processor

Syntax Conventions
The Blackfin+ processor instruction set supports several syntactical conventions that appear throughout this docu-
ment. These conventions relate to case sensitivity, free format, instruction delimiting, and comments.

Case Sensitivity

The instruction syntax is case insensitive. The assembler treats register names and instruction keywords in a case-
insensitive manner (i.e., R3.l, R3.L, r3.l, and r3.L are all valid, equivalent input to the assembler).

In explanations and descriptions throughout this manual, upper case is used to help the register names and keywords
stand out among normal text.

Free Format

Assembler input is free format and may appear anywhere on the line. One instruction may extend across multiple
lines, or more than one instruction may appear on the same line, and white space (e.g., space, tab, or a new line)
may appear anywhere between tokens. A token must not have embedded spaces. Tokens include numbers, register
names, keywords, user identifiers, and also some multi-character special symbols like "+=", "/*", or "||".

Instruction Delimiting

A semicolon must terminate every instruction. Several instructions can be placed together on a single line at the
programmer's discretion, provided each instruction ends with a semicolon.

Each complete instruction must end with a semicolon. Sometimes, a complete instruction will consist of more than
one operation. There are two cases where this occurs.

• Two general operations are combined to be issued across multiple computation units. In this case, a comma
separates the different parts:

a0 = r3.h * r2.l , a1 = r3.l * r2.h ;
• A general instruction is combined with one or two memory accesses as a multi-issue instruction. The latter

portions of instructions like these are separated by the parallel-issue "||" token. For example:

a0 = r3.h * r2.l || r1 = [p3++] || r4 = [i2++] ;

Comments

The assembler supports various kinds of comments, including:

• End of line: A double forward slash token ("//") indicates the beginning of a comment that concludes at the
next new line character.

• General comment: A general comment begins with the "/*" token and ends with the "*/" token. It may con-
tain any characters and extend over multiple lines.

Comments are not recursive; if the assembler sees a "/*" within a general comment, it issues an assembler warning
at build-time.

Syntax Conventions

ADSP-BF7xx Blackfin+ Processor 1–5

Notation Conventions
This manual and the assembler use the following conventions:

• Register names are alphabetical, followed by a number in cases where there are more than one register in a logi-
cal group. Thus, examples include ASTAT, FP, M2, and R3.

• Register names are reserved and may not be used as program identifiers.

• Some operations (such as the Move Register instruction) require a register pair. Register pairs are always Data
Registers or Accumulators and are denoted using a colon, for example, R3:2. The larger number must be writ-
ten first. Note that the hardware supports only odd-even pairs, for example, R7:6, R5:4, R3:2, R1:0 and
A1:0.

• Some instructions (such as the --SP (Push Multiple) instruction) require a group of adjacent registers. Adjacent
registers are syntactically denoted with the range enclosed in parentheses and separated by a colon. For exam-
ple, the range of data registers comprised of R3, R4, R5, R6, and R7 is written in this instruction as R7:3. Again,
the larger number appears first.

• Portions of a particular register may be individually specified by using the dot (".") syntax following the register
name, followed by a letter denoting the desired portion. For 32-bit registers, ".H" denotes the most-significant
("High") 16 bits, whereas ".L" denotes the least-significant 16 bits. Similar access control is available for the
40-bit accumulator registers, which is discussed later.

This manual uses the following conventions.

• When there is a choice of any one register within a register group, this manual shows the register set using a
dash ("-"). For example, "R7-0" in text means that any one of the eight data registers (R7, R6, R5, R4, R3, R2,
R1, or R0) can be used in the syntax for the instruction.

• Immediate values are designated as "imm" with the following modifiers:

• "imm" indicates a signed integer and is followed by an integer value indicating how many bits are required
to represent it in binary (e.g., imm7 is a signed 7-bit value).

• The "u" prefix indicates an unsigned value (e.g., uimm4 is an unsigned 4-bit value).

• The "m" suffix followed by a number can be appended to provide added alignment requirements. For ex-
ample, uimm16m2 is an unsigned, 16-bit integer that must be an even number, and imm7m4 is a signed,
7-bit integer that must be a multiple of four.

• PC-relative, signed values are designated as "pcrel" and have the following modifiers:

• the decimal number indicates how many bits are required to represent the value in bianry (e.g.,
pcrel5 is a 5-bit value).

• any alignment requirements are designated by an optional "m" suffix followed by a number (e.g.,
pcrel13m2 is a 13-bit integer that must be an even number).

• Loop PC-relative, signed values are designated as "lppcrel" with the following modifiers:

Notation Conventions

1–6 ADSP-BF7xx Blackfin+ Processor

• the decimal number indicates how many bits are required to represent the value in binary (e.g.,
lppcrel5 is a 5-bit value).

• any alignment requirements are designated by an optional "m" suffix followed by a number (e.g.,
lppcrel11m2 is an 11-bit integer that must be an even number).

Glossary
The following terms appear throughout this document. Without trying to explain the Blackfin+ processor, here are
the terms used along with their definitions.

Register Names

The architecture includes the registers shown in the Registers table.

Table 1-1: Registers

Register Description

Accumulators The two 40-bit A1 and A0 registers that normally contain data that is being manipulated. Each accumulator can
be accessed in five ways: as one 40-bit register, as one 32-bit register (designated as A1.W or A0.W), as two 16-bit
registers (designated as A1.H and A1.L or A0.H and A0.L) and as one 8-bit register (designated as A1.X or
A0.X) for the overflow bits that extend beyond bit 31. The accumulators may be used as a pair (designated as
A1:0) to hold the 40-bit real and imaginary parts of a complex fixed-point number or a single 72-bit real fixed-
point number.

Data Registers The set of eight 32-bit registers (R0, R1, R2, R3, R4, R5, R6, and R7) that normally contain data for manipula-
tion (abbreviated to Dreg when referenced in this manual). Data registers can be accessed as 32-bit registers or
as two independent 16-bit registers. The least significant 16 bits of each register is called the "low" half and is
designated with ".L" following the register name. The most significant 16 bits is called the "high" half and is
designated with ".H" following the name (e.g., R7.L, r2.h, r4.L, and R0.h).

Pointer Registers The set of six 32-bit registers (P0, P1, P2, P3, P4, and P5) that normally contain byte addresses of data struc-
tures (abbreviated to Preg when referenced in this manual). The pointer registers can be accessed as 16-bit
halves, similar to the data registers above.

Stack Pointer SP is a part of the Preg register group and contains the 32-bit address of the last occupied byte location in the
stack. The stack grows downward in memory (i.e., by pre-decrementing SP during stack push operations).

Frame Pointer FP is a part of the Preg register group and contains the 32-bit address of the previous Frame Pointer on the
stack, located at the top of the frame.

Loop Top LT0 and LT1 contain the 32-bit address of the instruction at the top of a zero-overhead loop.

Loop Count LC0 and LC1 contain the 32-bit counter for the zero-overhead loop iterations. These registers are initialized dur-
ing loop setup and decrement when the loop bottom is reached. The loop exits when the count reaches 0.

Loop Bottom LB0 and LB1 contain the 32-bit address of the instruction at the bottom of a zero-overhead loop.

Index Register The set of four 32-bit registers (I0, I1, I2, and I3) that normally contain byte addresses of data structures
(abbreviated to Ireg when referenced in this manual).

Modify Registers The set of four 32-bit registers (M0, M1, M2, and M3) that normally contain offset values that modify (add to or
subtract from) one of the Iregs (abbreviated to Mreg when referenced in this manual).

Glossary

ADSP-BF7xx Blackfin+ Processor 1–7

Table 1-1: Registers (Continued)

Register Description

Length Registers The set of four 32-bit registers (L0, L1, L2, and L3) that normally contain the length (in bytes) of a circular
buffer (abbreviated to Lreg when referenced in this manual). When a Lreg is 0, circular addressing for the
corresponding Ireg is disabled (e.g., if L3=0, circular addressing for the I3 index is disabled).

Base Registers The set of four 32-bit registers (B0, B1, B2, and B3) that normally contain the base address of a buffer in memo-
ry (abbreviated as Breg when referenced in this manual).

Functional Units

The architecture includes the three processor sections shown in the Units table.

Table 1-2: Units

Processor Description

Data Address Generator (DAG) Calculates the effective address for indirect and indexed memory ac-
cesses. Consists of two blocks, DAG0 and DAG1.

Multiply and Accumulate Unit (MAC) Performs arithmetic functions on data. Consists of three blocks:
MAC0 and MAC1, each associated with an accumulator (A0 and
A1, respectively) and executing on 16-bit input operands, and
MAC10 associated with the accumulator pair A1:0 when handling
32-bit input operands.

Arithmetic Logical Unit (ALU) Performs arithmetic computations and binary shifts on data. Oper-
ates on the data registers and accumulators. Consists of three blocks
(ALU0, ALU1, and ALU10), each associated with an accumulator
(A0, A1, and the A1:0 pair, respectively). Each ALU operates in
conjunction with a MAC unit.

Arithmetic Status Bits

The Blackfin+ architecture includes 12 Arithmetic Status register (ASTAT) bits that indicate specific results from the
instruction that just executed. A summary of the status bits appears in the ASTAT Bits table. All status bits are active
high and are set as the result of an operation storing its results to a data or accumulator register. Instructions target-
ing pointer or DAG registers do not affect these status bits.

Table 1-3: ASTAT Bits

Bit Description

AC0 ALU0 Carry

AC0_COPY Copy of ALU0 Carry

AC1 ALU1 Carry

AN Negative

AQ Quotient

Glossary

1–8 ADSP-BF7xx Blackfin+ Processor

Table 1-3: ASTAT Bits (Continued)

Bit Description

AV0 Accumulator 0 Overflow

AVS0 Accumulator 0 Sticky Overflow

Set when AV0 is set, but remains set until explicitly cleared by software.

AV1 Accumulator 1 Overflow

AVS1 Accumulator 1 Sticky Overflow

Set when AV1 is set, but remains set until explicitly cleared by software.

AZ Zero

CC Control Code bit

Multipurpose bit set, cleared and tested by specific instructions.

V Overflow (for data register results)

V_COPY Copy of Overflow (for data register results)

VS Sticky Overflow (for data register results)

Set when V is set, but remains set until explicitly cleared by software.

Fractional Convention

Fractional numbers include subinteger components less than 1. Whereas decimal fractions appear to the right of a
decimal point, binary fractions appear to the right of a binal point.

In instructions that assume placement of a binal point (e.g., in computing sign bits for normalization or alignment
purposes), the binal point convention depends on the size of the register being used, as shown in the Fractional
Notation table and the Conventional Placement of Binal Point figure.

Table 1-4: Fractional Notation

Register Width Format Notation # of Sign Bits # of Extension Bits # of Fractional Bits

80-bit accumulator
pair (8 bits unused)

Signed Fractional 9.63 1 8 63

Unsigned Fractional 8.64 0 8 64

64-bit register pair Signed Fractional 1.63 1 0 63

Unsigned Fractional 0.64 0 0 64

40-bit registers Signed Fractional 9.31 1 8 31

Unsigned Fractional 8.32 0 8 32

32-bit registers Signed Fractional 1.31 1 0 31

Unsigned Fractional 0.32 0 0 32

16-bit registers Signed Fractional 1.15 1 0 15

Unsigned Fractional 0.16 0 0 16

Glossary

ADSP-BF7xx Blackfin+ Processor 1–9

40-BIT ACCUMULATOR

32-BIT REGISTER

16-BIT REGISTER HALF

80-BIT ACCUMULATOR PAIR

64-BIT REGISTER PAIR

S

BINAL POINT ALIGNMENT

S

S

S

S

8-BIT EXTENSION

8-BIT EXTENSION

31-BIT FRACTION

15-BIT FRACTION

63-BIT FRACTION, UPPER 31 BITS

63-BIT FRACTION, LOWER 32 BITS

63-BIT FRACTION, UPPER 31 BITS

63-BIT FRACTION, LOWER 32 BITS

31-BIT FRACTION

Figure 1-2: Conventional Placement of Binal Point

Saturation

When the result of an arithmetic operation exceeds the range of the destination register, important information can
be lost.

Saturation is a technique used to contain the quantity within the values that the destination register can represent.
When a value is computed that exceeds the capacity of the destination register, then the value written to the register
is the largest value that the register can hold with the same sign as the original value.

• If an operation would otherwise cause a positive value to overflow and become negative, the saturation instead
limits the result to the maximum positive value for the register size being used.

• Conversely, if an operation would otherwise cause a negative value to overflow and become positive, saturation
limits the result to the maximum negative value for the register's size.

The maximum positive value in a 16-bit register is 0x7FFF, whereas the maximum negative value is 0x8000. For
signed two's-complement fractional data in 1.15 format, the range of values that can be represented is -1 through

(1-2-15).

The maximum positive value in a 32-bit register is 0x7FFF_FFFF, whereas the maximum negative value is
0x8000_0000. For signed two's-complement fractional data in 1.31 format, the range of values that can be repre-

sented is -1 through (1-2-31).

The maximum positive value in a 40-bit register is 0x7F_FFFF_FFFF, whereas the maximum negative value is
0x80_0000_0000. For signed two's-complement fractional data in 9.31 format, the range of values that can be rep-

resented is -256 through (256-2-31).

The maximum positive value in a 64-bit register pair is 0x7FFF_FFFF_FFFF_FFFF, whereas the maximum negative
value is 0x8000_0000_0000_0000. For signed two's-complement fractional data in 1.63 format, the range of values

that can be represented is -1 through (1-2-63).

Glossary

1–10 ADSP-BF7xx Blackfin+ Processor

A real value held in the 80-bit accumulator pair, A1:0, only has 72 bits of useful data; therefore, the maximum
positive value in the 80-bit accumulator pair is 0x7F_FFFF_FFFF_FFFF_FFFF, and the maximum negative value is
0x80_0000_0000_0000_0000. For signed two's-complement fractional data in 9.63 format, the range of values that

can be represented is -256 through (256-2-63).

For example, if a 16-bit register containing 0x1000 (decimal integer +4096) was shifted left 3 places without satura-
tion, it would overflow to 0x8000 (decimal -32,768). With saturation, however, a left shift of 3 or more places
would always produce the largest positive 16-bit number, 0x7FFF (decimal +32,767).

Another common example is copying the lower half of a 32-bit register into a 16-bit register. If the 32-bit register
contains 0xFEED_0ACE and the lower half of this negative number is copied into a 16-bit register without satura-
tion, the result is 0x0ACE, which changes the sign to represent a positive number. With saturation, however, the 16-
bit result maintains its negative sign and becomes 0x8000.

The Blackfin+ architecture implements 40-bit saturation for all arithmetic operations that write a single accumulator
destination register except as noted in the individual instruction descriptions when an optional 32-bit saturation
mode can constrain a 40-bit accumulator to the 32-bit register range. The Blackfin+ architecture performs 32-bit
saturation for 32-bit destination registers only where noted in the instruction descriptions.

Overflow is the alternative to saturation. The number is allowed to simply exceed its bounds and lose its most signifi-
cant bit(s), retaining only the lowest (least-significant) portion of the number. Overflow can occur when a 40-bit
value is written to a 32-bit destination or when a 72-bit value is written to a 64-bit or 32-bit destination. If there
was any useful information in the upper eight bits of the 40-bit value, then information is lost in the process. Some
processor instructions report overflow conditions in the Arithmetic Status (ASTAT) register bits, as noted in the in-
struction descriptions.

Rounding and Truncating

Rounding is a means of reducing the precision of a number by removing lower-order bits from that number's repre-
sentation and possibly modifying the remaining portion of the number to more accurately represent its former value.
For example, a number has N bits of precision, but the new number will have only M bits of precision (where
N>M). In this case, N-M bits of precision are removed from the number in the process of rounding.

The round-to-nearest method returns the closest number to the original. An original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For example, when rounding the three-bit, two's-
complement fraction 0.25 (binary 0.01) to the nearest two-bit two's-complement fractional notation, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between 0.5 and 0.0 (binary 0.0), so this method
rounds up. Because it always rounds up, this method is called biased rounding.

The convergent rounding method also returns the closest number to the original. However, in cases where the original
number lies exactly halfway between two numbers, this method returns the nearest even number (with the least sig-
nificant bit being a 0). Taking the example above, the result would be 0.0 because that is the even value among the
two options, 0.5 and 0.0. Since it rounds up and down based on the surrounding values, this method is called
unbiased rounding.

Glossary

ADSP-BF7xx Blackfin+ Processor 1–11

Some instructions for this processor support biased and unbiased rounding, as governed by the Rounding Mode bit
in bit in the Arithmetic Status register (ASTAT.RND_MOD).

Another common way to reduce the significant bits representing a number is to simply mask off the N-M lower bits.
This process is known as truncation and results in a relatively large bias.

The 8-Bit Number Reduced to 4 Bits of Precision figure shows other examples of rounding and truncation methods.

1

0 1 0

0 0

0 1

0

0

1 0 0 0

1

0

original 8-bit number (0.5625)

4-bit biased rounding (0.625)

4-bit unbiased rounding (0.5)

0 1 0 0 4-bit truncation (0.5)

1

0 1 0

0 0

0 1

0

0

1 0 1 0

1

1

original 8-bit number (0.578125)

4-bit biased rounding (0.625)

4-bit unbiased rounding (0.625)

0 1 0 0 4-bit truncation (0.5)

Figure 1-3: 8-Bit Number Reduced to 4 Bits of Precision

Automatic Circular Addressing

The Blackfin+ processor provides an optional circular (or "modulo") addressing feature that increments an index
register (Ireg) through a pre-defined address range, then automatically resets the Ireg to repeat that range. This
feature improves input/output loop performance by eliminating the need to manually re-initialize the address index
pointer each time. Circular addressing is useful, for instance, when repetitively loading or storing a string of fixed-
sized data blocks.

The circular buffer must meet the following criteria:

• The maximum length of a circular buffer (the value held in any Lreg) must be an unsigned number less than

231.

• The magnitude of the modifier (the value held in the Mreg used in the instruction) must be less than the
length of the circular buffer (the value in the Lreg that corresponds to the Ireg used in the instruction).

• The initial location pointed to by the Ireg must be within the circular buffer defined by the base-length regis-
ter pair (the Breg and Lreg register pair. E.g., B2 and L2).

If any of these conditions is not satisfied, then processor behavior is not specified.

There are two elements of automatic circular addressing:

• Indexed address instructions

Glossary

1–12 ADSP-BF7xx Blackfin+ Processor

• Four sets of circular buffer addressing registers, comprised of one of each of the Ireg, Breg, and Lreg register
groups (specifically, I0/B0/L0, I1/B1/L1, I2/B2/L2, and I3/B3/L3)

To qualify for circular addressing, the indexed address instruction must explicitly modify an index register. Some
indexed address instructions use a modify register (Mreg) to increment the Ireg value. In that case, any Mreg can
be used to increment any Ireg. The Ireg used in the instruction specifies which of the four circular buffer sets to
use.

The circular buffer registers define the length (Lreg) of the data block in bytes and the base (Breg) address to re-
initialize the Ireg when a wrap condition is encountered at the end of the buffer.

Some instructions, such as Add Immediate and Modify–Decrement, modify an index register without using it for ad-
dressing; however, even these instructions are still affected by circular addressing, if enabled.

Disable circular addressing for an Ireg by setting the corresponding Lreg to 0. For example, set L2 = 0 to disable
circular addressing for register I2. Any non-zero value in an Lreg enables circular addressing for its corresponding
DAG buffer registers.

Glossary

ADSP-BF7xx Blackfin+ Processor 1–13

2 Computational Units

The processor's computational units perform numeric processing for DSP and general control algorithms. The seven
computational units are two arithmetic/logic units (ALUs), three multiplier/accumulator (MAC) units, a shifter, and
a set of video ALUs, all of which get data from registers in the data register file. Computational instructions for these
units provide fixed-point operations, and each computational instruction can execute every cycle.

The computational units handle different types of operations. The ALUs perform arithmetic and logic operations.
The MACs perform multiplication and execute multiply/add and multiply/subtract operations. The shifter executes
logical and arithmetic shifts and performs bit packing and extraction. The video ALUs perform Single Instruction,
Multiple Data (SIMD) logical operations on specific 8-bit data operands.

Data moving into and out of the computational units goes through the data register file, which consists of eight 32-
bit registers. In operations requiring 16-bit operands, the registers are paired, providing sixteen possible 16-bit regis-
ters.

The processor's assembly language provides access to the data register file. The syntax allows programs to move data
to and from these registers while simultaneously specifying a computation's data format.

The Processor Core Architecture figure provides a graphical guide to the other topics in this chapter. An examination
of each computational unit provides details about its operation and is followed by a summary of computational in-
structions. Studying the details of the computational units, register files, and data buses leads to a better understand-
ing of proper data flow for computations. Next, details about the processor's advanced parallelism reveal how to take
advantage of multifunction instructions.

The Processor Core Architecture figure also shows the relationship between the data register file and the computa-
tional units (multipliers, ALUs, and shifter).

Single function MAC, ALU, and shifter instructions have unrestricted access to the data registers in the data register
file. Multifunction operations may have restrictions that are described in the section for that particular operation.

Two additional 40-bit registers, A0 and A1, provide accumulator results. These registers are dedicated to the ALUs
and are used primarily for multiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and integer, are specified directly in the instruc-
tion. Rounding modes are set from the ASTAT register, which also records status and conditions for the results of the
computational operations.

Computational Units

ADSP-BF7xx Blackfin+ Processor 2–1

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 2-1: Processor Core Architecture

Using Data Formats
Blackfin+ processors are primarily 32-/16-bit fixed-point machines. Most operations assume a two's-complement
number representation, while others assume unsigned numbers or straight binary data. Other instructions support
32-bit complex fixed-point, 8-bit arithmetic, and block floating point operations. For detailed information about
each number format, see the numeric formats appendix.

In the Blackfin+ processor architecture, signed data is always in two's-complement format. These processors do not
use signed-magnitude, one's-complement, binary-coded decimal (BCD), or excess-n formats.

Binary String

The binary string format is the least complex binary notation, within which 16- or 32-bit data is treated as a bit
pattern. Examples of computations using this format are the logical operations NOT, AND, OR, and XOR. These ALU
operations treat their operands as binary strings with no provision for sign bit or binal point placement.

Unsigned Numbers

Unsigned binary numbers may be thought of as positive and having nearly twice the magnitude of a signed number
of the same length. The processor treats the least significant words of multiple precision numbers as unsigned num-
bers.

Using Data Formats

2–2 ADSP-BF7xx Blackfin+ Processor

Signed Numbers: Two's-Complement

In the Blackfin+ processor architecture, the word signed refers to two's-complement numbers. Blackfin+ processor
operations presume two's-complement arithmetic is being performed.

Fractional Representation: 1.15 and 1.31

The Blackfin+ processor is optimized for operation on data that is in fractional binary format, denoted by either the
1.15 ("one dot fifteen") or 1.31 ("one dot thirty one") nomenclature. In the 1.15 format, the Most Significant Bit
(MSB) is the sign bit, which is followed by the 15 fractional bits that together represent data values from -1 to
0.999969. Similarly, in 1.31 format, the sign bit and 31 fractional bits represent values from -1 to 0.99999999953.

The Bit Weighting for 1.15 Numbers and 1.31 Numbers figure shows the bit weighting for fractional data. This
figure also includes examples of 1.15 numbers and 1.31 numbers with their decimal equivalents.

1.31 NUMBER
(HEXADECIMAL)

 0x00000001
 0x7FFFFFFF
 0xFFFFFFFF
 0x80000000

DECIMAL
EQUIVALENT

 0.00000000047
 0.99999999953
 –0.00000000047
 –1.00000000000

1.15 NUMBER
(HEXADECIMAL)

 0x0001
 0x7FFF
 0xFFFF
 0x8000

DECIMAL
EQUIVALENT

 0.000031
 0.999969
 –0.000031
 –1.000000

2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

–20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

2–242–16 2–17 2–18 2–19 2–20 2–21 2–22 2–23 2–25 2–26 2–27 2–28 2–29 2–30 2–31

–20

Figure 2-2: Bit Weighting for 1.15 Numbers and 1.31 Numbers

Complex Numbers

Complex numbers are represented as two 16-bit fixed-point numbers, in either fractional 1.15 or 16-bit signed inte-
ger format. A complex operand is stored in a 32-bit data register with the real part stored in the least significant bits
(Rx.L) and the imaginary part in the most significant bits (Rx.H).

Register Files
The processor's computational units have three defined register groups, a data register file, a pointer register file, and
a set of Data Address Generation (DAG) registers.

• The data register file receives operands from the data buses for the computational units and stores computa-
tional results.

• The pointer register file has pointers for addressing operations.

• The DAG registers are dedicated registers that manage zero-overhead circular buffers for DSP operations.

The AAU Register Files figure provides more information about the pointer and DAG registers.

Using Data Formats

ADSP-BF7xx Blackfin+ Processor 2–3

 Address Arithmetic Unit Registers

P0

P1

P2

P3
P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

 Data Address Registers
 Pointer
 Registers

Figure 2-3: AAU Register Files

Data Register File

The data register file consists of eight 32-bit registers, R7 through R0. Each register may be viewed as a pair of inde-
pendent 16-bit registers, denoted independently as the low half (R[n].L) or the high half (R[n].H) of the 32-bit
register. For more information, see Data Registers .

For example, these instructions represent a 32-bit and a 16-bit operation:

R2 = R1 + R2; /* 32-bit addition */
R2 = R1.H * R0.L; /* 16-bit multiplication */

Three separate 32-bit buses (two load, one store) connect the register file to L1 data memory. Transfers between the
data register file and data memory can move up to two 32-bit words of valid data per core clock cycle. Often, these
represent four 16-bit words.

Accumulator Registers

In addition to the data register file, the processor has two dedicated, 40-bit accumulator registers, A0 and A1. Each
can be referred to by its 16-bit low half (An.L) or 16-bit high half (An.H) or its 8-bit extension (An.X). Each can
also be referred to as a 32-bit register (An.W) consisting of the lower 32 bits, or as a complete 40-bit result register
(An). For more information, see the following registers:

• Accumulator 0 Register

• Accumulator 0 Extension Register

• Accumulator 1 Register

• Accumulator 1 Extension Register

These examples illustrate this convention:

A0 = A1; /* 40-bit move */

Register Files

2–4 ADSP-BF7xx Blackfin+ Processor

A1.W = R7; /* 32-bit move */
A0.H = R5.H; /* 16-bit move */
R6.H = A0.X; /* read 8-bit value, sign extend to 16 bits */

The accumulator registers may be used together to hold an 80-bit complex result or a 72-bit fixed-point result. The
combined accumulator register is called A1:0. A 72-bit fixed-point result is held in the combined register with the
least significant bits in A0.W, the middle bits in A1.W, and the most significant bits in A1.X.

A0

A0.WA0.X

A0.X A0.H A0.L

0

0

0

39

39

39

32

32

31

31 16 15

A1

A1.WA1.X

A1.X A1.H A1.L

0

0

0

39

39

39

32

32

31

31 16 15

IMAGINARY

32

0

71

39

031

REAL

039

72-BIT FIXED POINT IN A1:0

80-BIT COMPLEX IN A1:0

Figure 2-4: 40-Bit Accumulator Registers

Register File Instruction Summary

The Register File Instructions and Status table lists the register file instructions. In this table, note the meaning of
these symbols:

• Allreg denotes: R[7:0], P[5:0], SP, USP, FP, I[3:0], M[3:0], B[3:0], L[3:0], A0.X, A0.W, A1.X,
A1.W, ASTAT, RETS, RETI, RETX, RETN, RETE, LC[1:0], LT[1:0], LB[1:0], SEQSTAT, SYSCFG,
EMUDAT, CYCLES, and CYCLES2.

• Ax denotes either ALU result register, A0 or A1.

• Dreg denotes any data register file register.

• Sysreg denotes the system registers: ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, or RETS,
LC[1:0], LT[1:0], LB[1:0], EMUDAT, CYCLES, and CYCLES2.

• Preg denotes any pointer (P[5:0]), FP, or SP register.

• Dreg_even denotes R0, R2, R4, or R6.
• Dreg_odd denotes R1, R3, R5, or R7.
• DPreg denotes any data register file register (R[7:0]) or any pointer (P[5:0]), FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any data register file (R[7:0].L) register.

• Dreg_hi denotes the upper 16 bits of any data register file (R[7:0].H) register.

• Ax.L denotes the lower 16 bits of either accumulator (A0.W or A1.W).

• Ax.H denotes the upper 16 bits of either accumulator (A0.W or A1.W).

Register Files

ADSP-BF7xx Blackfin+ Processor 2–5

• Dreg_byte denotes the least significant byte of the data register file register (R[7:0]).

• Option (X) denotes sign-extended data into the uppermost bits of the destination register.

• Option (Z) denotes zero-extended data into the uppermost bits of the destination register.

• * indicates the status bit may be set or cleared, depending on the result of the instruction.

• ** indicates the status bit is cleared.

• - indicates no effect.

Table 2-1: Register File Instructions and Status

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY

AC1

AV0

AVS

AV1

AV1S CC

V

V_COPY

VS

allreg = allreg ; *1 - - - - - - -

Ax = Ax ; - - - - - - -

Ax = Dreg ; - - - - - - -

Ax = Dreg (X) ; - - - - - - -

Ax = Dreg (Z) ; - - - - - - -

A1 = Dreg (X), A0 = Dreg (X) ; - - - - - - -

A1 = Dreg (Z), A0 = Dreg (Z) ; - - - - - - -

A1 = Dreg (X), A0 = Dreg (Z) ; - - - - - - -

A1 = Dreg (Z), A0 = Dreg (X) ; - - - - - - -

Dreg_even = A0 ; * * - - - - *

Dreg_odd = A1 ; * * - - - - *

Dreg_even = A0,

Dreg_odd = A1 ;

* * - - - - *

Dreg_odd = A1,

Dreg_even = A0 ;

* * - - - - *

IF CC DPreg = DPreg ; - - - - - - -

IF ! CC DPreg = DPreg ; - - - - - - -

Dreg = Dreg_lo (Z) ; * ** ** - - - **/-

Dreg = Dreg_lo (X) ; * * ** - - - **/-

Ax.X = Dreg_lo ; - - - - - - -

Dreg_lo = Ax.X ; - - - - - - -

Register Files

2–6 ADSP-BF7xx Blackfin+ Processor

Table 2-1: Register File Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY

AC1

AV0

AVS

AV1

AV1S CC

V

V_COPY

VS

Ax.L = Dreg_lo ; - - - - - - -

Ax.H = Dreg_hi ; - - - - - - -

Dreg_lo = A0 ; * * - - - - *

Dreg_hi = A1 ; * * - - - - *

Dreg_hi = A1 ;

Dreg_lo = A0 ;

* * - - - - *

Dreg_lo = A0 ;

Dreg_hi = A1 ;

* * - - - - *

Dreg = Dreg_byte (Z) ; * ** ** - - - **/-

Dreg = Dreg_byte (X) ; * * ** - - - **/-

*1 Warning: Not all register combinations are allowed. For details, see the functional description of the Move Register instruction.

Data Types
The Blackfin+ processor supports 32-bit words, 16-bit half-words, and bytes. The 32- and 16-bit words can be inte-
ger or fractional, and bytes are always integers. Integer data types can be signed or unsigned, whereas fractional data
types are always signed. 32-bit words can also be complex numbers comprised of 16-bit real and imaginary parts,
with the real part in the least significant bits and the imaginary part in the most significant bits of the data register.

The Data Types and Representation in Memory/Register table illustrates the formats for data that resides in memory,
the register file, and the accumulators. In the table, the letter d represents one bit, and the letter s represents one
signed bit.

Some instructions manipulate data in the registers by sign-extending or zero-extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half-words and 8-bit bytes

Other instructions manipulate data as 32-bit numbers. In addition, two 16-bit half words or four 8-bit bytes can be
manipulated as 32-bit values.

In the table, note the meaning of these symbols:

• s = sign bit(s)

Data Types

ADSP-BF7xx Blackfin+ Processor 2–7

• d = data bit(s)

• "." = binary point in the format column. Bits to the left are the whole part of the data, and bits to the right are
the fractional part of the data. Where applicable, it is also inserted in the representation columns, though the
binary point itself is not part of the data.

Table 2-2: Data Types and Representation in Memory/Register

Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned Word dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd

32.0 Signed Word sddd dddd dddd dddd dddd dddd dddd dddd sddd dddd dddd dddd dddd dddd dddd dddd

16.0 Unsigned Half Word dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd dddd

16.0 Signed Half Word sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned Byte dddd dddd 0000 0000 0000 0000 0000 0000 dddd dddd

8.0 Signed Byte sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

1.15 Signed Fraction s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

1.31 Signed Fraction s.ddd dddd dddd dddd dddd dddd dddd dddd s.ddd dddd dddd dddd dddd dddd dddd dddd

Fractional Complex s.ddd dddd dddd dddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Integer Complex sddd dddd dddd dddd sddd dddd dddd dddd sddd dddd dddd dddd sddd dddd dddd dddd

Packed 8.0 Unsigned Byte dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd dddd

Packed 1.15 Signed Fraction s.ddd dddd dddd dddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Endianness

Both internal and external memory are accessed in little endian byte order. For more information, see the memory
transaction model.

ALU Data Types

With the exception of the signed division primitive (DIVS), ALU operations treat operands and results as either 16-
or 32-bit binary strings. ALU result status bits treat the results as signed, indicating status with the overflow status
bits (AV0, AV1) and the negative status bit (AN). Each ALU has its own sticky overflow status bit, AV0S and AV1S,
respectively. Once set, these bits remain set until cleared by writing directly to the ASTAT register. An additional V
status bit is set or cleared depending on the transfer of the result from both accumulators to the register file. Further-
more, the sticky VS bit is set with the V bit and remains set until explicitly cleared by software.

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, and AV1S) is based on two's-complement arithmetic. A bit
or set of bits is set if the Most Significant Bit (MSB) changes in a manner not predicted by the signs of the operands
and the nature of the operation. For example, adding two positive numbers must generate a positive result. A change
in the sign bit signifies an overflow and sets the corresponmding overflow status bit (AVx). Adding a negative and a
positive number may result in either a negative or positive result, so this cannot cause an overflow.

Data Types

2–8 ADSP-BF7xx Blackfin+ Processor

The logic of the carry bits (AC0 and AC1) is based on unsigned magnitude arithmetic. The bit is set if a carry is
generated from bit 16 (the MSB). The carry bits are most useful for the lower word portions of a multiword opera-
tion.

ALU results generate status information. For more information about using ALU status, see Using Computational
Status.

MAC Data Types

Each MAC produces results that are binary strings. The inputs are interpreted according to the information given in
the instruction itself (whether it is a signed value multiplied by a signed value, an unsigned value multiplied by an
unsigned value, a mixture of signed/unsigned, or a rounding operation). The MAC results are either signed or un-
signed, depending on the signs of the operands, and is accordingly zero- or sign-extended to the width of the accu-
mulator.

The 32-bit MAC multiplies 32-bit operands to produce a 64-bit result. This result is zero- or sign-extended to 72
bits and added to the 72-bit value in the A1:0 register pair. Two 32-bit complex operands can be multiplied to
produce a 64-bit result consisting of a 32-bit real part and a 32-bit imaginary part. Both parts are sign extended to
40-bits, and the real part is added to the value in A0 while the imaginary part is added to the value in A1.

The 16-bit MACs multiply 16-bit operands to produce a 32-bit result which is zero- or sign-extended up to the full
40-bit width of the A0 or A1 register.

The processor supports two modes of format adjustment, the fractional mode for signed fractional operands (1.31
format with one sign bit and 31 fractional bits or 1.15 format with one sign bit and 15 fractional bits) and the
regular mode for operands with any other format combination.

When the processor multiplies two 1.15 operands, the result is a 2.30 (two sign bits and 30 fractional bits) number.
In the fractional mode, the MAC automatically shifts the product left one bit before transferring the result to the
result register. This shift of the redundant sign bit causes the MAC result to be in 1.31 format, which can be round-
ed (truncated) to 1.15 format. Similarly, when the processor multiplies two 1.31 operands, the result is a 2.62 num-
ber which is automatically shifted to produce a 1.63 result before transferring to the result register.

In other modes, the left shift does not occur. For example, if the operands are in 16.0 format, the 32-bit MAC result
would be in 32.0 format. A left shift is not needed and would change the numerical representation.

The MAC result may be added to or subtracted from the value in an accumulator register (A0, A1, or A1:0).

For 16-bit signed fractional operands, the 32-bit product output is format-adjusted (sign-extended and shifted one
bit to the left) before being applied to either accumulator (A0 or A1). For example, bit 31 of the product lines up
with bit 32 of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1 of A0 (which is bit 1 of
A0.W). The Least Significant Bit (LSB) is zero-filled, and the fractional MAC result format appears in the 16-bit
Signed Fractional Multiplier Results Format figure.

For integer and unsigned fractional 16-bit operands, the 32-bit product register is not shifted before being applied to
A0 or A1. The Other 16-bit Multiplier Results Format figure shows the integer mode result placement.

Data Types

ADSP-BF7xx Blackfin+ Processor 2–9

For 32-bit signed fractional operands, the 64-bit product output is format adjusted (sign-extended and shifted one
bit to the left-before being applied to the A1:0 accumulator pair). Bit 63 of the product lines up with bit 64 of
A1:0 (which is bit 0 of A1.X), and bit 0 of the product lines up with bit 1 of A1:0 (which is bit 1 of A0.W). The
Least Significant Bit (LSB) is zero-filled. Note A0.X is not used when the combined register A1:0 holds a 72-bit
accumulation result of 32-bit operands.

For other 32-bit integer and unsigned fractional multiplier operands, the 64-bit product is not shifted before being
applied to A1:0.

The result of multiplying 32-bit complex operands consisting of a 16-bit imaginary part and a 16-bit real part is a
pair of 40-bit signed fractions or signed integers. The accumulation proceeds as for fractional or integer multiplica-
tion with the real part of the accumulation performed in A0 and the imaginary part in A1.

MAC results generate status information when they update accumulators or when they are transferred to a destina-
tion register in the register file. For more information, see Using Computational Status.

31 31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN,
7 BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

Figure 2-5: 16-bit Signed Fractional Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 1 1 1 167 6 5 4 3 2 1 0

P SIGN,
8 BITS MULTIPLIER P OUTPUT

A0.X A0.W

Figure 2-6: Other 16-bit Multiplier Results Format

Shifter Data Types

Many operations in the shifter are explicitly geared to signed (two's-complement) or unsigned values. Logical shifts
assume unsigned magnitude or binary string values, and arithmetic shifts assume two's-complement values.

The exponent logic assumes two's-complement numbers. The exponent logic supports block floating point, which is
also based on two's-complement fractions.

Data Types

2–10 ADSP-BF7xx Blackfin+ Processor

Shifter results generate status information. For more information about using shifter status, see Using Computation-
al Status.

Arithmetic Formats Summary

The ALU Arithmetic Formats table, MAC Fractional Modes Formats table, MAC Arithmetic Integer Modes Formats
table, and Shifter Arithmetic Formats table summarize some of the arithmetic characteristics of computational oper-
ations.

Table 2-3: ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret status bits

Subtraction Signed or unsigned Interpret status bits

Logical Binary string Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4: MAC Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 signed fractional

1.31 signed fractional

0.16 unsigned fractional

0.32 unsigned fractional

2x 1.15 signed fractional complex

2.30, shifted to 1.31

2.62, shifted to 1.63

0.32, not shifted

0.64, not shifted

2x 2.30, shifted to 2x 1.31

Multiplication/Addition 1.15 and 8.32 signed fractional

1.31 and 8.64 signed fractional

0.16 and 8.32 unsigned fractional

0.32 and 8.64 unsigned fractional

2x 1.15 and 2x 8.32 signed fractional
complex

8.32 signed

8.64 signed

8.32 unsigned

8.64 unsigned

2x 8.32

Multiplication/Subtraction 1.15 and 8.32 signed fractional

1.31 and 8.64 signed fractional

0.16 and 8.32 unsigned fractional

0.32 and 8.64 unsigned fractional

2x 1.15 and 2x 8.32 signed fractional
complex

8.32 signed

8.64 signed

8.32 unsigned

8.64 unsigned

2x 8.32

Table 2-5: MAC Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 signed or unsigned 32.0, not shifted

Data Types

ADSP-BF7xx Blackfin+ Processor 2–11

Table 2-5: MAC Arithmetic Integer Modes Formats (Continued)

Operation Operand Formats Result Formats

32.0 signed or unsigned

2x 16.0 signed integer complex

64.0, not shifted

2x 64.0, not shifted

Multiplication/Addition 16.0 signed or unsigned and 40.0

32.0 signed or unsigned and 72.0

2x 16.0 and 2x 40.0 signed integer com-
plex

40.0

72.0

2x 40.0

Multiplication/Subtraction 16.0 signed or unsigned and 40.0

32.0 signed or unsigned and 72.0

2x 16.0 and 2x 40.0 signed integer com-
plex

40.0

72.0

2x 40.0

Table 2-6: Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands

Rounding MAC Results

On many MAC operations, the processor supports rounding (RND option) of the results. Rounding is a means of
reducing the precision of a number by removing the lower bits from that number's representation and possibly mod-
ifying the remaining portion of the number to more accurately represent its former value. For example, if an original
number has N bits of precision and the desired number has only M bits of precision (where N > M), the process of
rounding removes N - M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option provides biased or unbiased rounding.
For unbiased rounding, set the RND_MOD bit = 0. For biased rounding, set the RND_MOD bit = 1.

Unbiased Rounding

The convergent rounding method returns the number closest to the original number. In cases where the original
number lies exactly halfway between two numbers, this method returns the nearest even number (the one containing
an LSB of 0). For example, when rounding the three-bit, two's-complement fraction 0.25 (binary 0.01) to the near-
est two-bit, two's-complement fraction, the result would be 0.0 because that is the even-numbered choice between
0.5 and 0.0. Since it rounds up and down based on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the ALU's capability of rounding 72-bit results at the boundary between bit 31 and bit 32
and 40-bit results at the boundary between bit 15 and bit 16. Rounding can be specified as part of the instruction
syntax. When rounding is selected, the output register contains the rounded 16-bit result. The accumulator is never
rounded.

Data Types

2–12 ADSP-BF7xx Blackfin+ Processor

The accumulator uses an unbiased rounding scheme. The conventional method of biased rounding adds a one into
bit position 31 or 15 of the adder chain. This method causes a net positive bias because the midway value is always
rounded upward.

The accumulator eliminates this bias by forcing bit 32 or bit 16 in the result output to 0 when it detects this mid-
way point. Forcing this bit to 0 has the effect of rounding odd values in the discarded part of the result upward and
even values downward, yielding a large sample bias of 0, assuming uniformly distributed values.

The following examples use x to represent any bit pattern (not all zeros). The example in the Unbiased Multiplier
Rounding figure shows a typical rounding operation for A0, but the example also applies to A1.

1 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 0 1X X X X X X X X

A0.X A0.W

1

0 X X X X X X X X X X X X X X XX X X X X X X X 0 0 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

ADD 1 AND CARRY:

ROUNDED VALUE:

Figure 2-7: Typical Unbiased Multiplier Rounding

The compensation to avoid net bias becomes visible when all of the lower 15 bits are 0 and bit 15 is 1 (the midpoint
value), as shown in the Avoiding Net Bias in Unbiased Multiplier Rounding figure. In this figure, bit 16 of A0 is
forced to 0. This algorithm is employed on every rounding operation, but it is evident only when the bit patterns
shown in the lower 16 bits of the next example are present. When a 72-bit value is rounded, the bias becomes visible
when all of the lower 31 bits are 0 and bit 31 is 1. In this case, net bias is avoided by forcing bit 32 to 0.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

UNROUNDED VALUE:

A0.X A0.W

1

ADD 1 AND CARRY:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 0X X X X X X X X

ROUNDED VALUE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X X X X X X X X 0 1 1 0 0 1 1 1X X X X X X X X

A0 BIT 16 = 1:

Figure 2-8: Avoiding Net Bias in Unbiased Multiplier Rounding

Rounding MAC Results

ADSP-BF7xx Blackfin+ Processor 2–13

Biased Rounding

The round-to-nearest method also returns the number closest to the original. However, by convention, an original
number lying exactly halfway between two numbers always rounds up to the larger of the two. For example, when
rounding the three-bit, two's-complement fraction 0.25 (binary 0.01) to the nearest two-bit, two's-complement
fraction, this method returns 0.5 (binary 0.1). The original fraction lies exactly midway between 0.5 and 0.0 (binary
0.0), so this method rounds up. Because it always rounds up, this method is called biased rounding.

The RND_MOD bit in the ASTAT register enables biased rounding. When the RND_MOD bit is cleared, the RND option
in multiplier instructions uses the normal, unbiased rounding operation, as discussed in Unbiased Rounding.

When the RND_MOD bit is set (=1), the processor uses biased rounding instead of unbiased rounding. When operat-
ing in biased rounding mode, all rounding operations performed on 72-bit results with A0.W set to 0x80000000
round up, rather than only rounding odd values up. Similary, all rounding operations performed on 40-bit results
with A0.L/A1.L set to 0x8000 round up. For an example of biased rounding, see Table 2-7 Biased Rounding in
Multiplier Operation.

Table 2-7: Biased Rounding in Multiplier Operation

A0/A1 Before RND Biased RND Result Unbiased RND Result

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000

0x00 0001 8000 0x00 0002 0000 0x00 0002 0000

0x00 0000 8001 0x00 0001 0001 0x00 0001 0001

0x00 0001 8001 0x00 0002 0001 0x00 0002 0001

0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF

0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

Biased rounding affects 40-bit results only when the A0.L/A1.L register contains 0x8000 and 72-bit results only
when A0.W contains 0x80000000. All other rounding operations work normally. This mode allows more efficient
implementation of bit-specified algorithms that use biased rounding, such as the Global System for Mobile Com-
munications (GSM) speech compression routines.

Truncation

Another common way to reduce the significant bits representing a number is to simply mask off the N - M lower
bits. This process is known as truncation and results in a relatively large bias. Instructions that do not support round-
ing revert to truncation. The ASTAT.RND_MOD bit has no effect on truncation.

Special Rounding Instructions

The ALU provides the ability to round the arithmetic results directly into a data register with biased or unbiased
rounding, as described previously. It also provides the ability to round on different bit boundaries. The options
RND12, RND, and RND20 round at bit 12, bit 16, and bit 20, respectively, regardless of the state of the
ASTAT.RND_MOD bit. For example:

Rounding MAC Results

2–14 ADSP-BF7xx Blackfin+ Processor

R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word (R3.L).

R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, does biased rounding at bit 12, and deposits the result in a half word
(R3.L).

R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, does biased rounding at bit 20, and deposits the result in a half word
(R3.L).

Using Computational Status
The MAC, ALU, and shifter update the overflow and other status bits in the processor's Arithmetic Status (ASTAT)
register. To use status conditions from computations in program sequencing, use conditional instructions to test the
CC status bit in the ASTAT register after the instruction executes. This method permits monitoring each instruction's
outcome. The ASTAT register is a 32-bit register, with some bits reserved. To ensure compatibility with future imple-
mentations, writes to this register should write back the values read from these reserved bits.

ASTAT Register
The Arithmetic Status register (ASTAT) provides information about the result of an operation. The processor up-
dates the status bits in ASTAT, indicating the status of the most recent ALU, MAC, or shifter operation. For more
information, see Arithmetic Status Register .

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point data. ALU fixed-point instructions operate
on 16-, 32-, and 40-bit fixed-point operands and output 16-, 32-, or 40-bit fixed-point results. ALU instructions
include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulation and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR (BXOR), and Negate operations

• Functions:

• Absolute Value (ABS)

• Maximum (MAX) and Minimum (MIN)

• Rounding ((RND))

Using Computational Status

ADSP-BF7xx Blackfin+ Processor 2–15

• Division primitives (DIVSand DIVQ)

ALU Operations

Primary ALU operations occur on ALU0, while parallel operations occur on ALU1, which performs a subset of
ALU0 operations.

The Inputs and Outputs of Each ALU table describes the possible inputs and outputs of each ALU.

Table 2-8: Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier with a 40-bit ac-
cumulation result

Combining operations in both ALUs can result in four 16-bit results, two 32-bit results, or two 40-bit results gener-
ated in a single instruction.

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as the input to the ALU. An addition, sub-
traction, or logical operation produces a 16-bit result that is deposited into an arbitrary destination register half.
ALU0 is used for this operation because it is the primary resource for ALU operations. For example:

R3.H = R1.H + R2.L (NS) ;

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2 low half) and deposits the result in
R3.H (R3 high half) with no saturation ((NS)).

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the input to the ALU, considered as pairs of 16-
bit operands. An addition, subtraction, or logical operation produces two 16-bit results that are deposited into an
arbitrary 32-bit destination register. ALU0 is used for this operation because it is the primary resource for ALU oper-
ations. For example:

R3 = R1 +|- R2 (S) ;
adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1 high half) and deposits the result in
R3.H (R3 high half) with saturation ((S)). The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3 low half) with saturation. For more
information, see 16-bit MAC Data Flow Details.

Arithmetic Logic Unit (ALU)

2–16 ADSP-BF7xx Blackfin+ Processor

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the inputs to ALU0 and ALU1, considered as
pairs of 16-bit operands. A small number of addition or subtraction operations produces four 16-bit results that are
deposited into two arbitrary 32-bit destination registers. Both ALU0 and ALU1 are used for this operation. Because
there are only two 32-bit data paths from the data register file to the arithmetic units, the same two pairs of 16-bit
inputs must be presented to both ALU1 and ALU0. The instruction construct is identical to that of a dual 16-bit
operation, except it is duplicated for both ALUs and identifies unique destination registers for the ALU operation to
store results to. For example:

R3 = R0 +|+ R1, R2 = R0 -|- R1 (S) ;

performs four operations:

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit contents of R0.H (R0 high half) and deposits
the result in R3.H with saturation ((S)).

• Adds R1.L to R0.L and deposits the result in R3.L, also with saturation.

• Subtracts the 16-bit contents of R1.H (R1 high half) from the 16-bit contents of R0.H (R0 high half) and
deposits the result in R2.H, also with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L, also with saturation.

This single-cycle instruction is the equivalent of the following four-cycle sequence of instructions:

R3.H = R0.H + R1.H (S) ;
R3.L = R0.L + R1.L (S) ;
R2.H = R0.H - R1.H (S) ;
R2.L = R0.L - R1.L (S) ;

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the input to the ALU, considered to be 32-bit
operands. An addition, subtraction, or logical operation produces a 32-bit result that is deposited into an arbitrary
32-bit destination register. ALU0 is used for this operation because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the data register file, operands may also be sourced from and
deposited into the pointer register file, consisting of the eight registers P[5:0], SP, and FP. However, the pointer
register file and data register file cannot be used interchangeably in the same instruction. For example:

R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the result in R3 with no saturation.

P3 = P1 + SP ;
adds the 32-bit contents of P1 to the 32-bit contents of SP and deposits the result in P3. Notice that the saturation
qualifier is not supported when using the pointer register file, as ASTAT bits are not affected by ALU operations on
pointer register file registers.

P3 = R1 + R2 (NS) ;

ALU Operations

ADSP-BF7xx Blackfin+ Processor 2–17

is an illegal instruction, with or without the saturation qualifier, as it attempts to source the data register file for an
operation that is writing to the pointer register file.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the input to ALU0 and ALU1, considered to be a
pair of 32-bit operands. An addition or subtraction produces two 32-bit results that are deposited into two 32-bit
destination registers. Both ALU0 and ALU1 are used for this operation. Because only two 32-bit data paths go from
the data register file to the arithmetic units, the same two 32-bit input registers must be presented to both ALU0
and ALU1. For example:

R3 = R1 + R2, R4 = R1 - R2 (NS);

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the result in R3 with no saturation ((NS)).
It also subtracts the 32-bit contents of R2 from that of R1 and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the 40-bit ALU result registers as input operands, creating the sum and
difference of the A0 and A1 registers. For example:

R3 = A0 + A1, R4 = A0 - A1 (S);

transfers the saturated 32-bit sum of the accumulators to the R3 register and the saturated 32-bit difference between
the accumulators to the R4 register.

ALU Division Support Features

The ALU supports division with two special divide primitives. These instructions (DIVS, DIVQ) let programs imple-
ment a non-restoring, conditional (error checking) addition/subtraction/division algorithm.

The division can be either signed or unsigned, but both the dividend and divisor must be of the same type. Details
about using division and programming examples are available in the arithmetic operation chapter.

Special SIMD Video ALU Operations

Four 8-bit video ALUs enable the processor to process video information with high efficiency. Each video ALU in-
struction may take from one to four pairs of 8-bit inputs and return one to four 8-bit results. The inputs are present-
ed to the video ALUs in two 32-bit words from the data register file. The possible operations include:

• Quad 8-Bit Add or Subtract

• Quad 8-Bit Average

• Quad 8-Bit Pack or Unpack

• Quad 8-Bit Subtract-Absolute-Accumulate

• Byte Align

For more information about the operation of these instructions, see the video/pixel operation instructions chapter.

ALU Operations

2–18 ADSP-BF7xx Blackfin+ Processor

ALU Instruction Summary

The Table 2-9 ALU Instructions and Status table lists the ALU instructions and how they affect the ASTAT status
bits. In the table, note the meaning of these symbols:.

• Dreg denotes any data register file register.

• Dreg_lo_hi denotes any 16-bit register half in any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• imm7 denotes a signed, 7-bit wide, immediate value.

• Ax denotes either ALU result register A0 or A1.
• DIVS denotes a divide sign primitive.

• DIVQ denotes a divide quotient primitive.

• MAX denotes the maximum, or most positive, value of the source registers.

• MIN denotes the minimum value of the source registers.

• ABS denotes the absolute value of the upper and lower halves of a single 32-bit register.

• RND denotes rounding a half word.

• RND12 denotes saturating the result of an addition or subtraction and rounding the result at bit 12.

• RND20 denotes saturating the result of an addition or subtraction and rounding the result at bit 20.

• SIGNBITS denotes the number of sign bits in a number minus one.

• EXPADJ denotes the lesser of the number of sign bits in a number minus one and a threshold value.

• * indicates the status bit may be set or cleared, depending on the results of the instruction.

• ** indicates the status bit is cleared.

• - indicates no effect.

• d indicates AQ contains the dividend MSB Exclusive-OR divisor MSB.

Table 2-9: ALU Instructions and Status

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY AC1

AV0

AV0S

AV1

AV1S

V

V_COPY

VS AQ

Dreg = Dreg + Dreg ; * * * - - * -

Dreg = Dreg - Dreg (S) ; * * * - - * -

Dreg = Dreg + Dreg, * * * - - * -

Arithmetic Logic Unit (ALU)

ADSP-BF7xx Blackfin+ Processor 2–19

Table 2-9: ALU Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY AC1

AV0

AV0S

AV1

AV1S

V

V_COPY

VS AQ

Dreg = Dreg - Dreg ;

Dreg_lo_hi = Dreg_lo_hi +
Dreg_lo_hi ;

* * * - - * -

Dreg_lo_hi = Dreg_lo_hi -
Dreg_lo_hi (S) ;

* * * - - * -

Dreg = Dreg +|+ Dreg ; * * * - - * -

Dreg = Dreg +|- Dreg ; * * * - - * -

Dreg = Dreg -|+ Dreg ; * * * - - * -

Dreg = Dreg -|- Dreg ; * * * - - * -

Dreg = Dreg +|+Dreg,

Dreg = Dreg -|- Dreg ;

* * - - - * -

Dreg = Dreg +|- Dreg,

Dreg = Dreg -|+ Dreg ;

* * - - - * -

Dreg = Ax + Ax,

Dreg = Ax - Ax ;

* * * - - * -

Dreg += imm7 ; * * * - - * -

Dreg = (A0 += A1) ; * * * * - * -

Dreg_lo_hi = (A0 += A1) ; * * * * - * -

A0 += A1 ; * * * * - - -

A0 -= A1 ; * * * * - - -

DIVS (Dreg, Dreg) ; * * * * - - d

DIVQ (Dreg, Dreg) ; * * * * - - d

Dreg = MAX (Dreg, Dreg) (V) ; * * - - - **/- -

Dreg = MIN (Dreg, Dreg) (V) ; * * - - - **/- -

Dreg = ABS Dreg (V) ; * ** - - - * -

Ax = ABS Ax ; * ** - * * * -

Ax = ABS Ax,

Ax = ABS Ax ;

* ** - * * * -

Ax = -Ax ; * * * * * * -

Ax = -Ax, Ax =- Ax ; * * * * * * -

Arithmetic Logic Unit (ALU)

2–20 ADSP-BF7xx Blackfin+ Processor

Table 2-9: ALU Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY AC1

AV0

AV0S

AV1

AV1S

V

V_COPY

VS AQ

Ax = Ax (S) ; * * - * * - -

Ax = Ax (S), Ax = Ax (S) ; * * - * * - -

Dreg_lo_hi = Dreg (RND) ; * * - - - * -

Dreg_lo_hi = Dreg + Dreg
(RND12) ;

* * - - - * -

Dreg_lo_hi = Dreg - Dreg
(RND12) ;

* * - - - * -

Dreg_lo_hi = Dreg + Dreg
(RND20) ;

* * - - - * -

Dreg_lo_hi = Dreg - Dreg
(RND20) ;

* * - - - * -

Dreg_lo = SIGNBITS Dreg ; - - - - - - -

Dreg_lo = SIGNBITS
Dreg_lo_hi ;

- - - - - - -

Dreg_lo = SIGNBITS An ; - - - - - - -

Dreg_lo = EXPADJ (Dreg,
Dreg_lo) (V) ;

- - - - - - -

Dreg_lo = EXPADJ (Dreg_lo_hi,
Dreg_lo);

- - - - - - -

Dreg = Dreg & Dreg ; * * ** - - **/- -

Dreg = ~ Dreg ; * * ** - - **/- -

Dreg = Dreg | Dreg ; * * ** - - **/- -

Dreg = Dreg ^ Dreg ; * * ** - - **/- -

Dreg =- Dreg ; * * * - - * -

Multiply Accumulators (MACs)
The three MACs (MAC10, MAC0 and MAC1) perform fixed-point multiplication and multiply-accumulate opera-
tions. Multiply-accumulate operations are available with either cumulative addition or cumulative subtraction.

MAC10 executes fixed-point instructions which operate on 32-bit fixed-point data and produce 64-bit results that
may be added to or subtracted from a 72-bit accumulator. It also executes instructions which operate on 32-bit com-
plex fixed-point data and produce 64-bit results that may be added to or subtracted from an 80-bit accumulator.

Multiply Accumulators (MACs)

ADSP-BF7xx Blackfin+ Processor 2–21

MAC0 and MAC1 execute fixed-point instructions which operate on 16-bit fixed-point data and produce 32-bit
results that may be added to or subtracted from a 40-bit accumulator.

Inputs are treated as fractional, fractional complex, integer, or integer complex unsigned or two's-complement data.
Multiplier instructions include:

• Multiplication

• Multiply-accumulate with addition (with optional rounding)

• Multiply-accumulate with subtraction (with optional rounding)

• Dual versions of the above operations using 16-bit operands

MAC Operation

Each of the 16-bit multipliers, MAC0 and MAC1, has two 32-bit inputs from which it derives the two 16-bit oper-
ands. For single multiply-accumulate instructions, these operands can be any of the R[n] data registers. Each mul-
tiplier accumulates results in its accumulator register, A1 or A0, which can be saturated to 32 or 40 bits. The multi-
plier result can also be written directly to a 16- or 32-bit destination register with optional rounding.

The 32-bit multiplier, MAC10, has two 32-bit operands which can be any of the R[n] data registers. The multipli-
er accumulates results in the register pair A1:0, which are saturated to 72 bits. The 64-bit multiplier result can also
be written directly to a data register pair or it can be rounded or truncated to 32-bits and written to an individual
data register.

Each multiplier instruction has options that specify whether the inputs are in integer or fractional format, with the
format of the result matching that of the inputs. In MAC0, the inputs are either both signed or both unsigned,
whereas MAC10 and MAC1 each support a mixed-mode option.

Complex multiplication instructions executed by MAC10 also have options that specify whether the format of both
of the inputs is complex signed integer or complex signed fractional. For signed fractional inputs, the multiplier au-
tomatically left shifts the result by one bit to remove the redundant sign bit. Unsigned fractional, integer, and mixed
modes do not perform a shift for sign bit correction.

For more information regarding multiplier instructions, see MAC Instruction Options.

Placing MAC Results in Accumulator Registers

As shown in 16-bit MAC Data Flow Details, each MAC may write results to dedicated accumulator registers A0 or
A1. MAC0 writes to A0, MAC1 writes to A1, and MAC10 writes to both A0 and A1. Each accumulator register is
divided into three parts:

• A0.L/A1.L contain the lowermost 16 bits (bits 15:0)

• A0.H/A1.H contain the next 16 bits (bits 31:16)

• A0.X/A1.X contain the uppermost 8 bits (bits 39:32)

Multiply Accumulators (MACs)

2–22 ADSP-BF7xx Blackfin+ Processor

When MAC0 or MAC1 write to its respective accumulator register, the 32-bit result is deposited into the lower bits
of the combined accumulator register (A0.H/A0.L and A1.H/A1.L), and the MSB is sign-extended into the upper
eight bits of the register (A0.X/A1.X).

The results of 32-bit fixed-point and complex multiplication instructions utilize the A1:0 accumulator register pair
as a 64-bit meta-register. These MAC10 operations write the lower 32 bits of the 64-bit fixed-point result to A0.W
and the upper 32 bits to A1.W. Because MAC1 supplies the most significant 32 bits of the result, the resulting value
can be either sign- or zero-extended into A1.X. However, because MAC0 is providing only the lower 32 bits of the
result, A0.X is not used and is always set to zero. MAC10 writes the real part of complex results to A0 and the
imaginary part to A1.

The accumulator pair can be initialized by transferring data from a data register pair using a dual-register move. For
example, these instructions transfer 64-bit values into the 72-bit accumulator:

A1 = R1 (X), A0 = R0 (X); /* sign-extend R1:0 into A1:0 */
A1 = R1 (Z), A0 = R0 (Z); /* zero-extend R1:0 into A1:0 */
A1 = A0 = 0; /* A1:0 = 0 */

Rounding or Saturating MAC Results

On a multiply-accumulate operation, the accumulator data can be saturated and, optionally, rounded for extraction
to a register pair, register, or register half. When a multiply deposits a result only in a register pair, register or register
half, the saturation and rounding works the same way. The rounding and saturation operations work as follows.

• Rounding is applied only to fractional results, with the exception of the IH option, which applies rounding and
high half extraction to an integer result. For the IH option, the rounded result is obtained by adding 0x8000 to
the accumulator (for MAC) or the multiplication result register and then saturating it to 32 bits. For more
information, see MAC Instruction Options. Rounding cannot be combined with a multiply-accumulate into
the 72-bit accumulator, A1:0, but it can be performed by an instruction which only extracts the value from
A1:0 into a data register.

• If an overflow or underflow occurs during the operation, the saturate operation sets the specified result register
to the maximum positive or negative value. For more information, see Saturating MAC Results on Overflow.

• The NS option prevents saturation. When an overflow or underflow has occurred, the specified result register is
set to the low-order bits of the full result. The NS option is only supported for integer multiplications of 32-bit
operands.

Saturating MAC Results on Overflow

The following bits in ASTAT indicate multiplier overflow status:

• ASTAT.AV0 (bit 16) and ASTAT.AV1 (bit 18) record an overflow condition for the A0 and A1 accumulators,
respectively. For MAC10 operations, ASTAT.AV0 also records the overflow condition for A1:0. If the bit is
cleared (=0), no overflow or underflow has occurred. If the bit is set (=1), an overflow or underflow has occur-
red. The ASTAT.AV0S (bit 17) and ASTAT.AV1S (bit 19) bits are sticky bits which must be explicitly cleared
by application code.

MAC Operation

ADSP-BF7xx Blackfin+ Processor 2–23

• ASTAT.V (bit 24) and ASTAT.VS (bit 25) are set if the overflow occurs in extracting the accumulator result to
a register, with ASTAT.VS being the sticky version of the ASTAT.V bit which must be cleared explicitly by
application code.

32-bit MAC Data Flow Details

The 32-bit MAC has two 32-bit inputs, performs a 32-bit fixed-point or complex multiplication, and either stores
the result to the 72-bit meta-register comprised of the accumulator register pair A1:0 or extracts to a 32-bit register
or to a 64-bit register pair.

For complex calculations, the 32-bit real and imaginary results are passed to 40-bit adder/subtracters, which may be
used to modify the values in the accumulator registers, with the real part in A0 and the imaginary part in A1. Alter-
natively, the result may be written directly to a R[n] data register.

For fixed-point calculations, the 64-bit product is passed to a 72-bit adder/subtracter, which may be used to modify
the values in the 72-bit meta-register comprised of the accumulator register pair A1:0, which is a concatenation of
two 32-bit registers (A0.W and A1.W) and an 8-bit register (A1.X). For example:

A1:0 += R2 * R3 ;
In this instruction, the multiply is performed, and the results are added to the previous value in the 72-bit A1:0
accumulator register pair. Alternatively, the new product could also be passed directly to any of the R[n] data regis-
ters.

MAC
(32 Bit)

32b32b

64b64b

FROM MEMORY

TO MEMORY

A1:0

R0

R1

R2

R3

R4

R5

R6

R7

32b

Figure 2-9: 32-bit Multiplier/Accumulators

32-bit Multiply Without Accumulate

The MAC may operate without the accumulation function. If accumulation is not used, the result can be directly
stored to any of the R[n] data registers or to an accumulator register. The destination can be an individual 32-bit
register or a 64-bit register pair. If the destination register is 32 bits, then the data that is extracted from the multipli-
er is the most useful information, which is dependent on the data type of the input:

MAC Operation

2–24 ADSP-BF7xx Blackfin+ Processor

• Fractional operands - the upper half of the result, which contains the sign information and the most significant
bits of the fractional data, is extracted and stored in the 32-bit destination register.

• Integer operands - the lower half of the result is extracted and stored in the 32-bit destination register.

• Complex fractional operands - the upper half of the real result is extracted and stored in the lower half of the
32-bit destination register, and the upper half of the imaginary result is extracted and stored in the upper half
of the 32-bit destination register.

• Complex integer operands - the lower half of the real result is extracted and stored in the lower half of the 32-
bit destination register, and the lower half of the imaginary result is extracted and stored in the upper half of
the 32-bit destination register.

For example:

R0 = R1 * R2 (FU) ;

The (FU) qualifier indicates that the inputs are unsigned fractional data. This instruction deposits the upper 32 bits
of the multiplication result (by default, with rounding and saturation) into R0.

This instruction uses unsigned integer operands, as designated by the (IU) qualifier:

R1 = R2 * R3 (IU, NS) ;

The lower 32 bits of the multiplication result are deposited into R1 (without saturation, as designated by the (NS)
qualifier).

This instruction is an example of a multiply being stored to a 64-bit register pair:

R1:0 = R1 * R2 ;

Regardless of the operand type, this instruction computes a 64-bit multiplication result (by default, with saturation)
and deposits the upper 32 bits into R1 and the lower 32 bits into R0.

This instruction uses complex fractional operands:

R1 = cmul(R2, R3) ;

The upper 16 bits of the real part of the multiplication result are stored to R1.L, and the upper 16 bits of the
imaginary part of the result go to R1.H.
This instruction uses complex signed integer operands, as designated by the (IS) qualifier:

R1 = cmul(R2, R3)(IS);

The lower 16 bits of the real part of the multiplication result are stored to R1.L, and the lower 16 bits of the imagi-
nary part of the result go to R1.H.
This instruction is an example of a complex multiply being stored to a 64-bit register pair:

R1:0 = cmul(R2, R3) ;

The full 32 bits of the real part of the multiplication result are stored to R0, and the full 32 bits of the imaginary
part of the result go to R1.

MAC Operation

ADSP-BF7xx Blackfin+ Processor 2–25

For backward compatibility, the Blackfin+ processor also supports a two-operand version of the 32-bit multiply in-
struction:

R0 *= R1 ;

This is equivalent to:

R0 = R0 * R1 (IS, NS) ;

Note that the assumptions are that the input operands are signed integers ((IS)) and that the result will not be
saturated ((NS)).

16-bit MAC Data Flow Details

The 16-bit Multiplier/Accumulators figure shows the register file along with the 16-bit multiplier/accumulators.

Each 16-bit MAC has two 16-bit inputs, performs a 16-bit multiplication, and either stores the result to a 40-bit
accumulator or extracts it to a 16-bit or 32-bit register. Two 32-bit words are available at the MAC inputs, providing
four 16-bit operands to chose from.

MAC0

SHIFTER

MAC1

32b 32b32b

32b32b

OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

Figure 2-10: 16-bit Multiplier/Accumulators

One of the operands must be from one of the halves of a 32-bit register, while the other operand comes from anoth-
er half-register. In this fashion, each MAC can process four possible input operand combinations. The Four Possible
Combinations of 16-bit MAC Operands figure shows these possible combinations.

MAC Operation

2–26 ADSP-BF7xx Blackfin+ Processor

31 31

Rm

Rp

39 39

M AC0 M AC0

31

39

MAC 0

31

39

M AC0

A0

Rm

Rp

A0

Rm

Rp

A0

Rm

Rp

A0

A B

C D

Figure 2-11: Four Possible Combinations of 16-bit MAC Operands

NOTE: As shown in the figure, the inputs to the MAC must come from two different registers. If the two 32-bit
registers contain the same data, the equivalent of squaring a half-register or multiplying the upper half and
lower half of the same register becomes possible.

The 32-bit product is passed to a 40-bit adder/subtracter, which can modify the contents of the accumulator register
by the computed result or pass the product directly to the data register file. The 40-bit A0 and A1 accumulator
registers are each comprised of a 32-bit register (A0.W and A1.W, respectively) and an 8-bit register (A0.X and
A1.X, respectively). For example:

A1 += R3.H * R4.H ;

In this instruction, MAC1 performs a multiply of two 16-bit inputs and modifies the current 40-bit A1 accumulator
content by the computed product.

16-bit Multiply Without Accumulate

The 16-bit MAC may operate without the accumulation function. If accumulation is not used, the result can be
directly stored to a data register file register or to an accumulator register. The destination register may be 16 bits or
32 bits. If the 16-bit destination register is a low half-register (e.g., R[n].L), then MAC0 is used. Conversely, if it is
a high half-register (e.g., R[n].H), then MAC1 is used. For a 32-bit destination register, either MAC0 or MAC1
can be used.

For 16-bit destination registers, the data that is extracted from the multiplier is the most useful data, which is de-
pendent on the format of the input data:

• Fractional operands (or when the (IH) qualifier is used) - the upper half of the result is extracted and stored to
the 16-bit destination register (see the Multiplication of 16-bit Fractional Operands figure).

• Integer operands - the lower half of the result is extracted and stored to the 16-bit destination register (see the
Multiplication of 16-bit Integer Operands figure).

MAC Operation

ADSP-BF7xx Blackfin+ Processor 2–27

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

Figure 2-12: Multiplication of 16-bit Fractional Operands

For example, this instruction uses unsigned fractional input operands, as designated by the (FU) qualifier:

R0.L = R1.L * R2.L (FU) ;

The upper 16 bits of the MAC0 multiplication result (by default, with rounding and saturation) are deposited into
the lower half of R0.

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXXDestination
Register

Figure 2-13: Multiplication of 16-bit Integer Operands

For example, this instruction uses unsigned integer input operands, as designated by the (IU) qualifier:

R0.H = R2.H * R3.H (IU) ;
The lower 16 bits of the MAC1 multiplication result (with saturation) are deposited into the upper half of R0.

Finally, for a 16-bit multiply storing to a 32-bit register:

R0 = R1.L * R2.L ;

Regardless of the input operand type, 32 bits of the MAC0 multiplication result (with saturation) are stored to R0,
using MAC0.

Dual 16-bit MAC Operations

The processor has two 16-bit MACs, which can be used simultaneously to double the MAC throughput. The same
two 32-bit input registers are input to each MAC unit, providing each with four possible combinations of 16-bit

MAC Operation

2–28 ADSP-BF7xx Blackfin+ Processor

input operands. Dual-MAC operations are frequently referred to as vector operations because data can be arranged
and stored to registers such that vector computations are possible.

An example of a dual multiply-accumulate instruction is:

A1 += R1.H * R2.L, A0 += R1.L * R2.H ;

This instruction represents two multiply-accumulate operations performed simultaneously by the core:

• In the first operation, the A1 accumulator denotes use of MAC1. The high half of R1 is multiplied by the low
half of R2, and the product is then used to modify the previous content of the A1 accumulator.

• In the second operation, the A0 accumulator denotes use of MAC0. The low half of R1 is multiplied by the
high half of R2, and the product is then used to modify the previous content of the A0 accumulator.

The results of the MAC operations may be written to registers in a number of ways:

• as a pair of 16-bit halves

• as a pair of 32-bit registers

• as an independent 16-bit register half

• as an independent 32-bit register

For example, consider the case of writing to a pair of 16-bit destination register halves:

R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

Each 40-bit accumulator is packed into a 16-bit register half. The result from MAC1 (A1) must be transferred to a
high half of a destination register (R3.H), and the result from MAC0 (A0) must be transferred to the low half of the
same destination register (R3.L).

The data format of the input operands determines the correct bits to extract from the accumulator to deposit into
the 16-bit destination register. See 16-bit Multiply Without Accumulate.

When writing to a pair of 32-bit destination registers:

R3 = (A1 += R1.H * R2.L), R2 = (A0 += R1.L * R2.L) ;

In this case, the same multiply-accumulate results in the 40-bit accumulators are instead packed into two 32-bit data
registers, with the MAC1 results going to R3 and the MAC0 results going to R2). The destination registers must be
in defined pairs (R[1:0], R[3:2], R[5:4], or R[7:6]), with the MAC1 result targeting the higher register in
the pair and the MAC0 result targeting the lower register in the pair.

Mixed modes are also supported. For example:

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one accumulator being transferred to a data register while the other is used to
compute the multiply-accumulate without being transferred to a data register. Either a 16- or a 32-bit register may
be specified as the destination register.

MAC Operation

ADSP-BF7xx Blackfin+ Processor 2–29

MAC Instruction Summary

The Table 2-10 MAC Instructions and Status table lists the MAC instructions and how they affect the ASTAT status
bits. In the table, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo_hi denotes any 16-bit register half in any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• Dreg_pair denotes a pair of adjacent data register file registers. The lower half of the 64-bit value is stored in
the lower-numbered even register, while the upper half is stored in the higher-numbered odd register.

• x denotes either the A0 or A1 MAC accumulator register.

• * indicates the status bit may be set or cleared, depending on the result of the computation.

• - indicates no effect.

MAC instruction options are described in MAC Instruction Options.

Table 2-10: MAC Instructions and Status

Instruction

ASTAT Status Bits

AV0

AV0S

AV1

AV1S

V

V_COPY

VS

Dreg = Dreg * Dreg ; - - *

Dreg_pair = Dreg * Dreg ; - - *

A1:0 = Dreg * Dreg ; * - -

A1:0 += Dreg * Dreg ; * - -

A1:0 -= Dreg * Dreg ; * - -

Dreg = (A1:0 = Dreg * Dreg) ; * - *

Dreg = (A1:0 += Dreg * Dreg) ; * - *

Dreg = (A1:0 -= Dreg * Dreg) ; * - *

Dreg_pair = (A1:0 = Dreg * Dreg) ; * - *

Dreg_pair = (A1:0 += Dreg * Dreg) ; * - *

Dreg_pair = (A1:0 -= Dreg * Dreg) ; * - *

Dreg = cmul(Dreg, Dreg) ; - - *

Dreg_pair = cmul(Dreg, Dreg) ; - - *

A1:0 = cmul(Dreg, Dreg) ; * * -

Multiply Accumulators (MACs)

2–30 ADSP-BF7xx Blackfin+ Processor

Table 2-10: MAC Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AV0

AV0S

AV1

AV1S

V

V_COPY

VS

A1:0 += cmul(Dreg, Dreg) ; * * -

A1:0 -= cmul(Dreg, Dreg) ; * * -

Dreg = (A1:0 = cmul(Dreg, Dreg)) ; * * *

Dreg = (A1:0 += cmul(Dreg, Dreg)) ; * * *

Dreg = (A1:0 -= cmul(Dreg, Dreg)) ; * * *

Dreg_pair = (A1:0 = cmul(Dreg, Dreg)) ; * * *

Dreg_pair = (A1:0 += cmul(Dreg, Dreg)) ; * * *

Dreg_pair = (A1:0 -= cmul(Dreg, Dreg)) ; * * *

Dreg_lo = Dreg_lo_hi * Dreg_lo_hi ; - - *

Dreg_hi = Dreg_lo_hi * Dreg_lo_hi ; - - *

Dreg = Dreg_lo_hi * Dreg_lo_hi ; - - *

Ax = Dreg_lo_hi * Dreg_lo_hi ; * * -

Ax += Dreg_lo_hi * Dreg_lo_hi ; * * -

Ax -= Dreg_lo_hi * Dreg_lo_hi ; * * -

Dreg_lo = (A0 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_lo = (A0 -= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg_hi = (A1 -= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (Ax = Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (Ax += Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg = (Ax -= Dreg_lo_hi * Dreg_lo_hi) ; * * *

Dreg *= Dreg ; - - -

MAC Instruction Options

The following is a summary of all the MAC instruction options, as not all options are available for all instructions.
For information regarding how to use specific options with individual instructions, see the arithmetic operation in-
structions chapter.

MAC Instruction Summary

ADSP-BF7xx Blackfin+ Processor 2–31

default

No option; input data format is signed fractional.

(IS)
Input data operand format is signed integer. No shift correction is made.

(FU)
Input data operand format is unsigned fractional. No shift correction is made.

(IU)
Input data operand format is unsigned integer. No shift correction is made.

(T)
Input data operand format is signed fractional. When copying to the destination register half, the lower 16 bits
of the accumulator content is truncated.

(TFU)
Input data operand format is unsigned fractional. When copying to the destination register half, the lower 16
bits of the accumulator content is truncated.

(ISS2)
Input data operand format is signed integer:

• When a multiply-accumulate is performed to a 32-bit register, the accumulator contents are scaled (left-
shifted by one) when the results are copied to the destination register. If scaling produces a signed value
that requires more than 32 bits to be properly represented, the number is saturated to its maximum posi-
tive or negative value.

• When a multiply-accumulate is performed to a 16-bit register half, the accumulator contents are scaled
(as above) when copying the lower 16 bits to the destination half register. If scaling produces a signed
value that requires more than 16 bits to be properly represented, the number is saturated to its maximum
positive or negative value.

(IH)
This option indicates integer multiplication with high half-word extraction. The accumulator is saturated at
32 bits, and bits 31:16 of the accumulator are rounded and copied into the destination register half.

MAC Instruction Summary

2–32 ADSP-BF7xx Blackfin+ Processor

(W32)
Input data operand format is signed fractional with no extension bits in the accumulators at 32 bits. Left-shift
correction of the product is performed, as required. This option is used for legacy GSM speech vocoder algo-
rithms written for 32-bit accumulators. For this option only, this special case applies:

0x8000 x 0x8000 = 0x7FFF

(M)
Operation uses mixed-multiply mode. Valid only for MAC1 versions of the instruction. Multiplies a signed
fractional operand by an unsigned fractional operand with no left-shift correction, where the first operand is
signed and the second is unsigned. MAC0 performs an unmixed multiplication of signed fractional operands
unless another format as specified (i.e., MAC0 executes the specified signed/signed or unsigned/unsigned mul-
tiplication). The (M) option can be used alone or be paired with another format option.

(NS)
Operation is non-saturating. When copying the accumulator contents to a destination register, the low-order
bits are copied if the whole value will not fit in the destination. The (NS) option can only be used in conjunc-
tion with integer format options.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-, 32-, or 40-bit inputs, yielding a 16-, 32-, or 40-bit output.
These functions include arithmetic shift, logical shift, rotate, and various bit test, set, pack, unpack, and exponent
detection functions. These shift functions can be combined to implement numerical format control, including full
floating-point representation.

Shifter Operations

The shifter instructions (>>>, >>, <<, ASHIFT, LSHIFT, ROT) can be used various ways, depending on the underly-
ing arithmetic requirements. The ASHIFT and >>> instructions represent an arithmetic shift, while the LSHIFT,
<<, and >> instructions represent a logical shift.

The arithmetic shift and logical shift operations can be further broken into subsections. Instructions that are intend-
ed to operate on 16-bit single or paired numeric values (as would occur in many DSP algorithms) can use the in-
structions ASHIFT and LSHIFT. These are typically three-operand instructions.

Instructions that are intended to operate on a 32-bit register value and use two operands, such as those instructions
frequently generated by the compiler, use the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift argument from a register or directly from
an immediate value in the instruction. For details about shifter instructions, see Shifter Instruction Summary.

Barrel Shifter (Shifter)

ADSP-BF7xx Blackfin+ Processor 2–33

Two-Operand Shifts

Two-operand shift instructions shift an input register and deposit the result into the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right (downshift) or left (upshift) by a given num-
ber of bits. Immediate shift instructions use the data value in the instruction itself to control the magnitude and
direction of the shift operation.

For example, consider the case where R0 contains the value 0x0000_B6A3. A 4-bit downshift operation could be as
follows:

R0 >>= 0x04 ;

The 4-bit downshifted result of 0x0000_0B6A is stored in R0.

If the same 0x0000_B6A3 value were 4-bit upshifted:

R0 <<= 0x04 ;

The 4-bit upshifted result of 0x000B_6A30 would be stored in R0.

Register Shifts

Register-based shifts use a register to hold the magnitude of the shift. The entire 32-bit register is used as the shift
magnitude, and if this value exceeds 31, the shift result is 0.

For example, the following sequence performs a 4-bit upshift:

R0 = 0x0000B6A3 ; // Load value to be shifted
R2 = 0x4 ; // Set shift magnitude to 4
R0 <<= R2 ; // Perform left shift by 4
As a result of this sequence, the 0x0000B6A3 value in R0 is upshifted 4 bits and stored back to R0 as 0x000B_6A30.

Three-Operand Shifts

Three-operand shifter instructions shift an input register and deposit the result into a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to control the magnitude and direction of the
shifting operation.

The following is an example of a 4-bit downshift applied to a 32-bit value:

R0 = 0x0000B6A3 ; // Load value to be shifted
R1 = R0 >> 0x04 ; // Perform right shift by 4
As a result of this sequence, the 32-bit 0x0000_B6A3 value in R0 is right-shifted by four and stored to R1 as
0x0000_0B6A.

Shifter Operations

2–34 ADSP-BF7xx Blackfin+ Processor

Similarly, a 4-bit upshift applied to a 16-bit value could be implemented as follows:

R0.L = 0xB6A3 ; // Load value to be shifted
R1.H = R0.L << 0x04 ; // Perform left shift by 4
As a result of this sequence, the 16-bit 0xB6A3 value in R0.L is left-shifted by four and stored to R1.H as 0x6A30.

Register Shifts

Register-based shifts use a data register to hold the shift magnitude. For ASHIFT, LSHIFT and ROT instructions
performing register-based shifts, the shift magnitude must be in the lowest six bits of a low data register half
(R[n].L). The upper 10 bits of R[n].L are masked off and ignored.

The following is an example of a register-based 4-bit logical upshift:

R0 = 0x0000B6A3 ; // Load value to be shifted
R2.L = 0x4 ; // Load shift magnitude
R1 = LSHIFT R0 by R2.L ; // Perform shift
As the shift magnitude is positive, this sequence results in a logical left shift of the 0x0000_B6A3 input data by four,
zero-filling the vacated lower four bits and storing the 0x000B_6A30 result to R1.

For a register-based 4-bit arithmetic downshift, an example sequence is:
R0 = 0xB6A30000 ; // Load value to be shifted
R2.L = -0x4 ; // Load shift magnitude
R1 = ASHIFT R0 by R2.L ; // Perform shift
As the shift magnitude is negative, this sequence results in an arithmetic right shift of the 0xB6A3_0000 input data
by four, sign-extending through the vacated upper four bits and storing the 0xFB6A_3000 result to R1.

The ROT instruction uses the shifter to shift the input operand through the Arithmetic Status register's Condition
Code bit (ASTAT.CC). When the shift is performed, the ASTAT.CC bit in inserted into the data between bit 0 and
bit 31 of the original data. For example:

R0 = 0xABCDEF12 ; // Load value to rotate through CC
R2.L = 0x4 ; // Set rotate magnitude
R1 = ROT R0 by R2.L ; // Perform rotation
Assuming that ASTAT.CC was 0 entering the above sequence, the positive magnitude in R2 results in a 4-bit left
rotation being applied to the 0xABCD_EF12 input data, with the ASTAT.CC bit value of 0 appearing between bit 0
and bit 31 of the input data. The resulting data pattern of 0xBCDE_F125 is stored to R1. Note that the ASTAT.CC
bit is included in the result at bit 3, followed by the b#101 from bits 31:29 of the input data. The input data bit 28
(which is 0) is now in ASTAT.CC.

Bit Test, Set, Clear, and Toggle

The shifter provides the method to test, set, clear, and toggle specific bits of a data register. All instructions have two
arguments, the source register and the bit location. While the set, clear, and toggle instructions modify the value in
the source data register, the test instruction does not change it; rather, it impacts the ASTAT.CC bit.

The following examples show a variety of operations.

BITCLR (R0, 6) ; // Clears bit 6 of R0

Three-Operand Shifts

ADSP-BF7xx Blackfin+ Processor 2–35

BITSET (R2, 9) ; // Sets bit 9 of R2
BITTGL (R3, 2) ; // Toggles bit 2 of R3
CC = BITTST (R3, 0) ; // Puts bit 0 of R3 in ASTAT.CC
When programming, header files containing #define statements provide constant definitions for specific bits in
memory-mapped registers. It is important to examine the definition techniques used in these header files because the
constant definitions do not contain the position of the bit; rather, these header files define bit masks. A constant
definition in a header file working with bit masks might be set to 0x20 to describe bit five of a register. The BITPOS
macro provided by the Blackfin processor assembler helps when working with bit mask definitions and bit manipu-
lation instructions. For example, the following assembly code uses a BITPOS macro with a BITTST instruction:

#define BITFIVE 0x20
CC = BITTST (R5, BITPOS (BITFIVE)) ;

The BITPOS macro parses the BITFIVE definition at program build-time, identifying the lowermost set bit to be
the fifth bit and changing the instruction passed to the assembler to:

CC = BITTST (R5, 5) ;
This will result in the ASTAT.CC bit being set to the value of bit 5 of the R5 register. For detailed information about
BITPOS, see the CrossCore Embedded Studio Assembler and Preprocessor Manual.

Field Extract and Field Deposit

A bit-field with a width ranging from 1- to 16-bit may be extracted from or deposited to anywhere within a 32-bit
data element using the EXTRACT and DEPOSIT instructions, respectively. Two register arguments are associated
with these instructions, the first containing the 32-bit source data for the operation and the second containing field
calibration and, specific to the DEPOSIT instruction, the data needed for the instruction to perform its function.

Both the EXTRACT and DEPOSIT instructions use the data contained in the first R[n] data register argument and
apply the calibration details defined in the second R[n] data register argument to it before placing the result in a
32-bit R[n] destination data register (without modifying either of the argument registers). The first argument for
both instructions is always a 32-bit R[n] data register; however, the second argument is not consistent:

• DEPOSIT - the upper half of the calibration register contains the data that needs to be deposited into the
source data contained in the first argument before storing the result to the destination register; therefore, the
second argument must be a full 32-bit R[n] data register.

• EXTRACT - as the extract operation doesn't require data to be changed in the source data in the first argument,
the upper half of the calibration register is meaningless; therefore, the second argument must be the lower half
of a R[n].L data register.

For example, consider the scenario where R0 is the data argument and R1 is the calibration argument:

• R0 = 0xAABBCCDD

• R1 = 0x0333100C

Shifter Operations

2–36 ADSP-BF7xx Blackfin+ Processor

R0 contains the source data for the operation. Some field within this register will be the source or destination of the
operation prior to the result being transferred to the instruction's 32-bit destination register, as governed by the R1
calibration register, which is structured as follows:

• R1[7:0] - length of the bit-field of interest. In this case, the field is 12 bits wide (0x0C).

• R1[15:8] - bit location where the field of interest begins. In this case, the 12-bit field begins in the R0 source
data register at bit 16 (0x10), thus defining the field of interest to be R0[27:16].

• R1[31:16] - up to a 16-bit right-justified data field, required by the DEPOSIT operation (0x0333).

The EXTRACT instruction simply reads the field of interest from the source data and places it into the destination
register with a mandatory zero-extension ((Z)) or sign-extension ((X)) applied to it. One of these qualifiers must
always be associated with the operation, as follows:

R3 = EXTRACT (R0 , R1.L) (Z) ; // R3 = 0x00000ABB
R3 = EXTRACT (R0 , R1.L) (X) ; // R3 = 0xFFFFFABB

As described, the syntax includes the 32-bit destination (R3), the 32-bit source data argument (R0), and the 16-bit
calibration argument (R1.L). In both cases, the 12-bit 0xABB bit-field of interest contained in R0[27:16] is read
from the R0 source register and is then either zero-extended (0x00000ABB) or sign-extended (0xFFFFFABB) before
being stored to the R3 destination register.

The DEPOSIT instruction takes the R0 source register data and replaces the field of interest defined by the lower
portion of the calibration register (R1[15:0]) with the data in the upper portion of the calibration register
(R1[31:16]) before storing the result into the destination register. There is both a non-extending and a sign-ex-
tending version of the instruction, as follows:

R3 = DEPOSIT (R0 , R1) ; // R3 = 0xA333CCDD
R3 = DEPOSIT (R0 , R1) (X) ; // R3 = 0x0333CCDD

As described, the syntax includes the 32-bit destination (R3), the 32-bit source data argument (R0), and the 32-bit
calibration argument (R1). In both cases, the 12-bit 0x333 bit-field defined in the upper half of the R1 calibration
register replaces the bit-field of interest in R0[27:16]. The field is deposited in place without extension
(0xA333CCDD) or zero-extended (0x0333CCDD) before being stored to the R3 destination register.

Packing Operation

The shifter also supports a series of packing and unpacking instructions. Consider the case where:

• R0 contains 0x11223344

• R1 contains 0x55667788

Packing operations return:

R2 = PACK(R0.L, R0.H); /* R2 = 0x33441122 */
R3 = PACK(R1.L, R0.H); /* R3 = 0x77881122 */
R4 = BYTEPACK(R0, R1); /* R4 = 0x66882244 */

The BYTEUNPACK instruction is silently controlled by the Ix registers. For example:

Shifter Operations

ADSP-BF7xx Blackfin+ Processor 2–37

(R6, R7) = BYTEUNPACK R1:0;

The value of the I0 register determines what is returned to the R6 and R7 destination registers, as follows:

• I0 = 0: R6 = 0x00110022, R7 = 0x00330044

• I0 = 1: R6 = 0x00880011, R7 = 0x00220033

• I0 = 2: R6 = 0x00770088, R7 = 0x00110022

• I0 = 3: R6 = 0x00660077, R7 = 0x00880011

For more details, see the Spread 8-Bit to 16-Bit (ByteUnPack) instruction description and the Pack 8-Bit to 32-Bit
(BytePack) instruction description.

Shifter Instruction Summary

The Table 2-11 Shifter Instructions and Status table lists the shifter instructions and how they affect the ASTAT
register status bits. In the table, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• * indicates the status bit may be set or cleared, depending on the results of the instruction.

• * 0 indicates versions of the instruction that send results to accumulator A0 set or clear AV0.

• * 1 indicates versions of the instruction that send results to accumulator A1 set or clear AV1.

• ** indicates the status bit is cleared.

• *** indicates ASTAT.CC contains the latest value shifted into it.

• - indicates no effect.

Table 2-11: Shifter Instructions and Status

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY

AC1

AV0

AV0S

AV1

AV1S CC

V

V_COPY

VS

BITCLR (Dreg, uimm5) ; * * ** - - - **/-

BITSET (Dreg, uimm5) ; ** * ** - - - **/-

BITTGL (Dreg, uimm5) ; * * ** - - - **/-

CC =

BITTST (Dreg, uimm5) ;

- - - - - * -

Barrel Shifter (Shifter)

2–38 ADSP-BF7xx Blackfin+ Processor

Table 2-11: Shifter Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY

AC1

AV0

AV0S

AV1

AV1S CC

V

V_COPY

VS

CC =

!BITTST (Dreg, uimm5) ;

- - - - - * -

Dreg =

DEPOSIT (Dreg, Dreg) ;

* * ** - - - **/-

Dreg =

EXTRACT (Dreg, Dreg) ;

* * ** - - - **/-

BITMUX (Dreg, Dreg, A0) ; - - - - - - -

Dreg_lo = ONES Dreg ; - - - - - - -

Dreg = PACK (Dreg_lo_hi,
Dreg_lo_hi);

- - - - - - -

Dreg >>>= uimm5 ; * * - - - - **/-

Dreg >>= uimm5 ; * * - - - - **/-

Dreg <<= uimm5 ; * * - - - - **/-

Dreg = Dreg >>> uimm5 ; * * - - - - **/-

Dreg = Dreg >> uimm5 ; * * - - - - **/-

Dreg = Dreg << uimm5 ; * * - - - - *

Dreg = Dreg >>> uimm4 (V) ; * * - - - - **/-

Dreg = Dreg >> uimm4 (V) ; * * - - - - **/-

Dreg = Dreg << uimm4 (V) ; * * - - - - *

Ax = Ax >>> uimm5 ; * * - ** 0/- ** 1/- - -

Ax = Ax >> uimm5 ; * * - ** 0/- ** 1/- - -

Ax = Ax << uimm5 ; * * - * 0 * 1 - -

Dreg_lo_hi = Dreg_lo_hi >>>
uimm4 ;

* * - - - - **/-

Dreg_lo_hi = Dreg_lo_hi >>
uimm4 ;

* * - - - - **/-

Dreg_lo_hi = Dreg_lo_hi <<
uimm4 ;

* * - - - - *

Dreg >>>= Dreg ; * * - - - - **/-

Barrel Shifter (Shifter)

ADSP-BF7xx Blackfin+ Processor 2–39

Table 2-11: Shifter Instructions and Status (Continued)

Instruction

ASTAT Status Bits

AZ AN

AC0

AC0_CO
PY

AC1

AV0

AV0S

AV1

AV1S CC

V

V_COPY

VS

Dreg >>= Dreg ; * * - - - - **/-

Dreg <<= Dreg ; * * - - - - **/-

Dreg = ASHIFT Dreg BY
Dreg_lo ;

* * - - - - *

Dreg = LSHIFT Dreg BY
Dreg_lo ;

* * - - - - **/-

Dreg = ROT Dreg BY imm6 ; - - - - - *** -

Dreg = ASHIFT Dreg BY Dreg_lo
(V) ;

* * - - - - *

Dreg = LSHIFT Dreg BY Dreg_lo
(V) ;

* * - - - - **/-

Dreg_lo_hi = ASHIFT Dreg_lo_hi
BY Dreg_lo ;

* * - - - - *

Dreg_lo_hi = LSHIFT Dreg_lo_hi
BY Dreg_lo ;

* * - - - - **/-

Ax = Ax ASHIFT BY Dreg _lo ; * * - * 0 * 1 - -

Ax = Ax ROT BY imm6 ; - - - - - *** -

Dreg = (Dreg + Dreg) << 1 ; * * * - - - *

Dreg = (Dreg + Dreg) << 2 ; * * * - - - *

ADSP-BF70x Computational Unit Register Descriptions
The Computational Unit Register File contains the following registers.

Table 2-12: ADSP-BF70x Computational Unit Register List

Name Description

R[n] Data Registers

A0X Accumulator 0 Extension Register

A0 Accumulator 0 Register

A1X Accumulator 1 Extension Register

A1 Accumulator 1 Register

ADSP-BF70x Computational Unit Register Descriptions

2–40 ADSP-BF7xx Blackfin+ Processor

Table 2-12: ADSP-BF70x Computational Unit Register List (Continued)

Name Description

ASTAT Arithmetic Status Register

ADSP-BF70x Computational Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 2–41

Data Registers

There are eight 32-bit R[n] data registers for use in computations and data moves. Each may be accessed as a 32-bit
entity or as a pair of independent 16-bit registers, denoted as the low register half (R[n].L) or the high register half
(R[n].H). See the appropriate instruction reference pages for details.

Generic Data

Generic Data

DATA[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

DATA[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 2-14: R[n] Register Diagram

Table 2-13: R[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Generic Data.

The R[n].DATA bit fields, whether the low half (bits 15:0), high half (bits 31:16), or
full register (bits 31:0), hold data for arithmetic operations or data moves.

ADSP-BF70x Computational Unit Register Descriptions

2–42 ADSP-BF7xx Blackfin+ Processor

Accumulator 0 Register

The processor has two dedicated, 40-bit accumulator registers, A0 and A1. A0 may be accessed via its 16-bit low half
(A0.L), its 16-bit high half (A0.H), or its 8-bit extension (A0.X) register (see the associated A0X register documenta-
tion for details). A0 can also be accessed as a 32-bit register (A0.W), which extracts the lower 32 bits of the accumu-
lator.

The A0 and A1 accumulator registers may be combined to hold an 80-bit complex result or a 72-bit fixed-point
result. The combined accumulator register is defined to be A1:0, where the least significant 32 bits are in A0.W, the
next 32 bits are in A1.W, and the 8-bit overflow from a 32-bit fixed-point operation or the most significant eight
bits from a complex operation are in A1.X (see the associated A1X register documentation for details).

Accumulator 0 Data

Accumulator 0 Data

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 2-15: A0 Register Diagram

Table 2-14: A0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Accumulator 0 Data.

The A0.DATA bits hold accumulator 0 data.

ADSP-BF70x Computational Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 2–43

Accumulator 1 Register

The processor has two dedicated, 40-bit accumulator registers, A0 and A1. A1 may be accessed via its 16-bit low half
(A1.L), its 16-bit high half (A1.H), or its 8-bit extension (A1X) register (see the associated Accumulator 1 Extension
register documentation for details). A1 can also be accessed as a 32-bit register (A1.W), which extracts the lower 32
bits of the accumulator.

The accumulator registers may be combined to hold an 80-bit complex result or a 72-bit fixed-point result. The
combined accumulator register is defined to be A1:0, where the least significant 32 bits are in A0.W, the next 32 bits
are in A1.W, and the 8-bit overflow from a 32-bit fixed-point operation or the most significant eight bits from a
complex operation are in A1X.

Accumulator 1 Data

Accumulator 1 Data

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 2-16: A1 Register Diagram

Table 2-15: A1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Accumulator 1 Data.

The A1.DATA bits hold accumulator 1 data.

ADSP-BF70x Computational Unit Register Descriptions

2–44 ADSP-BF7xx Blackfin+ Processor

Accumulator 0 Extension Register

For 16-bit MAC0 and 32-bit ALU0 operations, the A0X register contains eight bits of overflow information from
the operation. When the A0 register is used in combination with the A1 register to form an 80-bit accumulator
A1:0, the A0X register is not used.

Accumulator 0 Extension Data

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

DATA (R/W)

Figure 2-17: A0X Register Diagram

Table 2-16: A0X Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

DATA Accumulator 0 Extension Data.

The A0X.DATA bits hold overflow data for results from computation unit 0.

ADSP-BF70x Computational Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 2–45

Accumulator 1 Extension Register

For 16-bit MAC1 and 32-bit ALU1 operations, the A1.X register contains eight bits of overflow information from
the operation. When the A1 register is used in combination with the A0 register to form an 80-bit accumulator
A1:0, the A1.X register contains eight bits of overflow information for 72-bit fixed-point results or the most signifi-
cant eight bits of an 80-bit complex result.

Accumulator 1 Extension Data

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

DATA (R/W)

Figure 2-18: A1X Register Diagram

Table 2-17: A1X Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

DATA Accumulator 1 Extension Data.

The A1X.DATA bits hold overflow data for results from computation unit 1 or the
most significant byte of 80-bit complex results.

ADSP-BF70x Computational Unit Register Descriptions

2–46 ADSP-BF7xx Blackfin+ Processor

Arithmetic Status Register

The ASTAT register contains both status bits and control bits. Status bits are updated by the processor for each ALU,
MAC, or shifter instruction executed, as documented in the respective Instruction Summary tables in each of the
ALU, MAC, and Barrel Shifter sections of the Computational Units chapter, as well as in many of the specific In-
struction Reference Pages.

Conditional Code Status Bit

Copy of V BitQuotient Bit

Copy of AC0 BitRounding Mode

Negative FlagCarry Flag 0

Zero FlagCarry Flag 1

A1 Overflow FlagSticky AV1 Bit

Sticky AV0 BitOverflow Flag

A0 Overflow FlagSticky V Bit

CC (R/W)

VCOPY (R/W)AQ (R/W)

AC0COPY (R/W)RNDMOD (R/W)

AN (R/W)AC0 (R/W)

AZ (R/W)AC1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

AV1 (R/W)AV1S (R/W)

AV0S (R/W)V (R/W)

AV0 (R/W)VS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 2-19: ASTAT Register Diagram

Table 2-18: ASTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

VS Sticky V Bit.

Set when ASTAT.V is set. Remains set until specifically cleared by software.

24

(R/W)

V Overflow Flag.

Set when the most recent ALU0 or MAC0 operation result targeting a non-accumula-
tor register overflowed, otherwise it is cleared.

19

(R/W)

AV1S Sticky AV1 Bit.

Set when ASTAT.AV1 is set. Remains set until explicitly cleared by software.

18

(R/W)

AV1 A1 Overflow Flag.

ADSP-BF70x Computational Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 2–47

Table 2-18: ASTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

Set when the most recent ALU1 or MAC1 operation result targeting A1 overflowed,
otherwise it is cleared.

17

(R/W)

AV0S Sticky AV0 Bit.

Set when ASTAT.AV0 is set. Remains set until explicitly cleared by software.

16

(R/W)

AV0 A0 Overflow Flag.

Set when the most recent ALU0 or MAC0 operation result targeting A0 overflowed,
otherwise it is cleared.

13

(R/W)

AC1 Carry Flag 1.

Set when the most recent ALU1 operation targeting A1 generated a carry, otherwise it
is cleared.

12

(R/W)

AC0 Carry Flag 0.

Set when the most recent ALU0 operation targeting A0 generated a carry, otherwise it
is cleared.

8

(R/W)

RNDMOD Rounding Mode.

The ASTAT.RNDMOD bit is a control bit used to select the rounding mode for arith-
metic instructions that support rounding.

0 Unbiased rounding

1 Biased rounding

6

(R/W)

AQ Quotient Bit.

The ASTAT.AQ bit is the XOR of the 32-bit dividend MSB with the 16-bit divisor
MSB. This bit is affected by only the DIVS and DIVQ instructions.

5

(R/W)

CC Conditional Code Status Bit.

The ASTAT.CC status bit is set or cleared based on how it is used in assembly instruc-
tions and is used for conditional program sequencing. See the Conditional Code Status
Bit section of the Program Sequencer chapter for details.

3

(R/W)

VCOPY Copy of V Bit.

Set if ASTAT.V is set, and cleared if ASTAT.V is cleared.

2

(R/W)

AC0COPY Copy of AC0 Bit.

Set if ASTAT.AC0 is set, and cleared if ASTAT.AC0 is cleared.

1

(R/W)

AN Negative Flag.

Set when the most recent ALU or shifter operation result was negative, otherwise it is
cleared.

0

(R/W)

AZ Zero Flag.

Set when the most recent ALU or shifter operation result was zero, otherwise it is
cleared.

ADSP-BF70x Computational Unit Register Descriptions

2–48 ADSP-BF7xx Blackfin+ Processor

3 Operating Modes and States

The processor supports the following three processor modes:

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core resources. User mode has restricted access to
certain system resources, thus providing a protected software environment.

User mode is considered the domain of application programs. Supervisor mode and Emulation mode are usually
reserved for the kernel code of an operating system. The processor mode is determined by the Supervisor Access
(SACC) bit of the SYSCFG register and the Event Controller. When the SACC bit is set, or when servicing an inter-
rupt, a nonmaskable interrupt (NMI), or an exception, the processor is in Supervisor mode. When servicing an
emulation event, the processor is in Emulation mode. When not servicing any events and the SACC bit is cleared,
the processor is in User mode.

The current processor mode may be identified by interrogating the IPEND memory-mapped register (MMR) and
the SACC bit of the SYSCFG register, as shown in the Identifying the Current Processor Mode table.

Table 3-1: Identifying the Current Processor Mode

Event Mode IPEND SACC Bit

Interrupt Supervisor 0x10

The core is processing an
interrupt event if
IPEND[0], IPEND[1],
IPEND[2], and
IPEND[3] = 0.

x

Exception Supervisor 0x08

The core is processing an
exception event if
IPEND[0] = 0,
IPEND[1] = 0,
IPEND[2] = 0,

x

Operating Modes and States

ADSP-BF7xx Blackfin+ Processor 3–1

Table 3-1: Identifying the Current Processor Mode (Continued)

Event Mode IPEND SACC Bit

IPEND[3] = 1, and
IPEND[15:4] are 0s or
1s.

NMI Supervisor 0x04

The core is processing an
NMI event if IPEND[0]
= 0, IPEND[1] = 0,
IPEND[2] = 1, and
IPEND[15:2] are 0s or
1s.

x

Reset Supervisor = 0x02

As the reset state is exited,
IPEND is set to 0x02, and
the reset vector runs in
Supervisor mode.

x

Emulation Emulator = 0x01

The processor is in Emu-
lation mode if IPEND[0]
= 1, regardless of the
state of the
IPEND[15:1]bits.

x

None Supervisor = 0x00 1

None User = 0x00 0

In addition, the processor supports the following two non-processing states:

• Idle state

• Reset state

The Processor Modes and States figure illustrates the processor modes and states as well as the transition conditions
between them when the SACC and STRICT bits in the SYSCFG register are in their default (zero) state.

Operating Modes and States

3–2 ADSP-BF7xx Blackfin+ Processor

Interrupt
RTI,

Event

EMULATION

SUPERVISOR

IDLE

RESET

Application
Level Code

System Code,
Event Handlers

USER

Emulation

Event
Emulation

RTX, RTNException

RTE

RST Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may
have initiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE
instruction

or

IDLE instruction

Wakeup

RTE

Interrupt

Figure 3-1: Processor Modes and States

User Mode
The processor is in User mode when it is not in Reset or Idle state, when it is not servicing an interrupt, NMI,
exception, or emulation event, and when the SACC bit of the SYSCFG register is zero. User mode is used to process
application level code that does not require explicit access to system registers. Any attempt to access restricted system
registers causes an exception event. The Registers Accessible in User Mode table lists the registers that may be accessed
in User mode.

Table 3-2: Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer and DAG Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Protected Resources and Instructions

System resources consist of a subset of processor registers, all MMRs, and a set of protected instructions.

The system and core MMRs are located in a reserved region of memory which is protected from User mode access.
Any attempt to access MMR space in User mode causes an exception. Refer to the specific Blackfin+ Processor
Hardware Reference for the location of the MMR region in your system.

A list of protected instructions appears in the Protected Instructions table. Any attempt to issue any of the protected
instructions from User mode causes an exception event.

The Strict Supervisor Access (STRICT) bit in the SYSCFG register causes the IDLE instruction to be a protected
instruction. When the STRICT bit is set, an attempt to issue the IDLE instruction from User mode causes an excep-
tion event.

User Mode

ADSP-BF7xx Blackfin+ Processor 3–3

Table 3-3: Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

STI IDLE Enable Interrupts and Idle

IDLE Idle

Causes an exception only if the SYSCFG.STRICT bit is set.

RTE Return from Emulation

Always causes an exception if executed outside of Emulation mode.

Protected Memory

Additional memory locations can be protected from User mode access. A Cacheability Protection Lookaside Buffer
(CPLB) entry can be created and enabled. See Memory Management Unit in the Memory chapter for further infor-
mation.

Entering User Mode

When coming out of reset, the processor is in Supervisor mode because it is servicing a reset event. To enter User
mode from the Reset state, two steps must be performed:

1. A return address must be loaded into the RETI register.

2. An RTI instruction must be executed.

The SACC bit of the SYSCFG register is zero at reset, so this value does not need to be changed to enter User mode
upon executing the above RTI instruction. The following example code shows how to enter User mode upon reset.

Example Code to Enter User Mode Upon Reset

The Entering User Mode from Reset example provides code for entering User mode from reset:

/* Entering User Mode from Reset */
 P1.L = lo(START) ; /* Point to start of user code */
 P1.H = hi(START) ;
 RETI = P1 ;
 RTI ; /* Return from Reset Event */
START : /* Place user code here */

User Mode

3–4 ADSP-BF7xx Blackfin+ Processor

Return Instructions That Invoke User Mode

The Return Instructions That Can Invoke User Mode table provides a summary of return instructions that can be
used to invoke User mode from various processor event service routines. When these instructions are used in service
routines, the value of the return address must first be stored to the appropriate event register (RETx). For interrupt
service routines, the return address (RETI) can be stored to the stack if the service routine itself is interruptible,
which enables interrupt nesting. For this case, the address must be popped from the stack into RETI prior to execut-
ing the RTI instruction.

NOTE: Return instruction will only cause the processor to enter User mode if the SACC bit of the SYSCFG regis-
ter is set to zero. When this bit is set to one, the processor remains in Supervisor mode after all event
handlers have been exited.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Table 3-4: Return Instructions That Can Invoke User Mode

Current Process Activity Return Instruction to Use
Execution Resumes at Address in
This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Non-Maskable Interrupt Service Routine RTN RETN

Emulation Service Routine RTE RETE

Supervisor Mode
Supervisor mode has full, unrestricted access to all processor system resources, including all emulation resources, un-
less a CPLB has been configured to prevent it and is enabled. See Memory Management Unit in the Memory chapter
for further details.

The processor services all interrupt, NMI, and exception events in Supervisor mode and remains in Supervisor mode
on return from all event handlers if the SACC bit of the SYSCFG register is set to one.

The stack pointer referenced by the SP register alias and modified by stack push/pop instructions is the Supervisor
Stack Pointer while an event is being serviced (IPEND is non-zero), and the User Stack Pointer when executing at
task level (IPEND is zero). This is the case irrespective of whether the processor is running in Supervisor or User
mode.

Only Supervisor mode can use the register alias USP, which always references the User Stack Pointer. There is no
unique alias for the Supervisor Stack Pointer, so this register can only be be referenced within an event handler using
the general stack pointer alias, SP.

Entering User Mode

ADSP-BF7xx Blackfin+ Processor 3–5

Normal processing begins in Supervisor mode from the Reset state. The processor transitions from the Reset state to
Supervisor mode, servicing the reset event, where it remains until an emulation event or return instruction occurs to
change the mode. Before the return instruction is issued, the RETI register must be loaded with a valid return ad-
dress.

Non-OS Environments

For non-OS environments, application code should remain in Supervisor mode so that it can access all core and
system resources. On leaving the Reset state, the processor initiates operation by servicing the reset event. Emulation
is the only event that can preempt this activity; therefore, lower priority events cannot be processed.

The simplest method of keeping the processor in Supervisor mode and allowing lower priority events to be process-
ed is to set the SACC bit of the SYSCFG register before returning from the reset event with an RTI instruction. Prior
to executing the RTI instruction, RETI must be loaded with the address of the code to be executed after leaving all
event handlers.

Earlier Blackfin processors did not have a SACC bit, so it was necessary to execute all code in the lowest priority
interrupt (IVG15). Events and interrupts are described further in the Events and Interrupts section of the Program
Sequencer chapter. The interrupt handler for IVG15 is set to the application code's starting address, and then the
low-priority interrupt is forced using the RAISE 15 instruction. The IVG15 interrupt is not serviced until the re-
turn from the reset event and any pending interupts with intermediate priorities have been serviced. Therefore, be-
fore executing the RTI instruction to return from the reset event, RETI is loaded with the address of a loop that
executes in User mode until the IVG15 interrupt is serviced.

Example Code for Supervisor Mode Coming Out of Reset

To remain in Supervisor mode when coming out of the Reset state, use code as shown in the Staying in Supervisor
Mode Coming Out of Reset example.

/* Staying in Supervisor Mode Coming Out of Reset */
 R0 = SYSCFG ;
 BITSET (R0, BITP_SYSCFG_SACC) ;
 SYSCFG = R0 ; /* Set SACC bit */
 RETI = START ; /* Set return address to START */
 RTI ; /* Return from Reset Event */

START:
 /* Task level code executes in Supervisor mode */

Code written for older Blackfin processors must remain at the lowest interrupt level (IVG15) in order to stay in
Supervisor mode as shown in theStaying in Supervisor Mode Coming Out of Reset (Legacy) example.

/* Staying in Supervisor Mode Coming Out of Reset (Legacy) */
 P0.L = lo(EVT15) ; /* Point to IVG15 in Event Vector Table */
 P0.H = hi(EVT15) ;
 P1.L = lo(START) ; /* Point to start of User code */
 P1.H = hi(START) ;
 [P0] = P1 ; /* Place the address of START in IVG15 of EVT */

Supervisor Mode

3–6 ADSP-BF7xx Blackfin+ Processor

 P0.L = lo(IMASK) ;
 R0 = [P0] ;
 R1.L = lo(EVT_IVG15) ;
 R0 = R0 | R1 ;
 [P0] = R0 ; /* Set (enable)IVG15 bit in IMASK register */
 RAISE 15 ; /* Invoke IVG15 interrupt */
 P0.L = lo(WAIT_HERE) ;
 P0.H = hi(WAIT_HERE) ;
 RETI = P0 ; /* RETI loaded with return address */
 RTI ; /* Return from Reset Event */

WAIT_HERE : /* Execute in User mode till IVG15 is serviced */
 JUMP WAIT_HERE ;

START: /* IVG15 vectors here */
 /* Clears IPEND bit 4 to enable interrupts globally. */
 [--SP] = RETI ;

Emulation Mode
The processor enters Emulation mode if Emulation mode is enabled and either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service routine executes an RTE instruction. If the
SACC bit of the SYSCFG register is zero and no interrupts are pending when the RTE instruction executes, the pro-
cessor switches to User mode. Otherwise, the processor switches to Supervisor mode.

Idle State
Idle state stops all processor activity at the user's discretion, usually to conserve power during lulls in activity. No
processing occurs during the Idle state. The Idle state is invoked by an IDLE instruction or an STI IDLE instruc-
tion. The IDLE instruction notifies the processor hardware that the Idle state is requested, whereas STI IDLE also
enables interrupts in a manner that avoids race conditions.

The processor remains in the Idle state until a peripheral or external device, such as a SPORT or the Real-Time
Clock (RTC), generates an interrupt that requires servicing.

In Example Code for Transition to Idle State, core interrupts are disabled before the device intended to wake the
core from Idle is programmed, and the STI IDLE instruction is executed. When all the pending processes have
completed, the core re-enables interrupts and disables its clocks. The use of the combined STI IDLE instruction to
enter Idle state and enable interrupts ensures that any interrupt will bring the core out of the Idle state and termi-
nate the idle instruction, rather than interrupting before the idle instruction has begun execution.

Emulation Mode

ADSP-BF7xx Blackfin+ Processor 3–7

Example Code for Transition to Idle State

To transition to the Idle state, use the code shown in the Transitioning to Idle State example:

/* Transitioning to Idle State */
CLI R0 ; /* disable interrupts */
/* program wakeup device */
BITSET (R0, BITP_IMASK_IVG11) ; /* ensure device can interrupt */
STI IDLE R0 ; /* drain pipeline, enter Idle, enable interrupts */

Reset State
Reset state initializes the core logic. During Reset state, application programs and the operating system do not exe-
cute, and clocks are stopped.

The core remains in the Reset state as long as system logic asserts the RESET signal. Upon deassertion, the core
completes the reset sequence and switches to Supervisor mode with event system priority 1, where it executes code
found at an address supplied by the system. Refer to theReset Control Unit (RCU) chapter in the Hardware Refer-
ence Manual for details.

The only method to enter the Reset state is by recieving a RESET signal from the system. The RAISE 1 instruction
will execute the code addressed by EVT1 at event system priority 1, but it does not actually reset the core. In both
cases, an RTI instruction will exit the priority 1 event. In neither case is a return address automatically saved in
RETI, so the register must be explicitly loaded within the event handler prior to executing the RTI instruction.

The Core State Upon Reset table summarizes the state of the core upon reset.

Table 3-5: Core State Upon Reset

Item Description of Reset State

Operating Mode Supervisor mode in reset event, clocks stopped

Rounding Mode Unbiased rounding

Cycle Counters Disabled, zero

DAG Registers (I, L, B, M) Random values (must be cleared at initialization)

Data and Address Registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 Instruction Memory SRAM (cache disabled)

L1 Data Memory SRAM (cache disabled)

Cache Validity Bits Invalid

Idle State

3–8 ADSP-BF7xx Blackfin+ Processor

System Reset and Power Up
For processor-specific system reset and power up information, see the Processor Hardware Reference manual.

ADSP-BF70x Mode-Related Register Descriptions
The Mode-Related Register File contains the following registers.

Table 3-6: ADSP-BF70x REGFILE Register List

Name Description

SYSCFG System Configuration Register

System Reset and Power Up

ADSP-BF7xx Blackfin+ Processor 3–9

System Configuration Register

The SYSCFG register controls the configuration of the processor. This register is accessible only from Supervisor
mode.

Strict Supervisor Access

Supervisor AccessBranch Prediction Enable

Self-Nesting Interrupts EnableMMR Posted Writes Enable

Cycle Counter EnableMemory Sync Bypass

Supervisor Single-StepMMR Sync Bypass

STRICT (R/W)

SACC (R/W)BPEN (R/W)

SNEN (R/W)MPWEN (R/W)

CCEN (R/W)MEMSBYP (R/W)

SSSTEP (R/W)MMRSBYP (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-2: SYSCFG Register Diagram

Table 3-7: SYSCFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

MMRSBYP MMR Sync Bypass.

The SYSCFG.MMRSBYP bit enables bypass mode for clock domain synchronization
between the core and the Memory-Mapped Register interface. Enabling this feature re-
duces read latency.

0 No bypass

1 Bypass

10

(R/W)

MEMSBYP Memory Sync Bypass.

The SYSCFG.MEMSBYP bit enables bypass mode for clock domain synchronization
between the core and the System Memory Bus interface. Enabling this feature reduces
read latency.

0 No bypass

1 Bypass

ADSP-BF70x Mode-Related Register Descriptions

3–10 ADSP-BF7xx Blackfin+ Processor

Table 3-7: SYSCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

MPWEN MMR Posted Writes Enable.

The SYSCFG.MPWEN bit enables support for posting consecutive system MMR writes
to the system fabric. When disabled, the processor waits for each response before al-
lowing a new write to go into the system. When modifying this bit, an SSYNC instruc-
tion must then be executed to allow the system to finish any outstanding writes before
changing the MMR write policy.

0 Disable

1 Enable

8

(R/W)

BPEN Branch Prediction Enable.

The SYSCFG.BPEN bit selects whether the program sequencer uses dynamic or static
branch prediction operation.

0 Use static prediction

1 Use dynamic prediction

7

(R/W)

STRICT Strict Supervisor Access.

The SYSCFG.STRICT bit restricts additional resources to require Supervisor mode ac-
cess. When enabled, accessing any of these additional resources in User mode (e.g., ex-
ecuting an IDLE instruction) causes an Illegal Supervisor Access exception.

0 Disable (normal/previous Blackfin access operation)

1 Enable (strict supervisor access operation)

6

(R/W)

SACC Supervisor Access.

The SYSCFG.SACC bit selects whether or not Supervisor mode access is permitted
when the processor is not servicing any events.

0 Disable (access only when servicing an event)

1 Enable (access whether or not servicing any events)

2

(R/W)

SNEN Self-Nesting Interrupts Enable.

The SYSCFG.SNEN bit enables self-nesting interrupt operation. While nesting allows a
lower-priority interrupt handler to be interrupted by higher-priority interrupts, self-
nesting allows for interrupts of the same priority to also be responded to immediately
as they occur in the system.

0 Disable (normal interrupt operation)

1 Enable (self-nesting interrupt operation)

ADSP-BF70x Mode-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 3–11

Table 3-7: SYSCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

CCEN Cycle Counter Enable.

The SYSCFG.CCEN bit enables cycle counter operation. When the cycle counter is en-
abled, it is incremented every core clock (CCLK) cycle (including wait states) in both
User and Supervisor modes. The cycle counter stops counting while the processor is in
Emulator mode.

The 64-bit cycle counter is comprised of two registers, with the least significant 32 bits
in the CYCLES register and the most significant 32 bits in the CYCLES2 register.

0 Disable cycle counter

1 Enable cycle counter

0

(R/W)

SSSTEP Supervisor Single-Step.

The SYSCFG.SSSTEP bit enables single-step operation, in which a Supervisor excep-
tion occurs after the processor executes each instruction. This bit only applies to exe-
cuting instructions in User mode or to processing interrupts in Supervisor mode. The
SYSCFG.SSSTEP bit is ignored if the core is processing an exception or a higher-pri-
ority event. If precise exception timing is required, a CSYNC instruction must be exe-
cuted immediately after setting this bit.

0 Disable (normal operation)

1 Enable (single step operation)

ADSP-BF70x Mode-Related Register Descriptions

3–12 ADSP-BF7xx Blackfin+ Processor

4 Program Sequencer

This chapter describes the Blackfin+ processor program sequencing and interrupt processing modules. For informa-
tion about instructions that control program flow, see the program flow control instruction reference pages. For in-
formation about instructions that control interrupt processing, see the external event management chapter. Discus-
sion of derivative-specific interrupt sources can be found in the hardware reference for the specific part.

Introduction
In the processor, the program sequencer controls program flow, constantly providing the address of the next instruc-
tion to be executed. Program flow in the chip is mostly linear, with the processor executing program instructions
sequentially.

The linear flow varies occasionally when the program uses non-sequential program structures, such as those illustrat-
ed in the program flow variations figure. Non-sequential structures direct the processor to execute an instruction
that is not at the next sequential address. These structures include:

• Loops - one sequence of instructions executes several times with zero overhead (no latency between the loop
bottom instruction and the loop top instruction).

• Subroutines - an intentional vector from sequential flow to execute instructions from another part of memory
before resuming from where the vector was placed.

• Jumps - an intentional vector from sequential flow to execute instructions from another part of memory that
does not return to where the vector was placed.

• Interrupts and Exceptions - run-time events that trigger a vector to a specified subroutine that gets executed
before returning flow to the application at the point at which the vector occurred.

• Idle - this instruction causes the core to stop executing the application and hold its current state until an inter-
rupt occurs, at which point the programmed vector for that interrupt is taken to service the interrupt before
returning flow to after the IDLE; instruction and resuming execution of the application code.

Program Sequencer

ADSP-BF7xx Blackfin+ Processor 4–1

 ADDRESS:N INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LINEAR FLOW

LOOP

LOOP

N TIMES

JUMP

JUMP

…

CALL

SUBROUTINE

RTS

…

RTI

INTERRUPT

IRQ

VECTOR

IDLE

IDLE

WAITING
FOR IRQ
OR
WAKEUP

N + 1

N + 2

N + 3

N + 4

N + 5

Figure 4-1: Program Flow Variations

The sequencer manages execution of these program structures by selecting the address of the next instruction to exe-
cute. Typically, the fetches are to contiguous memory after the current instruction, and fetches are made well in ad-
vance of actual execution in order to keep the pipeline full. When non-sequential code is involved, pre-fetched in-
structions are invalidated once the change of flow occurs, and the new instructions are fetched from the new memo-
ry that is being executed from. Dynamic branch prediction helps with this need to invalidate and re-fetch by run-
ning ahead of the sequencer and anticipating the next instruction address that the sequencer will select as a result of
an upcoming branch. When the branch prediction is successful, the pre-fetched instructions do not need to be inva-
lidated.

The fetched instruction address enters the pipeline, with the program counter (PC) pointing to the address of the
instruction that is about to execute. The 10-stage pipeline contains the 32-bit addresses of the instructions currently
being fetched, decoded, and executed. The PC couples with the RETx return registers, which store the PC when an
event occurs such that the processor can return to this address and resume execution after the code associated with
handling that event is run. All addresses generated by the sequencer are 32-bit instruction addresses in memory.

To manage events, the event controller handles interrupt and event processing, determines whether an interrupt is
masked, and generates the appropriate event vector address. This aspect of code flow is described in greater detail in
the Interrupt Processing section of this manual.

In addition to providing data addresses, the data address generators (DAGs) can provide instruction addresses for the
sequencer's indirect branches.

The sequencer evaluates conditional instructions and loop termination conditions. The loop registers support nested
loops. The memory-mapped registers (MMRs) store information used to implement interrupt service routines.

The block diagram shows the core Program Sequencer module and how it connects to the Core Event Controller
(CEC).

Introduction

4–2 ADSP-BF7xx Blackfin+ Processor

EV
T1

5
EV

T1
4

EV
T1

3
EV

T1
2

EV
T1

1
EV

T1
0

EV
T9

ILAT
IMASK
IPENDEV

T8
EV

T7
EV

T6
EV

T5
EV

T4
EV

T3
EV

T2
EV

T1
EV

T0

ADDRESS
ARITHMETIC

UNIT

L1
INSTRUCTION

MEMORY

PROGRAM
COUNTER

LOOP
COMPARATORS

FETCH
COUNTER

INSTRUCTION
DECODER

LOOP
BUFFERS

ALIGNMENT
UNIT

DEBUG
JTAG TEST

AND
EMULATION

SYSCFG
SEQSTAT

CYCLES
CYCLES2

RETS
RETI
RETX
RETN
RETE

LC0 LT0 LB0
LC1 LT1 LB1

CORE EVENT CONTROLLER

PROGRAM SEQUENCER

EMULATION
RESET
NMI
EXCEPTIONS
HARDWARE ERRORS
CORE TIMER

CCLK

RAB 32

PREG 32

IAB 32

IDB 64

Figure 4-2: Program Sequencing and Interrupt Processing Block Diagram

Sequencer-Related Registers

The Non-Memory-Mapped Sequencer Registers table lists core registers associated with the sequencer. Except for
the PC register, all sequencer-related registers are directly readable and writable by move instructions, for example:

SYSCFG = R0 ;
P0 = RETI ;
Manually pushing or popping registers to or from the stack is done using the explicit instructions:

[--SP] = Rn ; /* for push */
Rn = [SP++] ; /* for pop */
Similarly, all non-memory-mapped sequencer registers can be pushed to and popped from the system stack:

[--SP] = CYCLES ; /* for push */
SYSCFG = [SP++] ; /* for pop */
However, load/store operations and immediate loads are not supported.

Table 4-1: Non-Memory-Mapped Sequencer Registers

Register Name Description

SEQSTAT Sequencer Status

Return Address Registers:

RETX

RETN

Return Address registers:

Return from Exception

Return from NMI

Introduction

ADSP-BF7xx Blackfin+ Processor 4–3

Table 4-1: Non-Memory-Mapped Sequencer Registers (Continued)

Register Name Description

RETI

RETE

RETS

Return from Interrupt

Return from Emulation

Return from Subroutine

Zero-Overhead Loop Registers:

LC0, LC1

LT0, LT1

LB0, LB1

Zero-Overhead Loop registers:

Loop Counters

Loop Tops

Loop Bottoms

FP, SP Frame Pointer and Stack Pointer

SYSCFG System Configuration

CYCLES, CYCLES2 Cycle Counters

PC Program Counter

The PC is an embedded register. It is not directly accessible with
program instructions.

In addition to these core sequencer registers, there is a set of memory-mapped registers that interact closely with the
program sequencer, such as the Event Vector Table (EVTx) registers. For information about these interrupt control
registers, see Events and Interrupts. Although the registers of the Core Event Controller are memory-mapped, they
still connect to the same 32-bit Register Access Bus (RAB) and perform in the same way; however, the System Event
Controller (SEC) registers reside in the SYSCLK domain. For debug and test registers, see the processor hardware
reference manual.

Instruction Pipeline
The program sequencer determines the next instruction address by examining both the current instruction being
executed and the current state of the processor. If no conditions require otherwise, the processor executes instruc-
tions from memory in sequential order by incrementing the look-ahead address.

The processor has a 10-stage instruction pipeline, shown in the Stages of Instruction Pipeline table.

Table 4-2: Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of instruc-
tion cache

Instruction Fetch 2 (IF2) Wait for instruction data

Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Instruction Pipeline

4–4 ADSP-BF7xx Blackfin+ Processor

Table 4-2: Stages of Instruction Pipeline (Continued)

Pipeline Stage Description

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of data
cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video instruc-
tions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also refer-
red to as the "commit" stage)

The Processor Pipeline figure shows a diagram of the pipeline.

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Ex1 WBEx2Instr
Fetch
3

Instr
Fetch
1

Instr
Fetch
2

Instr
Decode

Addr
Calc

Data
Fetch
1

Data
Fetch
2

Ex1 WBEx2Instr
Fetch
3

Data
Fetch
1

Data
Fetch
2

Figure 4-3: Processor Pipeline

The instruction fetch and branch logic generates 32-bit fetch addresses for the Instruction Memory Unit. If the dy-
namic branch predictor is enabled, the fetch address may be generated based upon a dynamic prediction of decisions
made by the sequencer later in the pipeline. The Instruction Alignment Unit (IAU) returns instructions and their
width information at the end of the IF3 stage.

For each instruction type (16-, 32-, or 64-bit), the IAU ensures that the alignment buffers have enough valid in-
structions to be able to provide an instruction every cycle. Since the instructions can be 16, 32, or 64 bits wide, the
IAU may not need to fetch an instruction from the cache every cycle. For example, for a series of 16-bit instructions,
the IAU gets an instruction from the Instruction Memory Unit once in four cycles. The alignment logic requests the
next instruction address based on the status of the alignment buffers. The sequencer responds by generating the next
fetch address in the next cycle, provided there is no change of flow.

The sequencer holds the fetch address until it receives a request from the alignment logic or until a mis-predict is
detected. If no change of flow is predicted, the sequencer increments the previous fetch address by 8 (the next 8
bytes). A mis-predict occurs when the dynamic branch predictor is disabled and a change of flow occurs, such as a
branch or an interrupt, or the predictor is enabled but failed to correctly anticipate the next fetch address. When a
mis-predict occurs, data in the IAU is invalidated. The sequencer decodes and distributes instruction data to the
appropriate locations, such as the register file and data memory.

Data register file reads occur in the DF2 pipeline stage (for operands).

Data register file writes occur in the WB stage (for stores). The MACs and the video units are active in the EX1
stage, and the ALUs and shifter are active in the EX2 stage. The accumulators are written at the end of the EX2
stage.

Instruction Pipeline

ADSP-BF7xx Blackfin+ Processor 4–5

The program sequencer also controls stalling and invalidating the instructions in the pipeline. Multi-cycle instruc-
tion stalls occur between the IF3 and DEC stages. DAG and sequencer stalls occur between the DEC and AC
stages. Computation and register file stalls occur between the DF2 and EX1 stages. Data memory stalls occur be-
tween the EX1 and EX2 stages.

NOTE: The sequencer ensures that the pipeline is fully interlocked and that all the data hazards are hidden from
the programmer.

Multi-cycle instructions behave as multiple single-cycle instructions being issued from the decoder over several clock
cycles. For example, the Push Multiple or Pop Multiple instruction can push or pop from 1 to 14 Dregs and/or
Pregs, and the instruction remains in the decode stage for a number of clock cycles equal to the number of registers
being accessed.

Multi-issue instructions are 64 bits wide and consist of one 32-bit instruction and two 16-bit instructions. All three
instructions execute in the same number of cycles as the slowest of the three.

Any non-sequential program flow can potentially decrease the processor's instruction throughput. Non-sequential
program operations include:

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Branches
One type of non-sequential program flow that the sequencer supports is branching. A branch occurs when a JUMP
or CALL instruction begins execution at a new location other than the next sequential address. For descriptions of
how to use the JUMP and CALL instructions, see the program flow control instruction reference pages. Briefly:

• A JUMP or a CALL instruction transfers program flow to another memory location. The difference between a
JUMP and a CALL is that a CALL automatically loads the return address into the RETS register. The return
address is the next sequential address after the CALL instruction. This load makes the address available for the
CALL instruction's matching return instruction (RTS;), allowing easy return from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at the return address, which is stored in one
of the RETx registers. The types of return instructions include:

• return from subroutine (RTS), associated with the RETS register

• return from interrupt (RTI), associated with the RETI register

• return from exception (RTX), associated with the RETX register

• return from emulation (RTE), associated with the RETE register

• return from non-maskable interrupt (RTN), associated with the RETN register

Branches

4–6 ADSP-BF7xx Blackfin+ Processor

• A JUMP instruction can be conditional, depending on the status of the ASTAT.CC bit. These instructions are
immediate and may not be delayed. The program sequencer can evaluate the ASTAT.CC bit to decide whether
or not to execute a branch. If no condition is specified, the branch is always taken. Conditional JUMP instruc-
tions use static branch prediction to reduce the branch latency caused by the length of the pipeline, when dy-
namic branch prediction is not enabled.

Branches can be direct or indirect. A direct branch address is embedded in the instruction itself (e.g., JUMP 0x30),
whereas an indirect branch gets its address from the contents of a Preg (e.g., JUMP(P3)). Both direct and indirect
branches can be PC-relative or absolute.

Direct Jumps (Short, Long and Extra-Long)

The sequencer supports three lengths of PC-relative direct jumps - short, long, and extra long. In all cases, the target
of the branch may be a PC-relative address from the location of the instruction plus or minus an offset. The PC-
relative offset for the short jump is a 13-bit immediate value that must be a multiple of two (imm13m2), thus pro-
viding an effective dynamic range of -4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that must also be a multiple of two (imm25m2),
thus providing an effective dynamic range of -16,777,216 to +16,777,214 bytes.

The PC-relative offset for the extra long jump is a 32-bit immediate value that must also be a multiple of two
(imm32m2), thus providing an effective dynamic range covering the entire address space of the processor.

When application code is being developed, the offset to the jump destination is usually unknown. The development
tools will evaluate the offset during the build process and select the appropriate jump length when the JUMP
0xnnnnnnnn instruction is generated by the compiler or identified by the assembler.

Each of the supported jump lengths has its own version of the JUMP instruction, the exact form of which is differen-
tiated by appending the appropriate modifier and argument:

• Short jumps (requires 13-bit offset): JUMP.S 0xnnnn;
• Long jumps (requires 25-bit offset): JUMP.L 0xnnnnnnn;
• Extra-long jumps (requires a 32-bit offset): JUMP.XL 0xnnnnnnnn;

The assembler will replace JUMP instructions with the appropriate JUMP.S, JUMP.L or JUMP.XL instructions.

Rather than hard-coding jump target addresses, symbolic addresses can be used in assembly source files. Symbolic
addresses are called labels and are marked by a trailing colon. See the CrossCore Embedded Studio Assembler and Pre-
processor Manual for details.

JUMP mylabel ;
/* skip any code placed here */
mylabel:
/* continue to fetch and execute instructions beginning here */

Direct jumps to an absolute address are also supported. The target address is taken directly from the 32-bit immedi-
ate value in the instruction. For an absolute jump, use JUMP.A 0xnnnnnnnn.

Branches

ADSP-BF7xx Blackfin+ Processor 4–7

Direct Call (Long and Extra-Long)

A call instruction is a branch instruction that copies the address of the instruction which would have executed next
(had the call instruction not executed) into the RETS register. The development tools will evaluate the offset and
select the appropriate PC-relative call instruction when the CALL instruction syntax is used.

The long direct call instruction has a 25-bit PC-relative offset that must be a multiple of two (imm25m2), thus pro-
viding an effective dynamic range of –16,777,216 to +16,777,214 bytes. A long direct call can be specified explicitly
by using a CALL.L instruction.

The extra-long direct call instruction has a 32-bit PC-relative offset that must be a multiple of two (imm32m2), thus
providing an effective dynamic range covering the entire address space of the processor. An extra-long PC-relative
direct call can be specified explicitly by using a CALL.XL instruction.

An absolute direct call is achieved using the CALL.A instruction.

Indirect Jump and Call (Absolute)

The indirect JUMP and CALL instructions get their destination absolute address (branch target) from a data address
generator (DAG) pointer register. For the CALL instruction, the RETS register is loaded with the address of the in-
struction which would have executed next in the absence of the CALL instruction. For example:

JUMP (P3) ;
CALL (P0) ;

A pointer register can be loaded directly with a 32-bit address:

P4 = mytarget;
JUMP (P4);
/* sequential code that is jumped over */
mytarget:
/* continue here */

Indirect Jump and Call (PC-Relative)

The PC-relative indirect JUMP and CALL instructions use the contents of a pointer register as the offset to the
branch target. For the CALL instruction, the RETS register is loaded with the address of the instruction which would
have executed next (had the CALL instruction not executed). For example:

JUMP (PC + P3) ;
CALL (PC + P0) ;
NOP; // RETS points to this instruction

Subroutines

Subroutines are code sequences that are invoked by a CALL instruction. Assuming the stack pointer SP has been
initialized properly, a typical scenario could look like the following:

/* parent function */
R0 = 0x1234 (Z); /* CCES compiler passes 1st argument in R0 */
CALL my_function;

Branches

4–8 ADSP-BF7xx Blackfin+ Processor

/* continue here after the call */
[P0] = R0; /* save return value (CCES compiler places it in R0) */
JUMP somewhere_else;
my_function: /* subroutine label */
 [--SP] = (R7:7, P5:5); /* push (save) 2 used registers to stack */
 P5.H = hi(myregister); /* P5 used locally */
 P5.L = lo(myregister);
 R7 = [P5]; /* R7 used locally */
 R0 = R0 + R7; /* R0 used for parameter passing and return value */
 (R7:7, P5:5) = [SP++]; /* pop (restore) saved registers from stack */
 RTS; /* return from subroutine */
my_function.end: /* closing subroutine label */

Due to the syntax of the push-multiple and pop-multiple instructions requiring that the higher registers appear first,
the CCES compiler uses the upper data and pointer registers for local purposes and the lower registers to pass argu-
ments and store return values. See the address arithmetic unit chapter for more details on stack management, as well
as the CrossCore Embedded Studio Compiler and Library Manual for register usage.

The CALL instruction not only redirects the program flow to the my_function routine, it also writes the address of
the instruction following the CALL instruction into the RETS register such that the RETS register holds the address
where program execution resumes after the RTS instruction executes. In the above example, this is the address of the
[P0]=R0; instruction. The return address is not passed to any stack in the background; rather, the RETS register
functions as a single-entry hardware stack. This scheme enables " leaf functions" (subroutines that do not contain
further CALL instructions) to execute with less overhead, as no bus transfers need to be performed. If a subroutine
calls other functions, it must save the content of the RETS register explicitly, most likely via stack operations:

/* parent function */
CALL function_a;
/* continue here after the call */
JUMP somewhere_else;

function_a: /* subroutine label */
 [--SP] = RETS; /* save RETS onto stack */
 CALL function_b; /* call further subroutines */
 CALL function_c;
 RETS = [SP++]; /* restore RETS */
 RTS; /* return from subroutine */
function_a.end: /* closing subroutine label */
function_b: /* subroutine label */
 /* do something */
 RTS; /* return from subroutine */
function_b.end: /* closing subroutine label */
function_c: /* subroutine label */
 /* do something else */
 RTS; /* return from subroutine */
function_c.end: /* closing subroutine label */

Branches

ADSP-BF7xx Blackfin+ Processor 4–9

Stack Variables and Parameter Passing

Many subroutines require input arguments from the calling function and need to return their results. Certain core
registers are used for passing arguments, while others return the result. See the CrossCore Embedded Studio Compiler
and Library Manual for details.

NOTE: It is recommended that assembly programs meet the same conventions used by the C/C++ compiler.

The CCES compiler passes up to three arguments in registers and utilizes the stack to pass any arguments beyond
three that are defined in the function prototype . The following assembly example shows how to pass and return
arguments using the stack:

_parent:
 R0 = 1; /* load argument 1 */
 R1 = 3; /* load argument 2 */
 [--SP] = R0; /* push argument 1 to stack */
 [--SP] = R1; /* push argument 2 to stack */
 CALL _sub; /* call subroutine */

 R1 = [SP++]; /* R1 = 4 */
 R0 = [SP++]; /* R0 = 2 */
_parent.end:

_sub:
 [--SP] = FP; /* save frame pointer */
 FP = SP; /* create new frame */
 [--SP] = (R7:5); /* save clobbered registers R7, R6, and R5 */

 R6 = [FP+4]; /* R6 = 3, from the stack push of R1 in _parent */
 R7 = [FP+8]; /* R7 = 1, from the stack push of R0 in _parent */
 R5 = R6 + R7; /* processing */
 R6 = R6 - R7;

 [FP+4] = R5; /* R5 = 4, place on stack where R1 was saved */
 [FP+8] = R6; /* R6 = 2, place on stack where R0 was saved */

 (R7:5) = [SP++]; /* restore preserved registers */
 FP = [SP++]; /* restore frame pointer */
 RTS;
_sub.end:

Since the stack pointer SP is modified inside the subroutine for local stack operations, the frame pointer FP is used
to save the original state of SP. Because the 32-bit frame pointer itself must be pushed onto the stack first, the FP is
four bytes beyond the original SP address.

The Blackfin+ instruction set features a pair of instructions that provides cleaner and more efficient functionality
than the above example, LINK and UNLINK. These multi-cycle instructions perform multiple operations that can be
best explained by the equivalent code sequences shown in the table.

Subroutines

4–10 ADSP-BF7xx Blackfin+ Processor

Table 4-3: Link and Unlink Code Sequence Equivalents

LINK n; UNLINK;

[--SP] = RETS;
[--SP] = FP;
FP = SP;
SP += -n;

SP = FP;
FP = [SP++];
RETS = [SP++];

The following subroutine is similar to the previous example, except the LINK and UNLINK instructions are used.
This means that the RETS register is also saved to the stack to enable nested subroutine calls, and the SP can option-
ally be adjusted to allow for local information to be stored on the stack. Because of this, another 32-bit value is being
pushed to the stack, which means the value stored to FP is now eight bytes from the original SP address instead of
four. Additionally, since no local frame is required to accommodate local variables on the stack, the LINK instruction
gets the parameter "0", as the SP does not get adjusted:

_sub2:
 LINK 0; /* creates new frame, saves RETS and SP */
 [--SP] = (R7:5); /* save clobbered registers R7, R6, and R5 */
 R6 = [FP+8]; /* R6 = 3, from the stack push of R1 in _parent */
 R7 = [FP+12]; /* R7 = 1, from the stack push of R0 in _parent */

 R5 = R6 + R7; /* processing */
 R6 = R6 - R7;

 [FP+8] = R5; /* R5 = 4, place on stack where R1 was saved */
 [FP+12] = R6; /* R6 = 2, place on stack where R0 was saved */

 (R7:5) = [SP++]; /* restore preserved registers */
 UNLINK; /* restore SP, FP, and RETS */
 RTS;
_sub2.end:

If subroutines require local, private, and/or temporary variables, the stack can be used. The LINK instruction takes a
parameter that specifies the size of the stack memory required for this. The following example provides two local 32-
bit variables and initializes them to zero when the routine is entered:

_sub3:
 LINK 8; /* save FP/RETS, allocate 8 stack bytes for local data */
 [--SP] = (R7:0, P5:0); /* save all potentially clobbered registers */
 R7 = 0 (Z); /* set initialization value to 0 */
 [FP-4] = R7; /* initialize 1st local variable on stack */
 [FP-8] = R7; /* initialize 2nd local variable on stack */
 /* code goes here */
 (R7:0, P5:0) = [SP++]; /* restore preserved registers */
 UNLINK; /* restore SP, FP, and RETS */
 RTS;
_sub3.end:

Subroutines

ADSP-BF7xx Blackfin+ Processor 4–11

For more information, see the LINK and UNLINK instruction reference pages.

Conditional Processing

The Blackfin+ processors support conditional processing through conditional jump and move instructions. Condi-
tional processing is described in the following sections:

• Conditional Code Status Bit

• Conditional Branches

• Branch Prediction

• Speculative Instruction Fetches

• Conditional Register Move

Conditional Code Status Bit

The processor supports a Conditional Code status bit (ASTAT.CC), which is used to resolve the direction of a
branch. This status bit may be accessed multiple ways (note that the assembler syntax for referencing this bit is CC):

• By the sequencer - a conditional branch is determined based on its value

• Load/store interaction with a Dreg:

R0 = CC; /* R0 becomes either 0 or 1 */
CC = R1; /* CC set to 0 only if R0 is 0, otherwise 1 */

• Bit test (BITTST) instruction:

CC = BITTST (R0, 31) ; /* CC set to value of bit 31 in R0 */
• Reading/writing other ASTAT status bits:

CC = AV0;
AV0 = CC;

• Result of a Preg comparison:

CC = P0 < P1 ; /* CC set to 1 if P0 < P1 */
• Result of a Dreg comparison:

CC = R5 == R7; /* CC set to 1 only if R5 = R7 */
• Rotate (ROT) instruction shifts through the ASTAT.CC bit:

R0 = ROT R1 by R2.L ; /* CC set to value of R1[[R2.L]] bit */
• Store-exclusive and SYNCEXCL instructions:

CC = ([P5] = R0) (P5) ;

Branches

4–12 ADSP-BF7xx Blackfin+ Processor

• Test and set instruction (TESTSET):

TESTSET (P5) ;
These nine ways of accessing the ASTAT.CC bit are used to control program flow. The branch is explicitly separated
from the instruction that sets the arithmetic status bits. A single bit resides in the instruction encoding that specifies
the interpretation for the value of ASTAT.CC. The interpretation is to "branch on true" or "branch on false".

The comparison operations have the form CC = expr, where expr involves a pair of registers of the same type (e.g.,
Dreg or Preg) or a single register and a small immediate constant. The small immediate constant is a 3-bit signed
number (-4 through 3) for signed comparisons and a 3-bit unsigned number (0 through 7) for unsigned compari-
sons.

The sense of ASTAT.CC is determined by equal (==), less than (<), and less than or equal to (<=) operators. There
are also bit test operations that test whether or not a bit in a 32-bit data register is set.

Conditional Branches

The sequencer supports conditional branches. Conditional branches are JUMP instructions whose execution branch-
es or continues linearly, depending on the value of the CC bit. The target of the branch is a PC-relative address from
the location of the instruction, plus or minus an offset. The PC-relative offset is an 11-bit immediate value that
must be a multiple of two (imm11m2), thus providing an effective dynamic range of -1024 to +1022 bytes.

For example, the following instruction tests the CC status bit and, if it is positive, jumps to a location identified by
the label dest_address:

IF CC JUMP dest_address ;

Similarly, a branch can also be taken when the CC bit is not set:

IF !CC JUMP other_addr ;

NOTE: Take care when conditional branches are followed by load operations. For more information, see the
Load/Store instruction reference pages.

Branch Prediction

Branches can be accelerated if the processor predicts the target of an upcoming branch instruction before it has been
committed and fetches instructions from the target sooner, thus reducing the number of instructions that need to be
aborted. Prediction can be performed dynamically based upon the location and direction of the branches the pro-
cessor has previously executed, or prediction may be static based upon information supplied by the programmer.

Blackfin+ processors support dynamic branch prediction. Software can check for this capability by testing the
BPRED bit of the FEATURE0 MMR. Older Blackfin implementations which do not have a FEATURE0 MMR do not
support dynamic branch prediction.

Dynamic branch prediction is enabled by setting the SYSCFG.BPEN bit. Once enabled, the branch latency of all
branches, whether taken or not taken, is significantly reduced. The latency is never longer than the latency of the
branch had it been statically mispredicted.

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–13

The dynamic predictor comes up in a state in which it can immediately start executing. There may be some delay
before it can improve the latency of branches, but software does not need to do anything other than set
SYSCFG.BPEN to enable it. The static prediction bit in conditional branch instructions is used to initialize the dy-
namic prediction. Prediction is validated before the instruction at the branch address is committed, so self-modify-
ing code and code overlays will work as expected with the predictor enabled.

Additional control registers are provided for test, verification, and tuning of the the dynamic branch predictor. Soft-
ware should not need to use these registers to achieve reasonable performance in the general case. For more informa-
tion on the dynamic branch predictor see Dynamic Branch Prediction.

Statistically, dynamic branch prediction is far more successful than static prediction and can lead to significant im-
provements in program performance without code modification. However, the predictor consumes power and is a
feature that is a candidate to be disabled in low-power applications.

When dynamic branch prediction is disabled or not available, the sequencer supports static branch prediction to
accelerate execution of conditional branches. These branches are executed based on the state of the ASTAT.CC bit.

In the EX2 stage, the sequencer compares the actual ASTAT.CC bit value to the predicted value. If the value was
mispredicted, the branch is corrected, and the correct address is available for the WB stage of the pipeline.

The branch latency for statically predicted conditional branches is as follows:

• Correctly predicts a non-taken branch: 0 CCLK cycles

• Mispredicts a non-taken branch: 8 CCLK cycles

• Correctly predicts a taken branch: 4 CCLK cycles.

• Mispredicts a taken branch: 8 CCLK cycles.

For all unconditional branches, the branch target address computed in the AC stage of the pipeline is sent to the
Instruction Fetch Address (IFA) bus at the beginning of the DF1 stage. All statically predicted unconditional
branches have a latency of 4 CCLK cycles. Consider the example in the Branch Prediction table:

Table 4-4: Branch Prediction

Instruction Description

If CC JUMP dest (bp) This instruction tests the ASTAT.CC status bit. If it is set, it jumps to the location identi-
fied by the "dest" label, otherwise it continues to the next sequential instruction.

When dynamic branch prediction is disabled or not available, (bp) indicates the branch is
statically predicted taken. If ASTAT.CC is set, the branch is correctly predicted and the
branch latency is reduced. Otherwise, the branch is incorrectly predicted and the branch
latency increases.

When dynamic branch prediction is enabled, (bp) is simply used to initialize the predic-
tor. Branches that are always taken or always not taken will tend to be correctly predicted
and have a greatly reduced branch latency.

Conditional Processing

4–14 ADSP-BF7xx Blackfin+ Processor

Dynamic Branch Prediction

Dynamic branch prediction is performed by a unit in the Blackfin+ processor known as the Branch Predictor (BP).
The default configuration of the BP should be suitable for most programs, so further configuration apart from ena-
bling it should not be necessary. However, certain applications may benefit from tuning the BP unit, and this section
provides a detailed description so that programmers can gain an insight into how the performance of their programs
is affected.

Branch Predictor Overview

To improve branch execution performance, the Blackfin+ BP learns the type, source address, and target address of
most static and conditional branches. For conditional branches, it will also learn and update a four-value prediction
code that indicates which direction the branch is most likely to take based on recent execution history. This infor-
mation is stored in a 2 KB RAM referred to as the BP Table. Each time an instruction memory fetch is made, the
memory address is used to access the BP Table to see if the BP has learned a branch associated with that address. If
there is a static branch or a conditional branch that is predicted taken in the table, the BP provides the type of in-
struction and target address to the fetch block, which then immediately fetches from the target address. Branch pre-
dictions made by the BP result in a savings of five cycles for static branches and eight cycles for conditional branches
(as compared to non-predicted branches).

The BP performs two kinds of accesses to the BP Table:

• Fetch accesses - triggered every time the sequencer fetches an instruction from memory. The BP uses the fetch
address to read from the table and check for possible branch hits. If one is found, the branch data is evaluated,
and a prediction is sent to the instruction fetch block, which then fetches the target address provided by the BP.

• Management accesses - add new entries to the table or modify existing entries. Management accesses are only
performed in cycles when there are no instruction fetches. This ensures that BP predictions have a higher prior-
ity, even at the expense of additional delay in adding or updating branch entries to the table.

The BP has two 32-bit memory-mapped registers (MMRs), BP_CFG and BP_STAT, to control and monitor its op-
eration.

BP RAM

The Blackfin+ fetch unit operates on instruction data that is 64 bits wide and 64-bit-aligned in memory. Each 64-
bit segment is referred to as a line, with one line being fetched for each instruction fetch. The BP is designed to
predict two possible branches for each line.

The BP Table RAM can be viewed as two-way set associative. Each row will hold the data for two branches or one
line. The first branch learned for a line will be associated with Set 0 and the second branch with Set 1. Additional
branches will be added by alternating and overwriting Set 0 or Set 1. The data in each set can be divided into two
32-bit parts, the TAG and the TARG. The TAG section contains the branch source information, and the TARG
contains the branch destination (target address).

The BP uses 64 bits for each table entry in Set 1 or Set 0. The LRU bit points to the oldest branch table entry that
was accessed for each line. This data is used to determine which set to overwrite when a new branch is to be learned.

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–15

It is written to both the TAG0 and TAG1 portions of the row whenever either Set 0 or Set 1 is written. The other
bit assignments for the branch TAG and TARG portions of table entries can be seen in the BP Table Entry Struc-
ture table.

Table 4-5: BP Table Entry Structure

Field Name (Description)

TAG[31:10] SOURCE_ADDR (21 most significant bits of the branch source address [31:10]).

TAG[9] Reserved

TAG[8:6] TYPE (Branch type).

b#000 (BRCC - Conditional Jump)

b#001 (JUMP - Unconditional Jump)

b#010 (RTS - Return from Subroutine)

b#011 (Reserved)

b#100 (Reserved)

b#101 (CALL32 - Short Call)

b#110 (CALL64 - Long Call)

b#111 (CALL128 - Long Call Multi-Instruction)

TAG[5:4] PREDICTION (Prediction Strength).

b#00 (Strongly Not Taken)

b#01 (Weakly Not Taken)

b#10 (Weakly Taken)

b#11 (Strongly Taken)

TAG[3] VALID (Valid indicator).

Can be set to 0 to remove entry from prediction process.

TAG[2:1] SOF (Byte offset of the branch in the line, from source address[2:1]).

TAG[0] LRU (Least recently used indicator).

Policy bit to determine which BP Table entries to remove.

TARG[31:0] TARG_ADDR (32-bit branch target address).

Configuring The Branch Predictor

BP support is controlled by the SYSCFG.BPEN bit. When set, the BP unit is enabled, and specific features of the BP
unit can be individually controlled via the BP_CFG register. To disable the enabled BP unit, a CSYNC instruction is
first needed before clearing the SYSCFG.BPEN bit. When the BP is disabled in this fashion, it finishes any fetch or
management table access that is in progress but does not begin a new access after the ongoing transaction completes.
If the BP unit is to be re-enabled again, also remember to set the BP_CFG.CLRBP bit to flush the BP table.

Conditional Processing

4–16 ADSP-BF7xx Blackfin+ Processor

NOTE: Once the BP_CFG.CLRBP bit is set, flushing the BP Table requires 150 core clock (CCLK) cycles, which
must be accounted for in software before re-enabling branch prediction (i.e., setting the SYSCFG.BPEN
bit again).

The BP_CFG MMR also provides the enable bits for each of the branch types that is supported. When the enable
bits are set to 1, the BP will execute requests to learn branches of that specific type and add them to the BP Table.
When set to 0, new branches for the specified type will not be learned; however, branches of this type that are al-
ready in the BP Table will continue to be predicted and updated.

The Branch Instructions Supported by BP table shows the branch instructions supported by the BP. The BP type
code which is stored with the branch TAG data is shown following each instruction type.

Table 4-6: Branch Instructions Supported by BP

Instruction BP_CFG Enable Bit

JUMP pcrel13 JUMPEN

JUMP.L pcrel24 JUMPEN

JUMP Imm32(opt pcrel) JUMPEN

IF CC JUMP pcrel10 JUMPCCEN

IF CC JUMP pcrel10 (bp) JUMPCCEN

IF !CC JUMP pcrel10 JUMPCCEN

IF !CC JUMP pcrel10 (bp) JUMPCCEN

CALL pcrel24 CALL32EN

CALL Imm32(opt pcrel) CALL64EN

RTS RTSEN

The following branch instructions are not supported by the BP:

• JUMP (Px)

• JUMP (PC + Px)

• CALL (Px)

• CALL (PC + Px)

• RTE

• RTI

• RTX

• RTN

• LSETUP

NOTE: Hardware loops are zero-latency without the BP.

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–17

Prediction for all branch types should be enabled for best average performance. However, prediction for individual
branch types may be disabled to fine tune BP operation for a specific application. Empirical testing may identifty a
more optimal configuration for specific applications, but experimentation towards that goal should begin by measur-
ing program performance with all the enable bits set.

BP Store Buffers

The BP receives information from the sequencer pipeline control logic which tells it when to learn and update data
about branches that it is executing. This information comes to the BP at several places in the pipe and on different
phases of the clock. This requires the BP to align and store data in order to enter it into the BP Table RAM in a
single access. The strategy of executing management table operations between instruction fetches, which are not
easily predictable, also requires the BP to buffer data before it is entered into the table.

To meet these requirements, the BP has two data store buffers. These buffers store the data coming from the se-
quencer that is used to load the TAG and TARG portions of the BP Table entry. They also store information such as
whether to learn or update, as well as data required for updating prediction states.

Each store buffer is managed by a three-value state machine: idle, waiting for additional data, or full. The store buf-
fer enters the full state once it has all of the data that it needs to complete each type of table access operation. When
the buffer is full, it generates a request to the table state control machine to move its data to the table. It waits in the
full state until the table state control machine accepts its data and begins writing it to the table. The store buffer
machine can then move to idle, waiting, or full with a new buffer full of data.

The BP has additional store buffer logic which controls the next buffer to load and the order that buffer requests are
fed to the table state control machine.

BP Table Control

The table control state machine manages four types of table accesses that can be requested by the store buffers:

• Learn access - creates a new entry in the table and writes TAG and TARG data to either Set 0 or Set 1 of the
table row indicated by bits 9:3 of the branch source address found in the TAG.

• Update access - changes the prediction values in the TAG fields of Set 0 or Set 1 based on the branch source
address and information provided by the sequencer when the predicted branch is executed and an update is
requested.

• Instruction mispredict access - occurs when the type of a prediction does not match the type expected by the
sequencer. When this occurs, the sequencer requests an instruction mispredict access and provides the offend-
ing source address. The table control state machine then executes an instruction mispredict access, which sets
the Valid bit to 0 in the TAG field of the appropriate entry in the table. This prevents further predictions from
this entry.

• Address mispredict access - occurs when the type of prediction matches what the sequencer expects, but the
target address does not. When this occurs, the sequencer requests an address mispredict access and provides the

Conditional Processing

4–18 ADSP-BF7xx Blackfin+ Processor

offending source and correct target address. The table control state machine then executes an address mispre-
dict access, which updates the TARG field of the appropriate entry in the table with the correct target address.
This insures that future predictions to this source address will point to the correct target address.

NOTE: While the learn and update accesses are all that should be necessary for static code, self-modifying code
and code overlays can cause the BP Table to contain outdated branch entries which will cause the BP to
send incorrect predictions to the sequencer. Supporting these use cases requires the instruction and ad-
dress mispredict accesses.

NOTE: The LRU bit is toggled and updated for each of the four types of table accesses.

To support the four types of table accesses, the table control state machine has seven states:

• Idle - occurs when there are no access requests from the store buffers.

• Check - moves the data from a requesting store buffer to a local table control buffer and executes a RAM read
using bits 9:3 of the source address from the local buffer for the RAM address. The state machine may remain
in the check state for several cycles until a non-fetch cycle is available for the read to execute in.

• Process - entered once the check state read completes. Data from the check state read is used during this state to
determine if the branch in the local buffer was found in the table, calculate new prediction values if the access
is an update, set the next valid bit to 0 if the access is an instruction mispredict, and set the next value for the
LRU bit. The process state always requires only one cycle, and instruction fetches and predictions can be per-
formed while it is executing.

Following the process state, the state machine will move into one of the remaining four write states (one for each of
the learn, update, instruction mispredict, and address mispredict access types contained in the local buffer, as de-
tailed above). Each of these access types will execute a RAM write using data obtained from the local buffer or calcu-
lated during the process cycle. The four different states enable different RAM write control lines, depending on the
type of data which needs to be written for each access type. The state machine may remain in any of these four write
states for several cycles until a non-fetch cycle is available for the write to execute in. Upon completion of the write,
the state machine will return to idle or can move to the check state and begin processing the next store buffer request
immediately.

The local control buffer managed by the table control state machine stores the same data as a store buffer. The re-
questing store buffer is freed as soon as the check state is entered, therefore three table access requests may be in-
flight at any given time.

The table control state machine waits in the check and write states until a non-fetch cycle is available. To ensure this
wait is not indefinite, the number of sequential fetch cycles are counted. If a threshold is exceeded, the sequencer is
requested to hold off an instruction fetch for one cycle. The STMOUTVAL field of the BP_CFG register holds the
threshold value, and the STMOUTCNTR field of the BP_STAT register holds the current value of the counter.

All types of table accesses perform a table read when in the check state. If the access is a learn request, a matching
entry is not expected to be found in the table. If a matching entry is found, the DFL bit in the BP_STAT register is
set, and the new data is not written to the table. This condition can occur when multiple learn requests are issued by
the sequencer as a result of a delayed entry of the first request into the branch table. If the access is an update,

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–19

instruction mispredict, or address mispredict and the entry is not found, the NFL bit in the BP_STAT register is set,
and no data is written to the table. This can occur when a table entry is overwritten with a new branch entry just
after it is used to make a prediction. Both these conditions can occur during normal BP operation. The DFL and
NFL bits are sticky and are reset by writing-1-to-clear the CLRDFL and CLRNFL bits of the BP_CFG register.

Table Initialization

The BP Table RAM contains LRU bits, valid bits, and prediction value bits that are used for control purposes. These
bits must be in a known state before the BP Table can be used for predictions, so the entire table is initialized when-
ever the core is reset. The initialization process for the BP Table is triggered whenever RESET is asserted. All of the
entries in the BP Table are written with 0s, one row at a time, which requires approximately 150 core clock cycles.
During this interval, all other types of accesses to the table are blocked; hence, no prediction, learning, or register
table access is possible.

During initialization, the BP Table is unavailable, but the store buffers are allowed to operate, which means that
learning and update requests will be loaded to the store buffers. They will remain in the buffers until the BP Table is
done initializing and is ready to accept store buffer requests, at which point the last two BP operations requested by
the sequencer during the initialization period will be loaded to the BP Table. The operations requested by the se-
quencer prior to the last two requests are lost.

The BP also provides the capability to re-initialize the BP Table while the core is not in the Reset state. This feature
may be useful in situations where code overlays are being swapped, where it may be more cycle-efficient to remove
stale branches from the table before learning branches associated with the new code block. While this would pre-
vents the need to individually correct stale branches through instruction or address mispredict operations, the useful-
ness of this approach must be evaluated on a case-by-case basis.

To reinitialize the BP Table, set the self-clearing BP_CFG.CLRBPbit. Writing this BP Table Clear bit will trigger the
same initialization process that occurs when RESET is asserted, and the BP will begin predicting and learning with a
clean BP Table after the required delay.

NOTE: Software must accommodate the required delay such that no branch instruction associated with any of the
enabled BP_CFG bits gets executed while the BP Table is resetting.

Sequencer BP Requests

The sequencer produces four types of requests which are loaded to the store buffers and then used by the BP to
modify the BP Table: learn, update, instruction mispredict, and address mispredict. The sequencer provides the data
for these requests at two different points during pipe execution, which is described next.

The BP receives the earliest requests in pipe stage "E", which are referred to as mid-pipe requests, and the targets for
these branches are received in pipe stages "F" and "G". The second group of requests occurs in pipe stage “J”, which
are referred to as late-pipe requests, and the targets for these branches are received at the same time (in pipe stage
“J”).

Mid-pipe requests include learns for most static branches, including jumps, calls, and returns from subroutines. Dy-
namic branches or conditional branches (BRCCs) which are predicted taken (BP argument) are also learned at the

Conditional Processing

4–20 ADSP-BF7xx Blackfin+ Processor

mid-pipe point. BRCCs which are not predicted taken (no BP argument) are not learned mid-pipe. The Instruction
Mispredict request is also asserted at mid-pipe.

Update requests for all branch types occur late-pipe. BRCCs which are not predicted taken (no BP argument) and
are taken (mispredicted) are learned at this point. BRCCs which are predicted taken (BP argument) and are not
taken (mispredicted) were learned at mid-pipe and are not re-learned at this point. The first prediction for these
branches will be incorrect but will be updated to the proper value in the update following the first prediction. Ad-
dress Mispredict requests are asserted by the sequencer in pipe stage “H”. The new target value for address mispre-
dicts isn’t asserted until pipe stage “J”, so the BP treats Address Mispredicts as late-pipe requests.

The sequencer performs update requests to modify the prediction values in the table based on whether the BP dy-
namic branch predictions were correct or not. Updates are also used to monitor the number of predictions made and
to modify the LRU bit in the BP Table entry so that older entries are overwritten first. By default, the sequencer will
generate an update for every BP prediction it receives, including predictions for static branches such as uncondition-
al jumps, calls and returns from subroutine. The BP has two alternative modes in which the table is updated less
frequently, which are selected by setting the SKUPD or SKUPDLRU bits in the BP_CFG register. Only one of these bits
should be set at a time.

• Skip Update mode is enabled when the SKUPD bit of the BP_CFG register is set. This mode causes updates to
be skipped if the prediction code for a predicted branch is strongly taken or strongly not taken. Since the pre-
diction code is set to strongly taken for all static branches, updates will be eliminated for all static branches.
Updates for BRCCs will be eliminated if the prediction code is strongly taken or strongly not taken and the
prediction was not mispredicted. Mispredicted BRCCs generate an update request regardless of the update
mode so the prediction value can be updated.

• Skip Update LRU mode is enabled when the SKUPDLRU bit of the BP_CFG register is set. This mode causes
updates to be skipped if the prediction code for a predicted branch is strongly taken or strongly not taken and
the predicted branch is not the oldest (LRU) in the table for a specific line. The additional LRU qualification
results in the newest accessed branch in the table being kept longer. This should increase the frequency of pre-
dictions for branches located near the current PC.

The Skip Update and Skip Update LRU modes sacrifice the accuracy of prediction to reduce the frequency of up-
dates. An excessive number of updates might increase the delay before branches are actually learned and impact the
frequency of instruction fetches, so this can be a net benefit; however, the default settings are expected to perform
best in general.

BP Store Buffer State Machine

When a mid-pipe request is assigned to one of the store buffers in pipe stage “E”, its state moves from Idle to Wait.
The wait is required to allow the pipe to progress to the “F/G” stages to receive the target address. Once the target is
received, the BP has all of the required data, and the state moves from Wait to Full. A request is then sent to the BP
Table Control state machine to transfer the requested operation and data to the BP Table Control local buffer so it
can be used to modify the BP Table. Once the request is accepted and the data is moved, the store buffer state ma-
chine can return to Idle. When a late-pipe request is assigned to a store buffer, the state machine moves directly from

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–21

Idle to Full because all of the required data is available in the same cycle. When the state moves to Full, the interac-
tion with the BP Table Control state machine is the same as in the mid-pipe request case. The store buffer data is
moved, and the store buffer state machine can return to Idle.

There are several exceptions to this basic operation due to sequencer operation or to reduce the number of cycles
that it takes for a request to move through the store buffers and be incorporated into the BP Table.

1. When a late-pipe request is sent to the BP before or at the same time as the target for a mid-pipe request - the
state machine would have moved from Idle to Wait when the mid-pipe request was received. If a late-pipe re-
quest is received at this point, it is given a higher priority because late-pipe requests will typically cause a change
of flow (COF), which means the mid-pipe request will be killed and its target never fetched or learned. When
the late-pipe request is received, the store buffer loads the data as in a normal late-pipe request, and the state
machine moves to Full. The transfer of the late-pipe request then moves to the BP Table in the normal fashion.
The mid-pipe data is overwritten, and the mid-pipe request is dropped.

2. Mid-pipe transactions can be lost if another branch which is not supported by the BP causes a COF to occur
while the state machine is in Wait - interrupts are a good example of this. When a mid-pipe operation starts,
the state machine moves to Wait. If an interrupt COF occurs before the mid-pipe target is fetched and sent to
the BP, the correct target will never be sent to the BP to complete the mid-pipe learn. In this case, the non-
learned COF causes the mid-pipe request to be dropped, and the state returns to Idle. This scenario does not
occur for late-pipe requests because all of the data is presented in the same cycle and a late-pipe learn will not
occur in the same cycle as any other non-supported branch COF. This means that the BP has everything it
needs to complete the late-pipe request, so it executes without a problem.

3. If requests from the sequencer come close together, the store buffer state machine does not have to return to
Idle before starting a new request - it is possible for the state machine to move from Full to Wait or from Full
to Full again with the appropriate new mid- or late-pipe requests. If the state machine is Full when an new
request is started, and the request to move the current data to the BP Table Control local buffer has not been
accepted, the current data will be overwritten. The number of times that data is overwritten is an important
measure of store buffer performance, so overwrites are included as one of the BP event monitoring parameters.

4. Mid-pipe instruction mispredicts are treated differently than other mid-pipe requests - instruction mispredicts
occur when a branch which is no longer valid is predicted. It is important to correct this problem quickly to
prevent the branch from being predicted a second time and incurring the unneeded fetch stalls again. To speed
up these requests, the instruction mispredict request is treated as a late-pipe request even though it occurs at
mid-pipe. When the request is received, it causes the store buffer state machine to move from Idle to Full. This
is possible since the target address normally associated with mid-pipe requests is not needed to execute the re-
quest. Once the state machine is Full, the request moves to the BP Table Control buffer in the usual fashion.
The special handling of these requests allows them to move through the store buffers in one cycle.

The final aspect of store buffer operation which needs to be discussed is the interaction among them. Store buffers
interact in two ways:

1. The order that requests are sent to the BP Table Control buffer for execution - the most recently loaded or
newest store buffer request is sent to the BP Table Control buffer first. If a request has already been asserted but
has not been accepted by the BP Table Control state machine, it will be de-asserted, and the newer request will

Conditional Processing

4–22 ADSP-BF7xx Blackfin+ Processor

be asserted. The older request may be re-asserted when the newer request is accepted by the BP Table Control
state machine. This policy results in getting branches close to the current PC into the BP Table as quickly as
possible, thus increasing the probability of these branches being predicted in tight loops and increasing BP effi-
ciency.

2. The order in which sequencer requests are loaded to the buffers, which is governed by several policies:

a. The first buffer loaded after reset is always Store Buffer 0.

b. When a store buffer is written and its state goes to Full, the other buffer is selected as the next store buffer
to be written to, which results in loads being alternated between the store buffers. The contents of the
oldest store buffer will be overwritten if all of the requests have not been executed to the BP Table when a
new request is received. This behavior is seen most frequently and occurs when requests are not close to-
gether.

c. Store buffers which have just had their data accepted by the BP Table Control state machine will now be
considered empty and will be loaded next. This policy is in effect for only one cycle per request, when the
BP Table Control state machine informs the store buffers that it has completed a request and can accept
data for the next request. This cycle is typically the cycle after a BP Table write, which is the last cycle of
the completed BP Table request. Once this single cycle is completed, control of buffer loading reverts to
the policy of alternating buffers. This policy reduces the amount of older store buffer data which is over-
written and dropped, thus increasing BP efficiency. It occurs when branches are spaced close together and
a new request has been allowed to move to the BP Table ahead of a request that is waiting. Several new
requests may be loaded and executed to the table before an older request has an opportunity to be loaded.
Due to this policy, the order and timing of store buffer loads depends on the exact cycle when requests are
completed by the BP Table Control state machine. The execution of requests by the BP Table Control
state machine is also strongly a function of when instructions are fetched. Since the timing of instruction
fetches is highly variable, the net effect is that timing and loading of store buffer requests is also highly
variable. This policy can also cause older requests to be delayed a long time before actually being entered
into the table.

There is one other case where store buffer loading is affected. This is the first exception case described above, which
occurs when a late-pipe request is sent to the BP before or at the same time as the target for a mid-pipe request. As
previously noted, the late-pipe request will override the mid-pipe request, which will change the data in the store
buffer, move the buffer state to Full, and cause this buffer to be marked as the newest buffer. This will also change
the order of buffer requests executed to the BP Table even though it did not change the next buffer which was select-
ed to be loaded.

Loading the most recent requests to the BP Table first is also important in achieving quick table loads when han-
dling instruction mispredict requests. When an instruction mispredict request is received, it is the newest request
and is thus sent to the table immediately, which allows the BP to guarantee a one-cycle throughput through the store
buffers for this type of request.

The order and timing for loading sequencer requests to the store buffers affects when branch entries enter the BP
Table, thus affecting BP predictions and program performance. As has been discussed, the order, timing, and poten-
tial overwriting of requests to the store buffers are highly variable. To provide some visibility and debug capability

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–23

for this process, the Store Buffer Full (ST0FULL and ST1FULL) state bits for each of the store buffer state machines
have been brought out to the BP Status register (BP_STAT). These bits are updated every cycle and can be used to
observe store buffer operation.

BP Predictions

The BP Table is checked for branch hits each time an instruction fetch is executed. Checks are triggered within the
BP in pipe stage “A”, and predictions are available approximately 1 ½ cycles after the instruction fetch is started.

The first step in generating a prediction is to determine if there are branch entries found in the line that is being
fetched, and the BP supports predictions for up to two branch entries per line. This requires that the BP also deter-
mine where each branch instruction is located within the line. Since each line is 64 bits (eight bytes) and the mini-
mum instruction size is two bytes, the maximum number of instructions per line is four, thus requiring two bits to
locate the start of an instruction or instruction offset (SOF) within a line. These bits correspond to bits 2:1 of the
instruction address, as the two-byte minimum requirement for an op-code makes bit 0 irrelevant.

When an instruction fetch is evaluated for a prediction, the BP compares the 22-bit TAGs and the two-bit SOFs in
both Sets 0 and 1 of the appropriate BP Table row with the corresponding bits in the fetch address. If the TAGS
match, the SOF of the fetch address is less than or equal to the SOF of the entry, and the Valid bit is true, then the
entry is a branch hit. If the TAGSs match, and the Valid bit is set, but the SOF of the fetch address is greater than
the SOF of the entry, then there is no hit.

If there are no branch hits for a given fetch address, then there will be no predictions for that instruction fetch.

If there is a hit in either Set 0 or Set 1 (but not both), then the data from the set which produced the hit will be used
to generate the prediction. In this case, a mux on the BP outputs will be switched to send the required SOF, type,
and target address data from the set which hit to the sequencer. The final prediction evaluation, however, depends
on the prediction value found in the BP Table for the branch entry. If the prediction value is strongly or weakly
taken, the hit creates a Taken prediction, and the sequencer is signaled to fetch the TARG value provided by the BP.
If the prediction value is strongly or weakly not taken, the hit creates a Not Taken prediction, and the sequencer is
not signaled to fetch the target. Not Taken predictions are useful to monitor BP performance but are not sent to the
sequencer, so no COF or BP Table updates occur.

A more complex prediction process happens when two hits are found in the BP Table for a given fetch address.
When this occurs, the prediction is determined using the SOFs and prediction values for each branch entry. The
cases which are possible are discussed below. In each case, the TAGs are assumed to match the fetch address, and the
Valid bits are set for both BP Table entries. Branch A may be in Set 0 or 1 with Branch B located in the other set.

1. Fetch SOF <= Branch A SOF < Branch B SOF - the prediction value for Branch A is Strongly or Weakly Tak-
en, and the value for Branch B is a "don’t care". In this case, a Taken prediction will be issued for Branch A,
which has the lower offset and will be first in the pipe. Since it is predicted Taken, it will be fetched to avoid
the fetch overhead caused by its COF. The presence of and prediction value for Branch B are not factors be-
cause Branch B comes after Branch A in the pipe and will be killed when Branch A is executed.

2. Fetch SOF <= Branch A SOF < Branch B SOF - the prediction value for Branch A is Strongly or Weakly Not
Taken, and the value for Branch B is Strongly or Weakly Taken. In this case, a Taken prediction will be issued

Conditional Processing

4–24 ADSP-BF7xx Blackfin+ Processor

for Branch B. Branch A has the lower offset, so it will be first in the pipe, but it is not taken; therefore, a
prediction and a fetch are not necessary. Branch B will be executed because Branch A is not taken. Since
Branch B will be executed and is predicted taken, issuing the prediction for it will be useful in avoiding the
fetch overhead caused by its COF.

3. Branch A SOF < Fetch SOF <= Branch B SOF - the prediction value for Branch A is a "don’t care", and the
value for Branch B is Strongly or Weakly Taken. In this case, a Taken prediction will be issued for Branch B.
This happens when a branch with a target address offset that is between that of Branch A and B is executed.
Branch A has a lower offset, but it will not be in the pipe and will never be executed, so there is no need to
predict it. Branch B is predicted taken and will be executed, so a prediction for Branch B will be useful in
avoiding the fetch overhead caused by its COF.

4. Fetch SOF <= Branch A SOF < Branch B SOF - the prediction value for Branches A and B are both Strongly
or Weakly Not Taken. In this case, a Not Taken prediction will be issued for Branch A because it has the lower
SOF. A prediction will not be created for Branch B because it will be fetched when Branch A is fetched; and,
since it is not taken, a fetch and prediction will not be required to load its target.

5. Branch A SOF < Fetch SOF <= Branch B SOF - the prediction values for Branches A and B are both Strongly
or Weakly Not Taken. In this case, a Not Taken prediction will be issued for Branch B. The prediction will not
be issued for Branch A because the SOF of the target address is greater than the SOF for Branch A. The SOF
of the target address is less than or equal to the SOF for Branch B, so Branch B is a valid hit, and a Not Taken
prediction is issued for it.

6. Branch A SOF < Branch B SOF < Fetch SOF - the prediction values for Branches A and B are both "don’t
care". In this situation, no predictions are issued because no branches exist in the line beyond Branch B.

Once the correct set and prediction type has been identified, the BP prediction mux is switched to the appropriate
set, and the prediction signals and data are sent to the sequencer, as previously described for the single-hit case.

As presented in the BP RAM Design section, there are four values for the Prediction Code which can be assigned to
each Branch Table entry: Strongly Taken, Weakly Taken, Weakly Not Taken, and Strongly Not Taken. When a stat-
ic branch such as a CALL or RTS is learned, its prediction value is assigned as Strongly Taken. This value does not
change when updates are performed for these entries. When a conditional branch (BRCC) is learned, its initial pre-
diction value is assigned as Weakly Taken. This value is recomputed each time the branch is predicted, and an up-
date is executed for the entry.

Predictions which are predicted Taken and are Taken (not mispredicted) cause the value to move one prediction
value towards Strongly Taken. Once the Prediction Code is set to Strongly Taken, it will remain in that state
through taken updates until a Mispredict update occurs, which causes the state to move to Weakly Taken.

Predictions which are predicted Taken and are Not Taken (mispredicted) cause the value to move one prediction
value towards Strongly Not Taken. Once the Prediction Code is set to Strongly Not Taken, it will remain in that
state until a Mispredict update occurs, which causes the state to move to Weakly Not Taken.

Branch predictions are not directly affected by memory stalls. The BP will check for a branch hit each time an in-
struction is fetched. If a hit is found and a prediction made, the BP will hold the prediction signals and data on its
outputs until the next instruction fetch. If the new fetch produces a hit, the prediction signals and data will be

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–25

changed to reflect the new prediction. If the new fetch does not produce a hit, the control signals are de-asserted to
indicate that there is no prediction. The data, however, is a "don’t care" and may or may not change depending on
the previous and current data fetched from the BP Table. When an instruction fetch occurs and is stalled, the BP
will check for a prediction in the first cycle of the fetch. The results of this check are held on the BP outputs through
the stall until the next fetch, thus allowing the BP data to be used at the end of the stall when it is required by the
sequencer. The only effect that memory stalls have on the BP is that they change the timing of when fetches occur.
As discussed, BP efficiency is affected by the number and timing of instruction fetches, so it is possible to see a
change in BP operation when there is a high density of memory stalls.

In general, BP predictions will occur whenever there is an instruction fetch, with one notable exception. When the
BP makes a prediction, the target address of the branch is fetched in the next cycle. It is possible that the branch
fetched may span into the next address, so the consequent address must also be fetched. This additional fetch is
referred to as the trailer; and, when this added fetch is required, the policy described above is changed. In this case,
when a Taken prediction is made, the target address and the trailer address will always be pre-fetched in the pipeline.
Since the trailer address will only be used for branches which span the two addresses and the branch is taken,
branches which occur later in the trailer will never be executed. If they will never be executed, there is no need to
predict them; therefore, the BP does not check nor make predictions for trailer addresses which are fetched.

The BP is responsible for learning branches and detecting when the branches that it has learned are being fetched,
but it is not always responsible for providing the target address of the branch. For RTS branches, the target address
can come from either an internally-maintained eight-deep call return stack or directly from the RETS register.

Speculative Instruction Fetches

The pipeline architecture requires the program sequencer to speculatively fetch instructions that may have to be dis-
carded. A useful example of this operation is the sequence:
P1 = 0x80000000;
CC = P0 == P1;
if CC JUMP skip;
CSYNC;
CALL (P0);
skip:

Even without the shown CSYNC instruction, the sequence is fully functional, but the internal behavior of the pro-
cessor changes if it is omitted. For example, if P0 were 0x8000_0000 entering this sequence, the CALL instruction
would not execute. The presence of the CSYNC instruction before it guarantees that the pipe doesn't advance beyond
the CSYNC instuction, thus no fetches are performed to satisfy the CALL instruction's dependency on the P0 con-
tent. However, if the CSYNC instruction were removed from this sequence, the instruction fetch from P0 would still
happen to satisfy the CALL instruction. Since address 0x8000_0000 resides in DDR memory space, the sequence
would attempt to trigger an instruction fetch from that location. If the DDR controller were not yet initialized
properly, the conditional instruction fetch could trigger a hardware error; thus, the CSYNC instruction is recom-
mended. See the load/store instruction reference pages for details on related data load topics.

Conditional Processing

4–26 ADSP-BF7xx Blackfin+ Processor

Conditional Register Move

Register moves can be performed depending on whether the value of the ASTAT.CC status bit is true or false (1 or 0,
respectively). In some cases, using this instruction instead of a branch eliminates the cycles lost because of the
branch. These conditional moves can be done between any data registers or pointer registers (including SP and FP).
For example:

IF CC R0 = P0 ; /* do register move if CC is TRUE */
IF !CC P1 = P2 ; /* do register move if CC is FALSE */

Hardware Loops
The sequencer supports a mechanism of zero-overhead looping, meaning that there are no cycle penalties when
wrapping from the loop bottom to the loop top. The sequencer contains two loop units, each containing three regis-
ters. Each loop unit has a Loop Top register (LT0, LT1), a Loop Bottom register (LB0, LB1), and a Loop Count
register (LC0, LC1).

Zero-overhead loops are most conveniently written with the LOOP/LOOP_END construct. The loop start is marked
with a LOOP, LOOPZ or LOOPLEZ instruction, and the end of the loop is marked with a LOOP_END pseudo-instruc-
tion. The following code example shows a loop that contains two instructions and iterates 32 times.

 LOOP LC0 = 32 ;
 R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;
 R5 = R5 + R2 ;
 LOOP_END ;

Loops that begin with the LOOP instruction decrement and test the counter at the end of the loop, exiting the loop
if the decrement results in a count of zero. At least one iteration of the loop is always executed.

The LOOPZ and LOOPLEZ instructions test the counter before the first iteration of the loop and only execute the
first iteration if the counter is initially within range. The LOOPZ instruction jumps to the instruction after the
LOOP_END when the counter is initially zero. The LOOPLEZ instruction jumps to the instruction after the
LOOP_END when the counter is initially less than or equal to zero. When the counter is initially in range, then the
LOOPZ and LOOPLEZ instructions operate in the same way as the LOOP instruction. See the LSETUP and LOOP
instruction reference pages for operation details.

The following code shows two loops with an unknown iteration count. In the first loop, the LOOP instruction is
used, so at least one iteration is executed. In the second loop, the LOOPZ instruction is used, so the number of itera-
tions that are executed will match whatever is retrieved from the address pointed to by P4.

P5 = [P4]; /* Get loop count value from memory location in P4 */
LOOP LC1 = P5;
 /* loop body executed at least once */
LOOP_END;
LOOPZ LC0 = P5;
 /* loop body only executed if count is initially not 0 */
LOOP_END;

Conditional Processing

ADSP-BF7xx Blackfin+ Processor 4–27

The assembler translates LOOP, LOOPZ, and LOOPLEZ instructions to LSETUP, LSETUPZ, and LSETUPLEZ instruc-
tions, respectively, which contain the PC-relative address of the final instruction in the loop. The LOOP_END pseu-
do-instruction is simply there to locate the end of the loop, so it does not get translated to any instruction at all.
Upon disassembly, the replacement LSETUP-type instruction is seen.

Two sets of zero-overhead loop registers implement loops, using hardware counters instead of software instructions
to evaluate loop conditions. After evaluation, processing branches to a new target address. Both sets of registers in-
clude the Loop Counter (LC), Loop Top (LT), and Loop Bottom (LB) registers. The Loop Registers table describes
the 32-bit loop register sets.

Table 4-7: Loop Registers

Registers Description Function

LC0, LC1 Loop Counter Maintains a count of the remaining itera-
tions of the loop

LT0, LT1 Loop Top Holds the address of the first instruction
within a loop

LB0, LB1 Loop Bottom Holds the address of the last instruction of
the loop

When an instruction at address X is executed, and X matches the contents of LB0, then the next instruction execut-
ed will be from the address in LT0. In other words, when PC == LB0, then an implicit jump to LT0 is executed.

The LC0 and LC1 registers are unsigned 32-bit registers, each supporting 2 32 -1 iterations through the loop.

A loopback only occurs when the count is greater than or equal to two. If the count is non-zero, then the count is
decremented by one. For example, consider the case of a loop with two iterations. At the beginning, the count is
two. On reaching the first loop end, the count is decremented to one, and the program flow jumps back to the top
of the loop (to execute a second time). On reaching the end of the loop again, the count is decremented to zero, but
no loopback occurs because the body of the loop has already been executed twice.

The LSETUP, LSETUPZ, or LSETUPLEZ instructions can be used to load all three registers of a loop unit at once.
When executing one of these loop setup instructions, the program sequencer loads the address of the loop's last in-
struction into LBx and the address of the loop's first instruction into LTx. The bottom address of the loop is com-
puted from a PC-relative offset held in the instruction, which limits the maximum loop size to 2046 bytes. It is
recommended that the loop top address is the instruction after the loop setup instruction.

Each loop register can also be loaded individually with a register transfer, but this incurs a significant overhead if the
loop count is non-zero (the loop is active) at the time of the transfer.

For compatibility with earlier Blackfin processors, the LSETUP instruction without immediate count may contain a
start offset. With this form of the instruction, the loop top can be up to 30 bytes after the LSETUP instruction.
However, a four-cycle latency occurs on the first loopback if the LSETUP specifies a non-zero start offset.

A legacy form of the LOOP syntax is also supported. Using this syntax, a loop gets assigned a name. All loop instruc-
tions are enclosed between the LOOP_BEGIN and LOOP_END brackets.

 LC0 = R0;

Hardware Loops

4–28 ADSP-BF7xx Blackfin+ Processor

 LOOP myloop LC0;
/* instructions between setup and body - NOT RECOMMENDED */
 LOOP_BEGIN myloop;
 /* loop body */;
 LOOP_END myloop;

The processor supports a four-location instruction loop buffer that reduces instruction fetches while in loops. If the
loop code contains four or fewer instructions, then no fetches to instruction memory are necessary for any number
of loop iterations because the instructions are stored locally. The loop buffer effectively eliminates the instruction
fetch time in loops with more than four instructions by allowing fetches to take place while instructions in the loop
buffer are being executed.

The processor has no restrictions regarding which instructions can occur in a loop end position. All instructions,
including branches and calls, are allowed at the loop bottom location.

Two-Dimensional Loops

The processor features two Loop Units, each providing its own set of loop registers:

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers

Therefore, two-dimensional loops are supported directly in hardware, consisting of an outer loop and a nested inner
loop.

NOTE: The outer loop is always represented by Loop Unit 0 (LC0, LT0, LB0), while Loop Unit 1 (LC1, LT1,
LB1) manages the inner loop.

To enable the two nested loops to end at the same instruction (LB1 equals LB0), Loop Unit 1 is assigned higher
priority than Loop Unit 0. A loopback caused by Loop Unit 1 on a particular instruction (PC==LB1, LC1>=2) will
prevent Loop Unit 0 from looping back on that same instruction, even if the address matches. Loop Unit 0 is al-
lowed to loop back only after LC1 is exhausted. Consequently, when no instructions appear after the inner loop
within the outer loop body, the outer loop must use LC0 while the inner loop uses LC1. The following example
shows a two-dimensional loop:

#define M 32
#define N 1024
 P4 = M (Z);
 P5 = N-1 (Z);
 LOOP LCO = P4;
 R7 = 0 ;
 MNOP || R2 = [I0++] || R3 = [I1++] ;
 LOOP LC1 = P5;
 R5 = R2 + R3 (NS) || R2 = [I0] || R3 = [I1++] ;
 R7 = R5 + R7 (NS) || [I0++] = R5;
 LOOP_END ;
 R5 = R2 + R3 ;

Hardware Loops

ADSP-BF7xx Blackfin+ Processor 4–29

 R7 = R5 + R7 (NS) || [I0++] = R5 ;
 [I2++] = R7 ;
 LOOP_END ;

The above example processes an MxN data structure. The inner loop is unrolled and executes N-1 times. The outer
loop is not unrolled and still provides room for optimization.

Loop Unrolling

DSP algorithms are typically optimized for speed rather than for small code size. When fetching data from circular
buffers, loops are often unrolled in order to pass only N-1 times. The initial data fetch is executed before the loop is
entered. Similarly, the final calculations are done after the loop terminates, for example:

#define N 1024
global_setup:
/* Initialize DAG registers for 2 circular buffers, 1 in each of Banks A/B */
 I0.H = 0x1180; I0.L = 0x0000; B0 = I0; L0 = N*2 (Z);
 I1.H = 0x1190; I1.L = 0x0000; B1 = I1; L1 = N*2 (Z);
 P5 = N-1 (Z);

algorithm:
 A0 = 0 || R0.H = W[I0++] || R1.L = W[I1++];
 LOOP LC0 = P5;
 A0+= R0.H * R1.L || R0.H = W[I0++] || R1.L = W[I1++];
 LOOP_END;
 A0+= R0.H * R1.L;

As shown, the accumulator register is cleared while the first data elements are prefetched before the loop is iterated,
then the loop body performs the accumulation while fetching the next elements in a single instruction. This is iter-
ated for the length of the buffer minus one such that the last accumulation occurs after the loop completes. This
technique optimizes data fetching to exactly N times, and the Iregs are reset to their initial values when processing
is complete. As such, the algorithm can subsequently be executed multiple times without any need to re-initialize the
DAG registers.

Saving and Resuming Loops

Normally, loops can process and terminate without regard to system-level concepts. Even in the presence of inter-
rupts and exceptions, no special care is needed. There are, however, a few situations that require special attention
when a loop gets interrupted by events that require the loop resources themselves:

• If the loop is interrupted by an interrupt service routine that also contains a hardware loop and requires the
same loop unit

• If the loop is interrupted by a pre-emptive task switch

• If the loop contains a CALL instruction that invokes an unknown subroutine that may have local loops

In scenarios like these, the loop environment can be saved and restored by pushing and popping the loop registers.
For example, to save Loop Unit 0 onto the system stack in a function prolog, use this code:

Hardware Loops

4–30 ADSP-BF7xx Blackfin+ Processor

[--SP] = LC0;
[--SP] = LB0;
[--SP] = LT0;

To pop the loop registers back off the stack, thus restoring them to the state they were in upon executing the above
code, the complementary restore code to insert into the function epilog is:

LT0 = [SP++];
LB0 = [SP++];
LC0 = [SP++];

Writes or pops to the loop registers cause some internal side-effects to re-initialize the loop hardware properly. The
hardware does not force the user to save and restore all three loop registers, as there might be cases where saving one
or two of them is sufficient. Consequently, every pop instruction in the example above may require the loop hard-
ware to re-initialize again, which takes multiple cycles because the loop buffers must also be pre-filled again.

To avoid unnecessary penalty cycles, the loop hardware follows these rules:

• Restoring LC0 and LC1 registers always re-initializes the loop hardware and causes a ten-cycle "replay" penalty.

• Restoring LT0, LT1, LB0, and LB1 performs in a single cycle, if the corresponding loop counter register is zero.

• If LCx is non-zero, every write to the LTx and LBx registers also attempts to re-initialize the loop hardware and
causes a ten-cycle penalty.

In terms of performance, there is a difference depending on the order that the loop registers are popped. For best
performance, restore the LCx registers last. Furthermore, it is recommended that interrupt service routines and glob-
al subroutines that contain hardware loops terminate their local loops cleanly; that is, do not artificially break the
loops, and do not execute return instructions within the loops. This guarantees that the LCx registers are 0 when
LTx and LBx registers are popped.

Example Code for Using Hardware Loops in an ISR

The following code shows the optimal method of saving and restoring loop registers when using hardware loops in
an interrupt service routine:

lhandler:
 /* ...Save other registers here... */
 [--SP] = LC0; /* save loop 0 */
 [--SP] = LB0;
 [--SP] = LT0;

 /* ... Handler code here ... */

 LT0 = [SP++];
 LB0 = [SP++];
 LC0 = [SP++]; /* This will cause a "replay" (a ten-cycle refetch) */

 /* ... Restore other registers here ... */

 RTI;

Saving and Resuming Loops

ADSP-BF7xx Blackfin+ Processor 4–31

If the handler uses Loop Unit 0, it is a good idea to have it leave LC0=0 at the end. Normally, this happens naturally,
as the loop is fully executed. When this is true, then LT0 and LB0 restores will not incur additional cycles. If LC0 is
non-zero when these restores occur, each pop will incur the ten-cycle "replay" penalty. Popping or writing LC0 al-
ways incurs this penalty.

Events and Interrupts
The Event Controller of the processor manages five types of events:

• Emulation

• Reset

• Non-Maskable Interrupt (NMI)

• Exception

• Interrupt

NOTE: The word event describes all five types of activities shown above that can disrupt application code flow.
The Event Controller manages fifteen different events in all, as there are eleven of the Interrupt type that
can have dedicated handlers.

An interrupt is an event that asynchronously changes normal processor instruction flow. In contrast, an exception is a
software-initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service routines may be active at any time, and a
low-priority event may be pre-empted by one of higher priority.

The processor employs a two-level event control mechanism. The Core Event Controller (CEC) works with the Sys-
tem Event Controller (SEC) to prioritize and control all system interrupts. The SEC provides mapping between the
many peripheral interrupt sources and the prioritized general-purpose interrupt inputs of the core, which can indi-
vidually be masked in the SEC. In addition to the dedicated handlers for many events (emulation, reset, NMI, ex-
ception, hardware error interrupt, and core timer interrupt), the CEC also supports nine general-purpose interrupts
(IVG7 - IVG15). It is recommended that at least the two lowest priority interrupts (IVG14 and IVG15) be reserved
for software interrupt handlers, leaving seven prioritized interrupt inputs (IVG7 - IVG13) to support the system.

NOTE: The SEC maps all system events to IVG11, thus leaving IVG7 to IVG10 and IVG12 to IVG15 free for
use as software interrupt handlers, with the first group having higher priority than all the system-related
interrupts and the second having lower priority. Refer to the Hardware Reference Manual for your pro-
cessor for a detailed description of the SEC.

The Core Event Mapping table shows the core events and their priority level, as seen by the core, including those
controlled by the SEC on IVG11. The Core Event Source column is sorted by priority from highest to lowest, such
that all the general-purpose interrupts are lower in priority than the rest, and these general-purpose interrupts are
also prioritized from IVG7(highest) to IVG15(lowest).

Events and Interrupts

4–32 ADSP-BF7xx Blackfin+ Processor

Table 4-8: Core Event Mapping

Core Event Source Core Event Name

Emulation (Highest Priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved -

Hardware Error Interrupt IVHW

Core Timer Interrupt IVTMR

General-Purpose Interrupts IVG7-IVG15 (highest to lowest priority, respectively)

Core Event Controller Registers

The Event Controller uses three core MMRs to coordinate pending event requests. In each of these MMRs, the 16
lower bits correspond to the 16 event levels (for example, bit 0 corresponds to "Emulator mode"). The registers are:

• IMASK - interrupt mask

• ILAT - interrupt latch

• IPEND - interrupts pending

These three registers are accessible in Supervisor mode only.

Interrupt Pending Register (IPEND)

The Core Interrupt Pending register (IPEND) keeps track of all currently nested interrupts. When an event is ac-
cepted by the core for processing, the corresponding bit in IPEND is set, whether the event occurs at the application
level or while servicing another event. Because each bit in IPEND indicates that the corresponding interrupt is either
actively being serviced by the core or is nested at some level awaiting service completion due to a higher-priority
event that occurred after it was raised, coupled with the fact that interrupt priority is highest at the LSB of the regis-
ter, the least significant set bit in IPEND indicates the interrupt that is currently being serviced. At any given time,
IPEND holds the current status of all nested events.

NOTE: The IPEND[4] bit is not associated with an event. It is used by the Core Event Controller to temporarily
disable interrupts on entry and exit to an interrupt service routine.

This register is read-only and accessible only in Supervisor mode. For more information, see the Interrupt Pending
Register .

Interrupt Latch Register (ILAT)

Each set bit in the Core Interrupt Latch register (ILAT) indicates that the corresponding event has been latched by
the CEC, but it has not yet been accepted into the processor for handling. Once set, the bit will automatically be

Events and Interrupts

ADSP-BF7xx Blackfin+ Processor 4–33

cleared by hardware before the first instruction in the corresponding ISR is executed. This occurs at the point the
interrupt is accepted, where the CEC clears the ILAT[N] bit while simultaneously setting the corresponding
IPEND[N] bit, thus flagging that event to now be pending on the core (either actively being processed or nested at
some level).

The ILAT register can only be accessed in Supervisor mode. While reads are straightforward, writes to ILAT can be
used to manually clear latched events for cases where latched interrupt requests need to be cancelled rather than
serviced. To clear any ILAT[N] bit, first make sure that IMASK[N] == 0, then write ILAT[N] = 1.

The RAISE instruction can be used to set ILAT[15:5]and ILAT[2:1].

The EXCPT instruction can be used to set ILAT[3].

Only the JTAG TRSTpin can control ILAT[0].

For more information, see the Interrupt Latch Register .

Interrupt Mask Register (IMASK)

The Core Interrupt Mask register (IMASK) controls which interrupt levels are enabled to be serviced by a software
handler function. The IMASK register may be read and written in Supervisor mode only. While the lowermost bits
are hard-coded to always enable servicing of the highest-priority events (emulation, reset, NMI, exception, and hard-
ware error), the upper 11 bits are user-configurable to optionally disable servicing of interrupts from the core timer
at IVG6 to the lowest-priority general-purpose interrupt at IVG15. If IMASK[N] == 1 and ILAT[N] == 1, then
the vector to service interrupt N will be taken if a higher-priority interrupt is not already recognized and in the act of
being serviced. If IMASK[N] == 0 and ILAT[N] gets set by interrupt N, the interrupt will not be serviced, but
ILAT[N] will remain set. For more information, see the Interrupt Mask Register .

Event Vector Table (EVT)

The 16-entry Event Vector Table (EVT) is a hardware table comprised of MMRs (EVT[n]) containing 32-bit vector
addresses to support servicing of core events latched during application run-time. Each EVT[n] register can be pro-
grammed with the start address of an assigned interrupt service routine associated with a specific event. When the
event associated with the EVT[n] register occurs, instruction fetches start at the programmed address.

The processor architecture allows for unique addresses to be programmed into each of the interrupt vectors (i.e.,
interrupt vectors are not determined by a fixed offset from an interrupt vector table base address). This approach
minimizes latency by not requiring a long jump from the vector table to the actual ISR code.

The Core Event Vector table lists events by priority, with each event having a corresponding bit in the ILAT,
IMASK, and IPEND event state registers.

Table 4-9: Core Event Vector Table

Name Event Class
Event Vector
Register MMR Location Notes

EMU Emulation EVT0 0x1FE0 2000 Highest priority. Vector address is
provided by JTAG.

Core Event Controller Registers

4–34 ADSP-BF7xx Blackfin+ Processor

Table 4-9: Core Event Vector Table (Continued)

Name Event Class
Event Vector
Register MMR Location Notes

RST Reset EVT1 0x1FE0 2004 RAISE 1 vector. Not used by Reset
Control Unit (RCU).

NMI NMI EVT2 0x1FE0 2008

EVX Exception EVT3 0x1FE0 200C

Reserved Reserved EVT4 0x1FE0 2010 Reserved.

IVHW Hardware Error EVT5 0x1FE0 2014

IVTMR Core Timer EVT6 0x1FE0 2018

IVG7 GP Interrupt 7 EVT7 0x1FE0 201C User-Programmable Software/
System Interrupt.

IVG8 GP Interrupt 8 EVT8 0x1FE0 2020 User-Programmable Software/
System Interrupt.

IVG9 GP Interrupt 9 EVT9 0x1FE0 2024 User-Programmable Software/
System Interrupt.

IVG10 GP Interrupt 10 EVT10 0x1FE0 2028 User-Programmable Software/
System Interrupt.

IVG11 GP Interrupt 11 EVT11 0x1FE0 202C System Interrupt for System Event
Controller (SEC).

IVG12 GP Interrupt 12 EVT12 0x1FE0 2030 User-Programmable Software/
System Interrupt.

IVG13 GP Interrupt 13 EVT13 0x1FE0 2034 User-Programmable Software/
System Interrupt.

IVG14 GP Interrupt 14 EVT14 0x1FE0 2038 User-Programmable Software/
System Interrupt.

IVG15 GP Interrupt 15 EVT15 0x1FE0 203C User-Programmable Software/
System Interrupt.

Return Registers and Instructions

Similar to the RETS register controlled by the CALL and RTS instructions, interrupts and exceptions also use single-
entry hardware stack registers. If an interrupt is serviced, the program sequencer saves the return address into the
RETI register prior to jumping to the associated event vector contained in the corresponding EVT[n]register. A typ-
ical interrupt service routine terminates with an RTI instruction, which causes the sequencer to reload the Program
Counter (PC) from the RETI register. The following example shows a simple interrupt service routine:

isr:
 [--SP] = (R7:0, P5:0); /* save core registers to stack */
 [--SP] = ASTAT; /* save arithmetic status register to stack */

 /* service routine code */

Events and Interrupts

ADSP-BF7xx Blackfin+ Processor 4–35

 ASTAT = [SP++]; /* restore arithmetic status register from stack */
 (R7:0, P5:0) = [SP++]; /* restore core registers from stack */
 RTI; /* return from interrupt */
isr_end:

When interrupt nesting is not enabled, there is no need to manually manage the RETI register, as the application
must always return to the application level before recognizing any events that were latched since vectoring to service
the interrupt, and the CEC will automatically care for this.

If the service routine must be interruptible by a higher-priority interrupt, nesting of interrupts is required, as is
thoughtful management of the RETI register. Reads of the RETI register enable nesting of interrupts, and writes to
it disable nesting. Typically, RETI is simply pushed to the stack, which will both save its content and enable nesting
of interrupts; similarly, the complementary stack pop operation will disable nesting and restore the content. This
scheme enables the service routine to be broken down into both interruptible and non-interruptible sections:

isr:
 [--SP] = (R7:0, P5:0); /* save core registers to stack */
 [--SP] = ASTAT; /* save arithmetic status register to stack */

 /* critical region (atomic) code */

 [--SP] = RETI; /* enable nesting */

 /* interruptible service routine code */

 RETI = [SP++]; /* disable nesting */

 /* more critical region (atomic) code */

 ASTAT = [SP++]; /* restore arithmetic status register from stack */
 (R7:0, P5:0) = [SP++] /* restore core registers from stack */
 RTI; /* return from interrupt */
isr.end:

NOTE: If there is not a need for non-interruptible code inside the service routine, it is good programming prac-
tice to enable nesting immediately by pushing RETI to the stack in the first instruction of the ISR, thus
avoiding incurring unnecessary delays before higher-priority interrupt routines can be executed:

See Interrupt Nesting for more details on interrupt nesting.

Emulation events, NMI, and exceptions use a technique similar to that of interrupts described above; however, each
has its own return register and return instruction. The Return Registers and Instructions table provides an overview,
listing the events in decreasing priority.

NOTE: Unlike the interrupt event that requires manual configuration of interrupt nesting, each of the other event
types are enabled by the architecture to pre-empt anything of lower priority (e.g., an NMI event will al-
ways interrupt an exception event, an exception event will always interrupt an interrupt event, etc.).

Events and Interrupts

4–36 ADSP-BF7xx Blackfin+ Processor

Table 4-10: Return Registers and Instructions

Name Event Class Return Register Return Instruction

EMU Emulation RETE RTE

RST Reset - -

NMI NMI RETN RTN

EVX Exception RETX RTX

Reserved Reserved - -

IVHW Hardware Error RETI RTI

IVTMR Core Timer RETI RTI

IVG7 GP Interrupt 7 RETI RTI

IVG8 GP Interrupt 8 RETI RTI

IVG9 GP Interrupt 9 RETI RTI

IVG10 GP Interrupt 10 RETI RTI

IVG11 GP Interrupt 11 RETI RTI

IVG12 GP Interrupt 12 RETI RTI

IVG13 GP Interrupt 13 RETI RTI

IVG14 GP Interrupt 14 RETI RTI

IVG15 GP Interrupt 15 RETI RTI

Executing RTX, RTN, or RTE in a Lower-Priority Event

The RTX, RTN, and RTE instructions are designed to return from an exception, NMI, or emulator event, respective-
ly. Do not use them to return from a lower-priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction will cause incorrect program flow.

Execution of any of these instructions causes the CEC to clear the appropriate IPEND[n] bit:

• RTE clears IPEND[0]
• RTNclears IPEND[2]
• RTX clears IPEND[3]
• RTI clears the highest-priority set interrupt bit in IPEND(IVHW, IVTMR, or IVG[n] bits)

Emulation Interrupt

An emulation event causes the processor to enter Emulation mode, where instructions are read from the JTAG inter-
face. It is the highest priority interrupt to the core.

For detailed information about emulation, see the Debug chapter of the Blackfin+ Processor Hardware Reference
Manual.

Return Registers and Instructions

ADSP-BF7xx Blackfin+ Processor 4–37

Reset Interrupt

The Reset Control Unit (RCU) controls how the core enters and exits the reset state and supplies the software ad-
dress to which the core vectors upon exiting it. See the Hardware Reference Manual for a detailed description of the
RCU.

Executing the RAISE 1 instruction does not directly assert a core reset; rather, it simply creates an interrupt with a
priority level of one (exceeded only by the emulation interrupt above). The RAISE 1 instruction also does not save
the return address to a register, therefore it is not possible to automatically return from the interrupt vector once it is
taken.

Use of the EVT1 register to provide the vector address for the RAISE 1 instruction is enabled by clearing bit 15 of
the EVT_OVERRIDE register. Otherwise, with this bit set, the vector address is supplied directly by the RCU. A reset
signalled by the RCU always vectors to the address supplied by the RCU.

In earlier Blackfin processors, the RAISE 1 instruction caused a software reset. However, it is generally unsafe for a
core to transfer control to boot code, which assumes the core and system is coming out of reset, when in fact noth-
ing has been reset. If the former software reset functionality is desired in the Blackfin+ application, the following
software control is assumed:

• After booting, the EVT1 register is programmed with the ISR location for software interrupt level one.

• EVT_OVERRIDE[15] is cleared.

• When a RAISE 1 instruction is executed:

• The ISR goes through the appropriate mechanisms via the RCU to shut off all core interfaces.

• The RCU resets the core, seen by the core as an external reset.

Non-Maskable Interrupt (NMI)

The NMI entry at EVT2 is reserved for non-maskable interrupts, which may be triggered by the system (via the
NMIpin or the software watchdog) or by the core (in response to a memory parity error or execution of a RAISE 2
instruction).

Propagation of an NMI event from sources external to the core is under the control of the System Eevent Controller
(SEC, see the Hardware Reference manual for details). The SEQSTAT.SYSNMI bit will be set upon vectoring to the
NMI handler, if triggered by a source external to the core.

One of the parity error indicator bits in SEQSTAT (PEIC, PEDC, PEIX or PEDX) will be set on entry to the NMI
handler if triggered by a parity error. See the Memory chapter for details regarding parity errors.

If an external NMI event occurs while the processor is already servicing an NMI, reset, or emulation event, an Un-
handled NMI Error system interrupt will be triggered, which is handled by the SEC.

If an exception occurs in an event handler that is already servicing an exception, NMI, or reset event, a double-fault
system interrupt will be triggered, which is also handled by the SEC. The core stalls until system intervention after a
double-fault occurs.

Events and Interrupts

4–38 ADSP-BF7xx Blackfin+ Processor

The SEQSTAT.NSPECABT bit will be set upon entry to an NMI, reset, or emulation handler if a non-speculative
access such as a system MMR read or a read from I/O device memory was aborted by the event. The read will be
attempted again upon returning from the handler, which may not be desired if the read has side-effects (e.g., access-
ing a FIFO, etc.).

Exceptions

Exceptions are discussed in Hardware Errors and Exception Handling.

Hardware Error Interrupt

Hardware Errors are discussed in Hardware Errors and Exception Handling.

Core Timer Interrupt

The Core Timer Interrupt (IVTMR) is triggered when the core timer value reaches zero. For more information about
the core timer, see the Core Timer (TMR) chapter.

General-Purpose Core Interrupts (IVG7-IVG15)

The System Event Controller (SEC) can forward interrupt requests to the core as events IVG15-IVG7, referred to as
general-purpose core interrupts. See the Servicing System Interrupts section for more details. By default, the SEC is
configured to forward all system interrupts as IVG11, but this is configurable and leaves available eight other gener-
al-purpose interrupt vectors for other system or software events.

Software can trigger general-purpose interrupts by using the RAISE instruction. The RAISE instruction can force
events for interrupts IVG15-IVG7, IVTMR, and IVHW.

NOTE: It is a useful practice to reserve the two lowest priority interrupts (IVG15 and IVG14) as software inter-
rupt handlers.

Interrupt Processing
The following sections describe interrupt processing.

Globally Enabling/Disabling Interrupts

General-purpose interrupts can be globally disabled using the CLI Dreg instruction and subsequently re-enabled
by the STI Dreg instruction, both of which are only available in Supervisor mode. Reset, NMI, emulation, and
exception events cannot be globally disabled. Globally disabling interrupts clears the IMASK[15:5] bits after saving
IMASK’s current state to the desginated register:

 CLI R5; /* save IMASK to R5 and disable all maskable interrupts */
 /* place critical instructions here */
 STI R5; /* restore IMASK from R5 */

Events and Interrupts

ADSP-BF7xx Blackfin+ Processor 4–39

When multiple instructions need to be atomic or are too time-critical to be delayed by an interrupt, disable the
general-purpose interrupts, but be sure to re-enable them at the conclusion of the code sequence.

Servicing Interrupts

The Core Event Controller (CEC) utilizes the ILAT register as a single interrupt queueing element per event. The
appropriate ILAT[n] bit is set when an interrupt rising edge is detected (which takes two core clock cycles) and
cleared when the respective IPEND[n] register bit is set. The IPEND[n] bit indicates that the event vector has en-
tered the core pipeline. At this point, the CEC recognizes and queues the next rising edge event on the correspond-
ing interrupt input. The minimum latency from the rising edge transition of the general-purpose interrupt to the
IPEND[n] output assertion is three core clock cycles. However, the latency can be higher, depending on the core’s
activity level and state.

To determine when to service an interrupt, the controller logically ANDs the three quantities in ILAT[n],
IMASK[n], and the current processor priority level.

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the Event Vector Table (EVT) becomes the next fetch address. When an interrupt oc-
curs, most instructions currently in the pipeline are aborted. On a Service exception, all instructions after the
excepting instruction are aborted. On an Error exception, the excepting instruction and all instructions after it
are aborted.

2. The return address is saved in the appropriate return register (RETI for interrupts, RETX for exceptions, RETN
for NMIs, and RETE for debug emulation). The return address is the address of the instruction after the last
instruction executed from normal program flow, except for the case of an Error exception, in which case it is
the address of the offending instruction.

3. The processor mode is set to the level of the event taken. If the event is an NMI, exception, or interrupt, the
processor mode is Supervisor. If the event is an emulation exception, the processor mode is Emulation.

4. Before the first instruction starts execution, the corresponding interrupt bit in ILAT is cleared, and the corre-
sponding bit in IPEND is set. Bit IPEND[4] is also set to disable all interrupts until the return address in RETI
is saved.

Interrupt Nesting

If the processor takes a vector to service Event A, Event A becomes "active". In the absence of other events, the
processor will complete servicing of the active event and then resume the application at the point the event was serv-
iced. If, however, there are many events to handle and it is desired to handle certain events with higher priority in a
timely fashion, nesting of interrupts is required. Interrupt nesting allows the processor to continue to respond to
higher-priority events while servicing lower-priority events. In the given example, if the higher-priority Event B oc-
curred while servicing the active Event A, then nesting allows for the processor to immediately respond to Event B.
In this case, Event B becomes the active event, and Event A is nested. Several levels of nesting are possible, as descri-
bed in the Interrupt Pending Register (IPEND) section.

Interrupt Processing

4–40 ADSP-BF7xx Blackfin+ Processor

The highest-priority interrupt levels (emulation, reset, NMI, and exception) automatically support interrupt nesting.
Each can pre-empt another, provided its priority is higher, and each will pre-empt any of the interrupt events, which
are by definition to be lower priority. For example, if an NMI occurs while executing an exception handler, the pro-
cessor will immediately vector to service the NMI and will pend completion of the exception handler until the NMI
event has been fully serviced. However, if an exception were to occur during an NMI handler, the processor would
not vector (instead, a double-fault condition will be raised). Conversely, if either an exception or an NMI were to
occur while processing an interrupt event, the processor would immediately vector to the appropriate handler, com-
plete servicing of that event, then return to the interrupt handler to complete servicing of the interrupt. But no
interrupt event could be configured to interrupt a higher-priority event such as an exception or NMI.

Unlike the higher-priority events that automatically support nesting, the interrupt events themselves can be pro-
grammed to optionally support interrupt nesting. For more information, see Return Registers and Instructions.

Non-Nested Interrupts

If interrupts do not require nesting, all interrupts are disabled while the interrupt service routine is executing, there-
by gating the servicing of any interrupts that occur after the vector is taken. This restriction does not apply to emu-
lation, NMI, and exception events, which will still be accepted by the system.

When the system does not need to support nested interrupts, there is no need to store the return address held in
RETI. Only the portion of the machine state used within the interrupt service routine must be saved to the stack. To
return from a non-nested interrupt service routine, only the RTI instruction must be executed, as the return address
is already held in the RETI register.

The Non-Nested Interrupt Handling figure shows an example of interrupt handling where interrupts are globally
disabled for the entire interrupt service routine.

IF 1

IF 2

IF 3

DEC

AC

DF1

DF2

EX1

EX2

WB

A8

1 2CYCLE:

A9

A7

A6

A5

A4

A3

A2

A1

A0 A1

A2

A3

A4

A5

A6

A7

A8

A9

A1 0

A1 0

A9

A8

A7

A6

A5

A4

A3

A2

I0 I2I1

I0 I1

I0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4

A3

A3

In

In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI
INSTRUCTION. ISR STARTING ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE.
CYCLE M: WHEN THE RTI INSTRUCTION REACHES THE DF1 STAGE, INSTRUCTION A3 IS
FETCHED IN PREPARATION FOR RETURNING FROM INTERRUPT.
CYCLE M+4: RTI HAS REACHED WB STAGE, RE-ENABLING INTERRUPTS.

m m+1 m+2 m+3 m+46543

In-1
In-1

In-1 InIn-2

In-2

In-3

RTI

RTI

RTI
RTI

RTI

PI
PE

LI
N

E
ST

A
G

E

Figure 4-4: Non-Nested Interrupt Handling

Nested Interrupts

If interrupts require nesting, the return address for the currently-being-serviced interrupt (stored to RETIwhen the
vector is taken) must be explicitly saved prior to executing the higher-priority ISR and then subsequently restored

Interrupt Nesting

ADSP-BF7xx Blackfin+ Processor 4–41

upon completion of it. Interrupt service routines that support nesting should enable nesting and save the content of
the RETIregister in a single stack push instruction ([--SP] = RETI). This clears the global interrupt disable bit
IPEND[4], thus enabling interrupts again. After this, all registers that are modified by the interrupt service routine
should be saved to the stack. Processor state is stored in the Supervisor stack, not in the User stack; hence, the in-
structions to push to and pop from the stack use the Supervisor stack.

The Nested Interrupt Handling figure illustrates how pushing RETI to the stack re-enables interrupts while in an
interrupt service routine, resulting in a short duration where interrupts are globally disabled.

IF 1

IF 2

IF 3

DEC
AC

DF1
DF2
EX1

EX2
WB

A8

1

CYCLE 1: INTERRUPT IS LATCHED. ALL POSSIBLE INTERRUPT SOURCES DETERMINED.
CYCLE 2: INTERRUPT IS PRIORITIZED.
CYCLE 3: ALL INSTRUCTIONS ABOVE A2 ARE KILLED. A2 IS KILLED IF IT IS AN RTI OR CLI INSTRUCTION. ISR STARTING
ADDRESS LOOKUP OCCURS.
CYCLE 4: I0 (INSTRUCTION AT START OF ISR) ENTERS PIPELINE. ASSUME IT IS A PUSH RETI INSTRUCTION (TO ENABLE NESTING).
CYCLE 10: WHEN PUSH REACHES DF2 STAGE, INTERRUPTS ARE RE-ENABLED.
CYCLE M+1: WHEN THE POP RETI INSTRUCTION REACHES THE DF2 STAGE, INTERRUPTS ARE DISABLED.
CYCLE M+5: WHEN RTI REACHES THE WB STAGE, INTERRUPTS ARE RE-ENABLED.

2 3 4 5 6 7 8 9 10 mCYCLE:
A9

A7
A6

A5

A4

A3

A2

A1
A0 A1

A2
A3

A4

A5

A6
A7

A8

A9

A10

A1 0

A9
A8

A7

A6

A5

A4

A3
A2

PUSH I2I1

I1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

I3 I5 I6
m+1 m+2 m+3 m+4 m+5
A3 A4 A5 A6 A7

A3 A4 A5 A6

A3 A4 A5

A4
A3

A3

RT I

In
I

I

I n-3

n-2

n-1
I

I n-2

n-1
I n-1 In

PUSH

PUSH

I2

I1

PUSH

I3

I2

I1
PUSH

I4

I3

I2

I1
PUSH

I4 I5

I3

I2

I1
PUSH

I4

POP
POP

POP
POP

POP

RTI

RTI

RTI
RTI

RTI

In

In

INTERRUPTS DISABLED
DURING THIS INTERVAL.

INTERRUPTS DISABLED
DURING THIS INTERVAL.

PI
PE

LI
N

E
ST

A
G

E

Figure 4-5: Nested Interrupt Handling

Example Prolog Code for Nested Interrupt Service Routine
/* Prolog code for nested interrupt service routine. Push return address in RETI to Supervisor
stack, ensuring that interrupts are back on. When the vector was first taken, interrupts were suspended. */

ISR:
 [--SP] = RETI ; /* Enables interrupts and saves return address to stack */
 [--SP] = ASTAT ;
 [--SP] = (R7:0, P5:0) ; /* Context save */
/* Body of service routine */

Example Epilog Code for Nested Interrupt Service Routine
/* Epilog code for nested interrupt service routine. Restore ASTAT, Data and Pointer registers.
Popping RETI from Supervisor stack ensures that interrupts are suspended between load of return
address and RTI. */

 (R7:0, P5:0) = [SP++] ;
 ASTAT = [SP++] ;
 RETI = [SP++] ;
/* Execute RTI, which jumps to return address, re-enables interrupts, and switches to User
mode if this is the last nested interrupt in service. */

Nested Interrupts

4–42 ADSP-BF7xx Blackfin+ Processor

 RTI;
The RTI instruction causes the return from an interrupt. The return address is popped into the RETI register from
the stack, an action that suspends interrupts from the time that RETI is restored until RTI finishes executing. The
suspension of interrupts prevents a subsequent interrupt from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set in IPEND. The processor then jumps to
the address pointed to by the value in the RETI register and re-enables interrupts by clearing IPEND[4].

Self-Nesting of Core Interrupts

Interrupts that are "self-nested" can be interrupted by events at the same priority level. When the SYSCFG.SNEN bit
is set, self-nesting of core interrupts is supported. Self-nesting is supported for any interrupt level generated with the
RAISE instruction, as well as for core level interrupts.

As an example, assume that the SNEN bit is set and the processor is servicing an interrupt generated by the RAISE
14; instruction. Once the RETI register has been saved to the stack within the service routine, another RAISE 14;
instruction would force the processor to again vector to the beginning of the IVG14 interrupt handler. This scheme
becomes especially useful and is required when many events can share the same priority level, as is the case with the
SEC event being provided by default on IVG11. With the SEC monitoring all the system-level events with pro-
grammable priority, it has the ability to queue and prioritize the events that are passed to the core, but it continually
passes these events at the same IVG11priority level. If self-nesting were not supported by the core, each event would
have to be serviced to completion before the next could be accepted by the core from the SEC, regardless of the
event's programmed priority in the SEC. With self-nesting, the SEC can raise Event A on IVG11 and continue to
monitor for something of a higher priority. And if something with higher priority is raised, it can signal the core to
now interrupt servicing of the current IVG11event in order to now service the higher-priority system interrupt on
the same core interrupt IVG11level.

Servicing System Interrupts

System event management is the responsibility of the System Event Controller (SEC). The SEC manages the config-
uration of each system interrupt or fault source and provides notification and identification of the highest priority
active system interrupt request to the core. The SEC must be configured to notify the core of any particular system
event. See the hardware reference manual for a detailed description of the SEC.

The SEC prioritizes system interrupts and provides a single interrupt indicator to the core along with an interrupt
ID. System interrupts are directed to core interrupt level 11 (IVG11). The interrupt ID is latched in the CEC_SID
register for use in the interrupt service routine. For more information, see Context ID Register .

All the interrupts from the many peripherals and other components of the system are therefore handled by the single
ISR for IVG11, which interacts with with the SEC, as well as performs the appropriate action to service the source
of the interrupt.

The SEC prioritizes system interrupts. It will latch a new IVG11 interrupt if a higher-priority system interrupt oc-
curs after the current system interrupt has been acknowledged. Self-nesting of core interrupts must be enabled if the
higher-priority interrupt detected by the SEC is to be serviced by the core while it is servicing a lower-priority sys-
tem interrupt. In other words, the SYSCFG.SNEN bit must be set.

Interrupt Nesting

ADSP-BF7xx Blackfin+ Processor 4–43

Device-specific code may be separated from general SEC programming concerns by maintaining a table of routines
dedicated to each interrupt source. The IVG11 ISR is responsible for the following actions:

1. Reading the SEC_SID MMR to obtain the interrupt source ID (SID).

2. Writing SEC_SID to send the acknowledge signal to the SEC.

3. Calling a device-specific handler.

4. Writing the SEC Global End Register MMR (SEC_END.SID) to indicate the interrupt has been serviced.

The following code is an example of an ISR that performs these actions, which illustrates some programming con-
cerns to be aware of:

ivg11_sec_isr:
 [--SP] = (P4:P5) ;
 P5 = [CEC_SID] ;
/* Writing any value to CEC_SID sends an ACK to the SEC. After acknowledgement, the value
in CEC_SID will change asynchronously if a higher-priority interrupt becomes active, so the
only reliable record of the current interrupt source is in P5 */

 [CEC_SID] = R0 ;
/* The interrupt source is safely in P5, and the SEC will only interrupt with a higher-
priority notification. So it is safe to re-enable core interrupts by clearing IPEND[4],
which is a side-effect of saving RETI. */

 [--SP] = RETI ;
 [--SP] = RETS ;
/* Use interrupt source to index a table of handlers for each specific interrupt. */

 P4 = specific_handlers;
 P4 = P4 + (P5 << 2);
 P4 = [P4];
 CALL (P4);
/* Assume the handler has preserved the interrupt source in P5. */

 RETS = [SP++] ;
 RETI = [SP++] ;
/* Write interrupt source to SEC Global End register to indicate the core has finished
servicing the interrupt. The SEC may now raise lower-priority interrupts, so this should
happen with core interrupts disabled via IPEND[4] to prevent the lower-priority interrupt
being serviced before the higher-priority ISR has returned. Do this after RETI has been
restored, which implicitly sets IPEND[4]. */

 [REG_SEC0_END] = P5 ;
 (P4:5) = [SP++] ;
 RTI ;

In practice, use of any device driver or interrupt support routine supplied by a third party will require the IVG11
ISR code it is designed to work with. Software designed to work with CCES requires the ISR included in the run-
time library, which is automatically linked at build-time.

Interrupt Processing

4–44 ADSP-BF7xx Blackfin+ Processor

Clearing Interrupt Requests

When the processor services a core event, it automatically clears the requesting bit in the ILAT register and no fur-
ther action is required by the interrupt service routine.

Interrupts from peripherals are forwarded to the core by the SEC. The first level of the interrupt service routine
handles the interaction with the SEC as described in Servicing System Interrupts.

It is important to understand that the SEC does not provide any interrupt acknowledgment feedback to the periph-
erals. The signalling peripheral does not release its level-sensitive request until it is explicitly instructed by software
to do so. If the request is not cleared by software, the peripheral keeps requesting the interrupt, and on receiving the
end of interrupt acknowledgement the SEC will immediately re-interrupt the core. This causes the core to vector to
the service routine again as soon as the RTI instruction is executed.

Every software routine that services peripheral interrupts must clear the signalling interrupt request in the respective
peripheral. The individual peripherals provide customized mechanisms for how to clear interrupt requests. See the
hardware reference manual for the details for peripherals in your processor.

Software Interrupts

Software cannot set bits of the ILAT register directly, as writes to ILAT cause a write-1-to-clear (W1C) operation.
Instead, use the RAISE instruction to set individual ILAT bits by software. It safely sets any of the ILAT bits with-
out affecting the rest of the register.

RAISE 14; /* fire software interrupt request */
The RAISE instruction must not be used to fire emulation events or exceptions, which are managed by the related
EMUEXCPT and EXCPT instructions. For details, see the external event management chapter.

Often, the RAISE instruction is executed in interrupt service routines to degrade the interrupt priority. This enables
less urgent parts of the service routine to be interrupted even by low priority interrupts.

isr7: /* service routine for IVG7 */
...
/* execute high priority instructions here */
/* handshake with signalling peripheral */
RAISE 14;
RTI;
isr7.end:
isr14: /* service routine for IVG14 */
...
/* further process event initiated by IVG7 */
RTI;
isr14.end:

The example above may read data from any receiving interface, post it to a queue, and let the lower priority service
routine process the queue after the isr7 routine returns. Since IVG15 is used for normal program execution in
non-multi-tasking system, IVG14 is often dedicated to software interrupt purposes.

Interrupt Processing

ADSP-BF7xx Blackfin+ Processor 4–45

The code in Example Code for an Exception Handler uses the same principle to handle an exception with normal
interrupt priority level.

Latency in Servicing Events

In some processor architectures, if instructions are executed from external memory and an interrupt occurs while the
instruction fetch operation is underway, then the interrupt is held off from being serviced until the current fetch
operation has completed. Consider a processor operating at 300 MHz and executing code from external memory
with 100 ns access times. Depending on when the interrupt occurs in the instruction fetch operation, the interrupt
service routine may be held off for around 30 instruction clock cycles. When cache line fill operations are taken into
account, the interrupt service routine could be held off for many hundreds of cycles.

In order for high priority interrupts to be serviced with the least latency possible, the processor allows any high la-
tency fill operation to be completed at the system level, while an interrupt service routine executes from L1 memory.
See the figure.

CLOCK

FETCH

INSTRUCTION
DATA

SERVICED
HERE

FETCH

INSTRUCTION
DATA

INTERRUPT
OCCURRING
HERE

SERVICED
HERE

OTHER PROCESSORS

BLACKFIN PROCESSOR

INTERRUPT
OCCURRING
HERE

Figure 4-6: Minimizing Latency in Servicing an ISR

If an instruction load operation misses the L1 instruction cache and generates a high latency line fill operation, then
when an interrupt occurs, it is not held off until the fill has completed. Instead, the processor executes the interrupt
service routine in its new context, and the cache fill operation completes in the background.

Note the interrupt service routine must reside in L1 cache or SRAM memory and must not generate a cache miss,
an L2 memory access, or a peripheral access, as the processor is already busy completing the original cache line fill
operation. If a load or store operation is executed in the interrupt service routine requiring one of these accesses,
then the interrupt service routine is held off while the original external access is completed, before initiating the new
load or store.

If the interrupt service routine finishes execution before the load operation has completed, then the processor con-
tinues to stall, waiting for the fill to complete.

This same behavior is also exhibited for stalls involving reads of slow data memory or peripherals.

Interrupt Processing

4–46 ADSP-BF7xx Blackfin+ Processor

Writes to slow memory generally do not show this behavior, as the writes are deemed to be single cycle, being imme-
diately transferred to the write buffer for subsequent execution.

For detailed information about cache and memory structures, see the memory chapter .

Hardware Errors and Exception Handling
The following sections describe hardware errors and exception handling.

SEQSTAT Register

The Sequencer Status register (SEQSTAT) contains information about the current state of the sequencer as well as
diagnostic information from the last event. SEQSTAT is accessible only in Supervisor mode. For more information,
see the Sequencer Status Register .

Hardware Error Interrupt

A hardware error interrupt indicates a hardware error or system malfunction. A core-related external hardware errors
occurs when logic external to the core, such as a memory bus controller, is unable to complete a data transfer (read
or write) initiated by the core and invokes a core hardware error interrupt on the SEC. This interrupt may be serv-
iced by the core as described in the Servicing System Interrupts section.

An internal hardware error is generated by internal error conditions within the core, such as Performance Monitor
overflow Such hardware errors invoke the internal hardware error interrupt (interrupt IVHW in the event vector
table (EVT) and ILAT, IMASK, and IPEND registers). The hardware error interrupt service routine can then read
the cause of the error from the 5-bit HWERRCAUSE field appearing in the sequencer status register (SEQSTAT) and
respond accordingly.

The list of supported hardware conditions, with their related HWERRCAUSE codes, appears in the hardware condi-
tions table. The bit code for the most recent error appears in the HWERRCAUSE field. If multiple hardware errors
occur simultaneously, only the last one can be recognized and serviced. The core does not support prioritizing, pipe-
lining, or queuing multiple error codes. The Hardware Error Interrupt remains active as long as any of the error
conditions remain active.

Note that a hardware error status cannot be cleared by software.

In case of hardware error, the RETI does not store the address of the instruction that caused the hardware error. The
error could have been caused by an instruction executed a number of core clock cycles before a hardware error is
registered.

Hardware Errors and Exception Handling

ADSP-BF7xx Blackfin+ Processor 4–47

Table 4-11: Hardware Conditions Causing Hardware Error Interrupts

Hardware Condition

HWERRCAUSE

(Binary)

HWERRCAUSE

(Hexadecimal) Notes / Examples

Performance Monitor

Overflow

0b10010 0x12 Refer to the performance moni-
tor unit section of the processor
hardware reference.

RAISE 5

instruction

0b11000 0x18 Software issued a RAISE 5 in-
struction to invoke the Hardware
Error Interrupt (IVHW).

Reserved All other bit combinations. All other values.

Exceptions (Events)

Exceptions are synchronous to the instruction stream. In other words, a particular instruction causes an exception
when it attempts to finish execution. No instructions after the offending instruction are executed before the excep-
tion handler takes effect.

Many of the exceptions are memory related. For example, an exception is given when a cacheability protection loo-
kaside buffer (CPLB) miss or protection violation occurs. Exceptions are also given when illegal instructions or ille-
gal combinations of registers are executed.

An excepting instruction may or may not commit before the exception event is taken, depending on if it is a service
type or an error type exception.

An instruction causing a service type event will commit, and the address written to the RETX register will be the next
instruction after the excepting one. An example of a service type exception is the single step.

An instruction causing an error type event cannot commit, so the address written to the RETX register will be the
address of the offending instruction. An example of an error type event is a CPLB miss.

NOTE: Usually the RETX register contains the correct address to return to. To skip over an excepting instruction,
take care in case the next address is not simply the next linear address. This could happen when the ex-
cepting instruction is a loop end. In that case, the proper next address would be the loop top.

The EXCAUSE[5:0] field in the Sequencer Status register (SEQSTAT) is written whenever an exception is taken,
and indicates to the exception handler which type of exception occurred. Refer to the events table for a list of events
that cause exceptions.

ATTEN-
TION:

If an exception occurs in an event handler that is already servicing an exception, NMI, reset, or emula-
tion event, this will trigger a double fault condition, and the address of the excepting instruction will
be written to RETX.

Hardware Errors and Exception Handling

4–48 ADSP-BF7xx Blackfin+ Processor

Table 4-12: Events That Cause Exceptions

Exception

EXCAUSE

[5:0]

Type:

(E) Error

(S) Service

See Note 1. Notes/Examples

Force Exception instruction
EXCPT with 4-bit m field

m field S Instruction provides 4 bits of EXCAUSE.

Single step 0x10 S When the processor is in single step mode, every
instruction generates an exception. Primarily used
for debugging.

Undefined instruction 0x21 E May be used to emulate instructions that are not
defined for a particular processor implementa-
tion.

Illegal instruction combina-
tion

0x22 E See section for multi-issue rules in the Blackfin
Processor Programming Reference.

Data access CPLB protection
violation

0x23 E Attempted read or write to Supervisor resource,
or illegal data memory access. Supervisor resour-
ces are registers and instructions that are reserved
for Supervisor use: Supervisor only registers, all
MMRs, and Supervisor only instructions. (A si-
multaneous, dual access to two MMRs using the
data address generators generates this type of ex-
ception.) In addition, this entry is used to signal a
protection violation caused by disallowed memo-
ry access, and it is defined by the Memory Man-
agement Unit (MMU) cacheability protection
lookaside buffer (CPLB).

Data access misaligned ad-
dress violation

0x24 E Attempted misaligned I/O or test data access.

Unrecoverable event 0x25 E For example, an exception generated while proc-
essing a previous exception.

Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB miss on a
data access.

Data access multiple CPLB
hits

0x27 E More than one CPLB entry matches data fetch
address.

Exception caused by an emu-
lation watchpoint match

0x28 E There is a watchpoint match, and one of the
EMUSW bits in the Watchpoint Instruction Ad-
dress Control register (WPIACTL) is set.

Instruction fetch misaligned
address violation

0x2A E Attempted misaligned instruction cache fetch.
(Note this exception can never be generated from
PC-relative branches, only from indirect branch-
es.)

Hardware Errors and Exception Handling

ADSP-BF7xx Blackfin+ Processor 4–49

Table 4-12: Events That Cause Exceptions (Continued)

Exception

EXCAUSE

[5:0]

Type:

(E) Error

(S) Service

See Note 1. Notes/Examples

Instruction fetch CPLB pro-
tection violation

0x2B E Illegal instruction fetch access (memory protec-
tion violation).

Instruction fetch CPLB miss 0x2C E CPLB miss on an instruction fetch.

Instruction fetch multiple
CPLB hits

0x2D E More than one CPLB entry matches instruction
fetch address.

Illegal use of supervisor re-
source

0x2E E Attempted to use a Supervisor register or instruc-
tion from User mode. Supervisor resources are
registers and instructions that are reserved for Su-
pervisor use: Supervisor only registers, all MMRs,
and Supervisor only instructions. This error code
is also used for errors that do not fit into any oth-
er category.

NOTE: (1) For services (S), the return address is the address of the instruction that follows the exception. For
errors (E), the return address is the address of the excepting instruction.

If an instruction causes multiple exception, the exception with the highest priority is first registered in the SEQSTAT.
The exception priority is as listed in the exceptions by priority table. If the highest priority exception is handled, the
next highest priority exception is registered and can be handled (and so on).

For example, suppose that the following instruction generates an instruction CPLB miss (0x2C) exception and a
data CPLB miss (0x26) exception. On execution of this instruction, a instruction CPLB will be first generated. After
this instruction exception is handled by the user the core will execute the instruction again and this time it will gen-
erate a data CPLB exception.

[P0] = R0 ;
/* generates an instruction CPLB miss and a data CPLB miss */

Table 4-13: Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

Hardware Errors and Exception Handling

4–50 ADSP-BF7xx Blackfin+ Processor

Table 4-13: Exceptions by Descending Priority (Continued)

Priority Exception EXCAUSE

7 Watchpoint Match 0x28

8 Undefined Instruction 0x21

9 Illegal Combination 0x22

10 Illegal Use of Protected Resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT Instruction m field

20 Single Step 0x10

Exceptions While Executing an Exception Handler

While executing the exception handler, avoid issuing an instruction that generates another exception. If an exception
is caused while executing code within the exception handler, the NMI handler, or the reset vector:

• A double fault interrupt is sent to the SEC.

• The excepting instruction is not committed. All writebacks from the instruction are prevented.

• The EXCAUSE field in the SEQSTAT register is set to 0x25 (Unrecoverable Event) and RETX is updated with
the address of the faulting instruction.

• The generated exception is not taken, and PC is not advanced.

• The core continues to fetch the same instruction and convert it to a nop until the exception goes away, or a
higher priority interrupt takes over, or reset is asserted by the system.

In practice the only sensible means of recovery is to configure the SEC to reset the core on receipt of a double fault
interrupt.

The SEQSTAT and RETX registers can be inspected within a debugger to diagnose the problem.

Exceptions (Events)

ADSP-BF7xx Blackfin+ Processor 4–51

Allocating the System Stack

The software stack model for processing exceptions implies that the Supervisor stack must never generate an excep-
tion while the exception handler is saving its state. However, if the Supervisor stack is in cached or protected
memory it may, in fact, cause CPLB miss exceptions.

One way to guarantee that the Supervisor stack never generates an exception is by calculating the maximum space
that all interrupt service routines and the exception handler occupy while they are active, and then ensuring active
CPLB entries cover this amount of memory. This may not be practical if the space required for the stack is large as
only a limited number of CPLB entries may be active at once.

Another option is to provide a separate stack for the exception handler, as it is easier to calculate the total space
required for this stack and to ensure it is covered by a single CPLB entry. The following code illustrates switching to
a dedicated exception stack.

Switching stack within an exception handler
 .SECTION L1_scratchpad;
 .ALIGN 4;
 .VAR except_save_sp, except_stack[EXCEPT_STACK_SIZE];

 .SECTION L1_code;
except_handler:
 [except_save_sp] = SP; /* save stack pointer */
 SP = except_stack+EXCEPT_STACK_SIZE;
 /* now safe to save registers in except_stack */
 [--SP] = (R7:6, P5:4);
 [--SP] = ASTAT;
 /* place core of service routine here */
 ASTAT = [SP++];
 (R7:6, P5:4) = [SP++];
 /* restore stack pointer before return */
 SP = [except_save_sp];
 RTX;
except_handler.end:

Similar considerations apply to parity error handlers. If the system stack could be in memory that caused the parity
error then it is necessary to switch to a stack in a different memory region, such as ECC protected L2 memory,
before saving any registers or risk a double parity error fault.

Exceptions and the Pipeline

Interrupts and exceptions treat instructions in the pipeline differently.

• When an interrupt occurs, all instructions in the pipeline are aborted.

• When an exception occurs, all instructions in the pipeline after the excepting instruction are aborted. For error
exceptions, the excepting instruction is also aborted.

Exceptions (Events)

4–52 ADSP-BF7xx Blackfin+ Processor

Because exceptions, NMIs, and emulation events have a dedicated return register, guarding the return address is op-
tional. Consequently, the PUSH and POP instructions for exceptions, NMIs, and emulation events do not affect the
interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE) do clear the Least Significant Bit (LSB)
currently set in IPEND.

Deferring Exception Processing

Exception handlers are usually long routines, because they must discriminate among several exception causes and
take corrective action accordingly. The length of the routines may result in long periods during which the interrupt
system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to identify the exception cause, but defer the
processing to a low priority interrupt. To set up the low priority interrupt handler, use the Force Interrupt / Reset
instruction (RAISE).

NOTE: When deferring the processing of an exception to lower priority interrupt IVGx, the system must guaran-
tee that IVGx is entered before returning to the application-level code that issued the exception. If a pend-
ing interrupt of higher priority than IVGx occurs, it is acceptable to enter the high priority interrupt be-
fore IVGx.

Example Code for an Exception Handler

The following code is for an exception routine handler with deferred processing.

Exception Routine Handler With Deferred Processing
/* Determine exception cause by examining EXCAUSE field in SEQSTAT (first save contents of
R7, P5, P4 and ASTAT in Supervisor SP on a private stack.) */
.SECTION L1_scratchpad ;
#define EXCEPT_STACK_SZ 4
.VAR EXCEPT_SAVED_SP, EXCEPT_STACK[EXCEPT_STAK_SZ] ;
.SECTION L1_code;
except_handler:
[EXCEPT_SAVED_SP] = SP ;
SP = EXCEPT_STACK+EXCEPT_STACK_SZ ;
[--SP] = (R7,P5:4) ;
[--SP] = ASTAT ;
R7 = SEQSTAT ;
/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */
R7 <<= 26 ;
R7 >>= 26 ;
/* Using jump table EVTABLE, jump to the event pointed to by R0 */
P5 = R7 ;
P4 = _EVTABLE ;
P5 = P4 + (P5 << 1) ;
R7 = W [P5] (Z) ;
P4 = R0 ;
JUMP (PC + P4) ;

Exceptions (Events)

ADSP-BF7xx Blackfin+ Processor 4–53

/* The entry point for an event is as follows. Here, processing is deferred to low priority
interrupt IVG12. Also, parameter passing would typically be done here. */
_EVENT1:
RAISE 12 ;
JUMP.S _EXIT ;
/* Entry for event at IVG13 */
_EVENT2:
RAISE 13 ;
JUMP.S _EXIT ;
/* Comments for other events */
/* At the end of handler, restore R7, P5, P1 and ASTAT, and return. */
_EXIT:
ASTAT = [SP++] ;
(R7,P5:4) = [SP++] ;
SP = [EXCEPT_SAVED_SP] ;
RTX ;
_EVTABLE:
.byte2 addr_event1;
.byte2 addr_event2;
...
.byte2 addr_eventN;
/* The jump table EVTABLE holds 16-bit address offsets for each event. With offsets, this
code is position independent and the table is small.
+--------------+
| addr_event1 | _EVTABLE
+--------------+
| addr_event2 | _EVTABLE + 2
+--------------+
| . . . |
+--------------+
| addr_eventN | _EVTABLE + 2N
+--------------+
*/

Example Code for an Exception Routine

The following code provides an example framework for an interrupt routine jumped to from an exception handler
such as that described above.

Interrupt Routine for Handling Exception
[--SP] = RETI ; /* Push return address on stack. */

/* Put body of routine here.*/

RETI = [SP++] ; /* To return, pop return address and jump. */

RTI ; /* Return from interrupt. */

Exceptions (Events)

4–54 ADSP-BF7xx Blackfin+ Processor

ADSP-BF70x Sequencer-Related Register Descriptions
The Sequencer-Related Register File contains the following registers.

Table 4-14: ADSP-BF70x Sequencer-Related Register List

Name Description

RETS Return from Subroutine Register

LC[n] Loop Count Register

LT[n] Loop Top Register

LB[n] Loop Bottom Register

SEQSTAT Sequencer Status Register

RETI Return from Interrupt Register

RETX Return from Exception Register

RETN Return from NMI Register

RETE Return from Emulator Register

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–55

Sequencer Status Register

The SEQSTAT register contains information about the current state of the sequencer and diagnostic information
from the most recent event. This register is read-only (except for the W1C status bits) and accessible only in Super-
visor mode.

Core Data SRAM Read Parity ErrorError
Core Instruction SRAM Read Parity

Error
System Instruction SRAM Read ParitySystem NMI

System Data SRAM Read Parity ErrorSoftware Reset

Exception CauseHardware Error Cause

Concurrent Parity Error and InterruptExclusive Monitor Status

Non-Speculative Access AbortedExclusive Write Active

Hardware Error CauseExclusive Write Available

PEDC (R)
PEIC (R)

PEIX (R)SYSNMI (R/W1C)

PEDX (R)SFTRESET (R)

EXCAUSE (R)HWERRCAUSE[1:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CPARINT (R/W1C)XMONITOR (R)

NSPECABT (R/W1C)XWACTIVE (R)

HWERRCAUSE[4:2] (R)XWAVAIL (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-7: SEQSTAT Register Diagram

Table 4-15: SEQSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/NW)

XWAVAIL Exclusive Write Available.

The SEQSTAT.XWAVAIL bit indicates whether an exclusive write response is available.

0 No status

1 Write response available

22

(R/NW)

XWACTIVE Exclusive Write Active.

The SEQSTAT.XWACTIVE bit indicates whether an exclusive write is currently active.

0 No status

1 Write currently active

ADSP-BF70x Sequencer-Related Register Descriptions

4–56 ADSP-BF7xx Blackfin+ Processor

Table 4-15: SEQSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/NW)

XMONITOR Exclusive Monitor Status.

The SEQSTAT.XMONITOR bit indicates monitors for exclusive or open access.

0 Open access

1 Exclusive access

20

(R/W1C)

CPARINT Concurrent Parity Error and Interrupt.

The SEQSTAT.CPARINT bit indicates that a parity error could not suppress a concur-
rent interrupt. If the concurrent interrupt was an NMI or had higher priority, the pari-
ty error may have occurred on the return address of the current interrupt service rou-
tine. If the concurrent interrupt had lower priority than an NMI, the parity error may
have occurred on the return address of previous interrupt service routine.

0 No status

1 Error and interrupt occurred

19

(R/W1C)

NSPECABT Non-Speculative Access Aborted.

The SEQSTAT.NSPECABT bit indicates indicates that a non-speculative access was in-
terrupted by an NMI or was interrupted by a hardware emulator interrupt. If the ac-
cess was to a resource that has read side-effects (e.g., a FIFO), data from the access may
have been lost.

0 No status

1 Access aborted

18:14

(R/NW)

HWERRCAUSE Hardware Error Cause.

The SEQSTAT.HWERRCAUSE bits hold the encoding for the cause of the last hardware
error generated by the processor core.

18 Performance Monitor count overflowed

24 Core executed the RAISE 5; instruction

13

(R/NW)

SFTRESET Software Reset.

The SEQSTAT.SFTRESET bit indicates whether or not the most recent processor reset
was a software reset.

0 Not software reset

1 Software reset occurred

10

(R/W1C)

SYSNMI System NMI.

The SEQSTAT.SYSNMI bit indicates whether or not the system NMI input is active.

0 No status

1 NMI active

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–57

Table 4-15: SEQSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/NW)

PEIC Core Instruction SRAM Read Parity Error.

The SEQSTAT.PEIC bit indicates a parity error on an L1 instruction memory read by
the processor.

0 No status

1 Parity error occurred

8

(R/NW)

PEDC Core Data SRAM Read Parity Error.

The SEQSTAT.PEDC bit indicates a parity error on an L1 data memory read by the
processor.

0 No status

1 Parity error occurred

7

(R/NW)

PEIX System Instruction SRAM Read Parity Error.

The SEQSTAT.PEIX bit indicates a parity error on an L1 instruction read by the sys-
tem, such as a DMA transfer out of L1 instruction memory.

0 No status

1 Parity error occurred

6

(R/NW)

PEDX System Data SRAM Read Parity Error.

The SEQSTAT.PEDX bit indicates a parity error on an L1 data memory read by the
system, such as a cache write back or a DMA transfer out of L1 data memory.

0 No status

1 Parity error occurred

5:0

(R/NW)

EXCAUSE Exception Cause.

The SEQSTAT.EXCAUSE bits hold a value, which indicates the cause of the most re-
cent exception.

0-15 Core executed EXCPT m; instruction (m = 0-15)

16 Supervisor single-step

17 Emulator trace buffer overflow

33 Undefined instruction

34 Illegal combination of instructions

35 DAG protection violation

36 DAG misaligned access

37 Unrecoverable event

38 DAG CPLB miss

39 DAG multiple CPLB hits

ADSP-BF70x Sequencer-Related Register Descriptions

4–58 ADSP-BF7xx Blackfin+ Processor

Table 4-15: SEQSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

40 Emulator watchpoint match

42 I-fetch misaligned access

43 I-fetch protection violation

44 I-fetch CPLB miss

45 I-fetch multiple CPLB hits

46 Protection violation, illegal use of Supervisor resource

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–59

Return from Subroutine Register

The CALL instruction calls a subroutine either indirectly through one of the P[n] registers or directly using a PC-
relative offset. When the CALL instruction executes, the address of the next contiguous instruction is saved to the
RETS register such that program execution can resume when the subroutine executes its return instruction (RTS).

The RETS register is not a memory-mapped register, but it is directly accessible using move instructions and can be
pushed to or popped from the system stack; however, the RETS register cannot be used as the source or destination
register for load/store or immediate load operations.

Return Address

Return Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-8: RETS Register Diagram

Table 4-16: RETS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Return Address.

The RETS.ADDR bits hold the address of the instruction to return to when the RTS
instruction is executed.

ADSP-BF70x Sequencer-Related Register Descriptions

4–60 ADSP-BF7xx Blackfin+ Processor

Return from Interrupt Register

When the processor vectors to a handler to service an interrupt, it saves the address of the last instruction to execute
to the RETI register such that program execution can resume when the return from interrupt instruction (RTI) is
executed at the end of the interrupt service routine.

The RETI register is not a memory-mapped register, but it is directly accessible using move instructions; however, it
cannot be used as the source or destination register for load/store or immediate load operations.

The RETI register can also be pushed to or popped from the system stack. When RETI is pushed to the system
stack, interrupt nesting is enabled. When RETI is popped from the system stack, interrupt nesting is disabled.

Return Address

Return Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-9: RETI Register Diagram

Table 4-17: RETI Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Return Address.

The RETI.ADDR bits hold the address of the instruction to return to when the RTI
instruction is executed.

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–61

Return from Exception Register

When the processor vectors to a handler function in response to an exception, it saves either the address of the ex-
cepting instruction (for Error exceptions) or the address of the following contiguous instruction after the excepting
instruction (for Service exceptions) to the RETX register such that program execution can resume when the return
from exception (RTX) instruction is executed at the end of the exception handler routine.

The RETX register is not a memory-mapped register, but it is directly accessible using move instructions and can be
pushed to or popped from the system stack; however, the RETX register cannot be used as the source or destination
register for load/store or immediate load operations.

Return Address

Return Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-10: RETX Register Diagram

Table 4-18: RETX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Return Address.

The RETX.ADDR bits hold the address of the instruction to return to when the RTX
instruction is executed.

ADSP-BF70x Sequencer-Related Register Descriptions

4–62 ADSP-BF7xx Blackfin+ Processor

Return from NMI Register

When the processor vectors to a handler function to service a non-maskable interrupt (NMI) event, it saves the ad-
dress of the last executed instruction to the RETN register such that program execution can resume when the return
from NMI (RTN) instruction is executed at the end of the NMI handler routine.

The RETN register is not a memory-mapped register, but it is directly accessible using move instructions and can be
pushed to or popped from the system stack; however, the RETN register cannot be used as the source or destination
register for load/store or immediate load operations.

Return Address

Return Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-11: RETN Register Diagram

Table 4-19: RETN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Return Address.

The RETN.ADDR bits hold the address of the instruction to return to when the RTN
instruction is executed.

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–63

Return from Emulator Register

When the processor vectors to handle a hardware emulator event, it saves the address of the last executed instruction
to the RETE register such that program execution can resume when the return from emulator instruction (RTE) is
executed.

The RETE register is not a memory-mapped register, but it is directly accessible using move instructions and can be
pushed to or popped from the system stack; however, the RETE register cannot be used as the source or destination
register for load/store or immediate load operations.

Return Address

Return Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-12: RETE Register Diagram

Table 4-20: RETE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Return Address.

The RETE.ADDR bits hold the address of the instruction to return to when the RTE
instruction is executed.

ADSP-BF70x Sequencer-Related Register Descriptions

4–64 ADSP-BF7xx Blackfin+ Processor

Loop Top Register

The LT[n] register is initialized via the loop setup (LSETUP) instruction and holds the address of the first instruc-
tion in a hardware loop. This is the address that program execution automatically continues to when the corre-
sponding loop bottom (LB[n]) instruction has executed and the corresponding loop counter (LC[n]) has not ex-
pired.

Loop Top Address LSBLoop Top Address

Loop Top Address

LSB (R)ADDR[14:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

0
0

ADDR[30:15] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-13: LT[n] Register Diagram

Table 4-21: LT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:1

(R/W)

ADDR Loop Top Address.

The LT[n].ADDR bits hold the address of the first instruction in the hardware loop.

0

(R/NW)

LSB Loop Top Address LSB.

The LT[n].LSB bit is the LSB of the address of the first instruction in the hardware
loop.

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–65

Loop Bottom Register

The LB[n] register is initialized via the loop setup (LSETUP) instruction and holds the address of the last instruc-
tion in a hardware loop. When the instruction at this address is executed, the corresponding loop counter (LC[n])
is decremented and checked for expiration. If it has not expired, program execution resumes at the address of the
corresponding loop top (LT[n]), otherwise the loop is exited and program execution continues to the next contigu-
ous instruction after the loop bottom.

Loop Bottom Address

Loop Bottom Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-14: LB[n] Register Diagram

Table 4-22: LB[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Loop Bottom Address.

The LB[n].ADDR bits hold the address of the last instruction in the hardware loop.

ADSP-BF70x Sequencer-Related Register Descriptions

4–66 ADSP-BF7xx Blackfin+ Processor

Loop Count Register

The LC[n] register is initialized by the loop setup (LSETUP) instruction and depicts the number of remaining iter-
ations for the currently executing hardware loop. It is decremented after the corresponding loop bottom LB[n]
instruction is executed and checked for expiration by hardware. If it is non-zero, program execution resumes at the
corresponding loop top LT[n] address. When LC[n] expires, the loop exits and program execution resumes at the
next contiguous instruction after the loop's bottom.

Loop Count Value

Loop Count Value

COUNT[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

COUNT[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-15: LC[n] Register Diagram

Table 4-23: LC[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

COUNT Loop Count Value.

The LC[n].COUNT bits hold the count value of the remaining iterations of the loop.

Blackfin+ ICU Register Descriptions
Interrupt Control Unit (ICU) contains the following registers.

Table 4-24: Blackfin+ ICU Register List

Name Description

CEC_SID System ID Register

ICU_CID Context ID Register

EVT[n] Event Vector Table Registers

EVT_OVERRIDE Event Vector Table Override Register

ILAT Interrupt Latch Register

IMASK Interrupt Mask Register

IPEND Interrupt Pending Register

ADSP-BF70x Sequencer-Related Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–67

System ID Register

The CEC_SID register contains the system ID of the interrupt that was most recently accepted by the processor
core. When the core accepts the interrupt, it sends an interrupt acknowledge to the SCI, causing the SCI to update
the value in its SEC_CSID register. For more information about interrupt system ID assignments, see the SCI sec-
tion of the processor hardware reference manual.

System Interrupt ID Value
SID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-16: CEC_SID Register Diagram

Table 4-25: CEC_SID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

SID System Interrupt ID Value.

The CEC_SID.SID bits hold the system ID assignment for the interrupt that was
most recently accepted by the processor core.

Blackfin+ ICU Register Descriptions

4–68 ADSP-BF7xx Blackfin+ Processor

Context ID Register

The ICU_CID register is defined as part of the debug trace specification and holds a software-specified 32-bit con-
text ID. This context ID is captured by the program flow trace block for comparison (trace filtering) and may be
included in the trace packets.

Context ID Value

Context ID Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-17: ICU_CID Register Diagram

Table 4-26: ICU_CID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Context ID Value.

The ICU_CID.VALUE bits hold a software-defined value specifying the software con-
text ID.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–69

Event Vector Table Registers

The memory-mapped EVT[n] registers are a set of registers used to store interrupt service routine vector addresses,
providing an entry for each possible core event. Each of these registers can be programmed at reset with the vector
address for the corresponding interrupt service routine. When an event occurs, instructions are fetched starting at
the address in the EVT[n] register associated with that event.

The processor architecture allows unique addresses to be programmed into each of the EVT[n] registers such that
interrupt vectors are not determined from a fixed offset from an interrupt vector table base address. This approach
minimizes latency by not requiring a long jump from the vector table to the actual interrupt service routine.

See the IMASK, IPEND, and ILAT register descriptions for a list of interrupt vectors.

ISR Address for Core Event Handler

ISR Address for Core Event Handler

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 4-18: EVT[n] Register Diagram

Table 4-27: EVT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR ISR Address for Core Event Handler.

The EVT[n].ADDR bits hold the address to vector to when a specific core event oc-
curs.

Blackfin+ ICU Register Descriptions

4–70 ADSP-BF7xx Blackfin+ Processor

Event Vector Table Override Register

The EVT_OVERRIDE register determines whether an event causes the core to vector to the address associated with
that event in the corresponding EVT[n] register or to the address on the external bus at reset (as stored in the EVT1
register to handle the reset event). For example, if EVT_OVERRIDE.IVG7 is set, the IVG7 interrupt causes a vector
to the address in the EVT1 register rather than to the address in the EVT7 register.

This feature eliminates the need for double-indirection to direct an interrupt vector to an externally supplied ad-
dress.

IVG 11 OverrideIVG 12 Override

IVG 10 OverrideIVG 13 Override

IVG 9 OverrideIVG 14 Override

IVG 8 OverrideIVG 15 Override

IVG 7 OverrideIVG 1 Override

IVG11 (R/W)IVG12 (R/W)

IVG10 (R/W)IVG13 (R/W)

IVG9 (R/W)IVG14 (R/W)

IVG8 (R/W)IVG15 (R/W)

IVG7 (R/W)IVG1 (R/W)

1
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-19: EVT_OVERRIDE Register Diagram

Table 4-28: EVT_OVERRIDE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

IVG1 IVG 1 Override.

When set, the EVT_OVERRIDE.IVG1 bit overrides the corresponding EVT1 address
for this interrupt, directing the processor to instead take the vector address from the
EVT1 register when the IVG1 event occurs.

8

(R/W)

IVG15 IVG 15 Override.

When set, the EVT_OVERRIDE.IVG15 bit overrides the corresponding EVT15 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG15 event occurs.

7

(R/W)

IVG14 IVG 14 Override.

When set, the EVT_OVERRIDE.IVG14 bit overrides the corresponding EVT14 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG14 event occurs.

6 IVG13 IVG 13 Override.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–71

Table 4-28: EVT_OVERRIDE Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

(R/W) When set, the EVT_OVERRIDE.IVG13 bit overrides the corresponding EVT13 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG13 event occurs.

5

(R/W)

IVG12 IVG 12 Override.

When set, the EVT_OVERRIDE.IVG12 bit overrides the corresponding EVT12 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG12 event occurs.

4

(R/W)

IVG11 IVG 11 Override.

When set, the EVT_OVERRIDE.IVG11 bit overrides the corresponding EVT11 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG11 event occurs.

3

(R/W)

IVG10 IVG 10 Override.

When set, the EVT_OVERRIDE.IVG10 bit overrides the corresponding EVT10 ad-
dress for this interrupt, directing the processor to instead take the vector address from
the EVT1 register when the IVG10 event occurs.

2

(R/W)

IVG9 IVG 9 Override.

When set, the EVT_OVERRIDE.IVG9 bit overrides the corresponding EVT9 address
for this interrupt, directing the processor to instead take the vector address from the
EVT1 register when the IVG9 event occurs.

1

(R/W)

IVG8 IVG 8 Override.

When set, the EVT_OVERRIDE.IVG8 bit overrides the corresponding EVT8 address
for this interrupt, directing the processor to instead take the vector address from the
EVT1 register when the IVG8 event occurs.

0

(R/W)

IVG7 IVG 7 Override.

When set, the EVT_OVERRIDE.IVG7 bit overrides the corresponding EVT7 address
for this interrupt, directing the processor to instead take the vector address from the
EVT1 register when the IVG7 event occurs.

Blackfin+ ICU Register Descriptions

4–72 ADSP-BF7xx Blackfin+ Processor

Interrupt Latch Register

Each bit in the ILAT register is set when the corresponding event is latched for servicing by the interrupt controller,
but not yet accepted into the core for processing. A set bit is then reset by hardware before the first instruction in the
corresponding interrupt service routing is executed, at which point the corresponding interrupt pending bit is set in
the IPEND register.

Accesses to the ILAT register are limited to Supervisor mode. Supervisor mode writes to this register are write-1-to-
clear (W1C) any set bit, but care must be taken to first ensure that the corresponding IMASK bit is cleared before
doing so. This write functionality to ILAT is provided for cases where latched interrupt requests need to be cleared
(canceled) rather than serviced.

The RAISE instruction can be used to set any of the defined bits except for ILAT.EMU and ILAT.EVX, but the
EXCPT instruction can be used to set ILAT.EVX.

Only the JTAG /TRST pin can clear ILAT.EMU.

IVG 8 Latch

IVG 7 LatchIVG 9 Latch

IV Core Timer LatchIVG 10 Latch

IV Hardware Error LatchIVG 11 Latch

IV Exception LatchIVG 12 Latch

IV NMI LatchIVG 13 Latch

IV Reset LatchIVG 14 Latch

IV Emulator LatchIVG 15 Latch

IVG8 (R/W1C)

IVG7 (R/W1C)IVG9 (R/W1C)

IVTMR (R/W1C)IVG10 (R/W1C)

IVHW (R/W1C)IVG11 (R/W1C)

EVX (R)IVG12 (R/W1C)

NMI (R)IVG13 (R/W1C)

RST (R)IVG14 (R/W1C)

EMU (R)IVG15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-20: ILAT Register Diagram

Table 4-29: ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

IVG15 IVG 15 Latch.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–73

Table 4-29: ILAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

The ILAT.IVG15 bit if set when the IVG15 event is latched, but not yet accepted
into the core for processing.

14

(R/W1C)

IVG14 IVG 14 Latch.

The ILAT.IVG14 bit if set when the IVG14 event is latched, but not yet accepted
into the core for processing.

13

(R/W1C)

IVG13 IVG 13 Latch.

The ILAT.IVG13 bit if set when the IVG13 event is latched, but not yet accepted
into the core for processing.

12

(R/W1C)

IVG12 IVG 12 Latch.

The ILAT.IVG12 bit if set when the IVG12 event is latched, but not yet accepted
into the core for processing.

11

(R/W1C)

IVG11 IVG 11 Latch.

The ILAT.IVG11 bit if set when the IVG11 event is latched, but not yet accepted
into the core for processing.

10

(R/W1C)

IVG10 IVG 10 Latch.

The ILAT.IVG10 bit if set when the IVG10 event is latched, but not yet accepted
into the core for processing.

9

(R/W1C)

IVG9 IVG 9 Latch.

The ILAT.IVG9 bit if set when the IVG9 event is latched, but not yet accepted into
the core for processing.

8

(R/W1C)

IVG8 IVG 8 Latch.

The ILAT.IVG8 bit if set when the IVG8 event is latched, but not yet accepted into
the core for processing.

7

(R/W1C)

IVG7 IVG 7 Latch.

The ILAT.IVG7 bit if set when the IVG7 event is latched, but not yet accepted into
the core for processing.

6

(R/W1C)

IVTMR IV Core Timer Latch.

The ILAT.IVTMR bit if set when the Core Timer event is latched, but not yet accept-
ed into the core for processing.

5

(R/W1C)

IVHW IV Hardware Error Latch.

The ILAT.IVHW bit if set when the Hardware Error event is latched, but not yet ac-
cepted into the core for processing.

3

(R/NW)

EVX IV Exception Latch.

The ILAT.EVX bit if set when an Exception event is latched, but not yet accepted into
the core for processing.

2 NMI IV NMI Latch.

Blackfin+ ICU Register Descriptions

4–74 ADSP-BF7xx Blackfin+ Processor

Table 4-29: ILAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

(R/NW) The ILAT.NMI bit if set when an NMI event is latched, but not yet accepted into the
core for processing.

1

(R/NW)

RST IV Reset Latch.

The ILAT.RST bit if set when the Reset event is latched, but not yet accepted into the
core for processing.

0

(R/NW)

EMU IV Emulator Latch.

The ILAT.EMU bit if set when the Emulator event is latched, but not yet accepted into
the core for processing.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–75

Interrupt Mask Register

The IMASK register indicates which interrupts are allowed to be accepted into the core for processing. Accesses to
the IMASK register are limited to Supervisor mode. Each of the bits associated with programmable interrupt vectors
(IMASK.IVG15 through IMASK.IVG7) can be set to enable that interrupt level for servicing by the core. The lower
order bits in the IMASK.UNMASKABLE field are associated with vectors that cannot be disabled and and are there-
fore read-only.

When an IMASK bit is set and the corresponding event is latched in the ILAT register, the interrupt vector is taken
unless preempted by a higher-priority interrupt. When a lower-priority interrupt is preempted, the core will not
service the interrupt until it becomes the highest-priority interrupt request and the IMASK bit is still set.

If the IMASK bit is cleared and the associated interrupt is latched in the ILAT register, the interrupt request will not
propagate to the core for servicing, and the associated ILAT bit remains set.

IVG 9 MaskIVG 10 Mask

IVG 8 MaskIVG 11 Mask

IVG 7 MaskIVG 12 Mask

IV Core Timer MaskIVG 13 Mask

IV Hardware Error MaskIVG 14 Mask

Unmaskable Interrupt VectorsIVG 15 Mask

IVG9 (R/W)IVG10 (R/W)

IVG8 (R/W)IVG11 (R/W)

IVG7 (R/W)IVG12 (R/W)

IVTMR (R/W)IVG13 (R/W)

IVHW (R/W)IVG14 (R/W)

UNMASKABLE (R)IVG15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-21: IMASK Register Diagram

Table 4-30: IMASK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

IVG15 IVG 15 Mask.

When set, the IMASK.IVG15 bit enables propagation of the IVG15 interrupt request
to the processor core for servicing.

14

(R/W)

IVG14 IVG 14 Mask.

When set, the IMASK.IVG14 bit enables propagation of the IVG14 interrupt request
to the processor core for servicing.

13 IVG13 IVG 13 Mask.

Blackfin+ ICU Register Descriptions

4–76 ADSP-BF7xx Blackfin+ Processor

Table 4-30: IMASK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

(R/W) When set, the IMASK.IVG13 bit enables propagation of the IVG13 interrupt request
to the processor core for servicing.

12

(R/W)

IVG12 IVG 12 Mask.

When set, the IMASK.IVG12 bit enables propagation of the IVG12 interrupt request
to the processor core for servicing.

11

(R/W)

IVG11 IVG 11 Mask.

When set, the IMASK.IVG11 bit enables propagation of the IVG11 interrupt request
to the processor core for servicing.

10

(R/W)

IVG10 IVG 10 Mask.

When set, the IMASK.IVG10 bit enables propagation of the IVG10 interrupt request
to the processor core for servicing.

9

(R/W)

IVG9 IVG 9 Mask.

When set, the IMASK.IVG9 bit enables propagation of the IVG9 interrupt request to
the processor core for servicing.

8

(R/W)

IVG8 IVG 8 Mask.

When set, the IMASK.IVG8 bit enables propagation of the IVG8 interrupt request to
the processor core for servicing.

7

(R/W)

IVG7 IVG 7 Mask.

When set, the IMASK.IVG7 bit enables propagation of the IVG7 interrupt request to
the processor core for servicing.

6

(R/W)

IVTMR IV Core Timer Mask.

When set, the IMASK.IVTMR bit enables propagation of the Core Timer interrupt re-
quest to the processor core for servicing.

5

(R/W)

IVHW IV Hardware Error Mask.

When set, the IMASK.IVHW bit enables propagation of the Hardware Error interrupt
request to the processor core for servicing.

4:0

(R/NW)

UNMASKABLE Unmaskable Interrupt Vectors.

The IMASK.UNMASKABLE bits are associated with events that cannot be disabled
(Emulator, Reset, NMI, and Exception events), therefore these bits are always set.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–77

Interrupt Pending Register

With the exception of the IPEND.IRPTEN bit, a set bit in the IPEND register indicates that the associated event has
been accepted into the core for processing and is either actively being serviced or is nested at some level due to high-
er-priority interrupts and is awaiting service completion. The IPEND register is limited to read-only accesses from
Supervisor mode.

The IPEND.IRPTEN bit is used by the core event controller to temporarily disable interrupts upon entry to and exit
from an interrupt service routine.

When an event is latched in ILAT with the associated IMASK bit also set (to allow propagation of the interrupt
request to the core), the vector is taken and the event is considered processed. At this point, the corresponding bit in
IPEND is set by hardware. If a higher-priority event is latched in ILAT (with the associated IMASK bit also set) while
servicing the current event, the core will vector to service that higher-priority event and set its corresponding IPEND
bit. In this fashion, the least significant set bit in this register indicates the interrupt that is currently being serviced,
and any other set bit indicates that the associated event was accepted into the core but is nested at some level (has
not yet been fully serviced).

IVG 7 PendingIVG 8 Pending

IV Core Timer Interrupt PendingIVG 9 Pending

IV Hardware Error PendingIVG 10 Pending

IV Global Interrupt EnableIVG 11 Pending

IV Exception PendingIVG 12 Pending

IV NMI PendingIVG 13 Pending

IV Reset PendingIVG 14 Pending

IV Emulator PendingIVG 15 Pending

IVG7 (R)IVG8 (R)

IVTMR (R)IVG9 (R)

IVHW (R)IVG10 (R)

IRPTEN (R)IVG11 (R)

EVX (R)IVG12 (R)

NMI (R)IVG13 (R)

RST (R)IVG14 (R)

EMU (R)IVG15 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-22: IPEND Register Diagram

Blackfin+ ICU Register Descriptions

4–78 ADSP-BF7xx Blackfin+ Processor

Table 4-31: IPEND Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/NW)

IVG15 IVG 15 Pending.

When set, the IPEND.IVG15 bit indicates that the IVG15 interrupt is currently active
or nested at some level.

14

(R/NW)

IVG14 IVG 14 Pending.

When set, the IPEND.IVG14 bit indicates that the IVG14 interrupt is currently active
or nested at some level.

13

(R/NW)

IVG13 IVG 13 Pending.

When set, the IPEND.IVG13 bit indicates that the IVG13 interrupt is currently active
or nested at some level.

12

(R/NW)

IVG12 IVG 12 Pending.

When set, the IPEND.IVG12 bit indicates that the IVG12 interrupt is currently active
or nested at some level.

11

(R/NW)

IVG11 IVG 11 Pending.

When set, the IPEND.IVG11 bit indicates that the IVG11 interrupt is currently active
or nested at some level.

10

(R/NW)

IVG10 IVG 10 Pending.

When set, the IPEND.IVG10 bit indicates that the IVG10 interrupt is currently active
or nested at some level.

9

(R/NW)

IVG9 IVG 9 Pending.

When set, the IPEND.IVG9 bit indicates that the IVG9 interrupt is currently active or
nested at some level.

8

(R/NW)

IVG8 IVG 8 Pending.

When set, the IPEND.IVG8 bit indicates that the IVG8 interrupt is currently active or
nested at some level.

7

(R/NW)

IVG7 IVG 7 Pending.

When set, the IPEND.IVG7 bit indicates that the IVG7 interrupt is currently active or
nested at some level.

6

(R/NW)

IVTMR IV Core Timer Interrupt Pending.

When set, the IPEND.IVTMR bit indicates that the Core Timer interrupt is currently
active or nested at some level.

5

(R/NW)

IVHW IV Hardware Error Pending.

When set, the IPEND.IVHW bit indicates that the Hardware Error interrupt is current-
ly active or nested at some level.

4

(R/NW)

IRPTEN IV Global Interrupt Enable.

Blackfin+ ICU Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–79

Table 4-31: IPEND Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

The IPEND.IRPTEN bit is managed by the core event controller to ensure that the
RETI register is properly saved before a higher-priority event can be recognized by the
core.

3

(R/NW)

EVX IV Exception Pending.

When set, the IPEND.EVX bit indicates that the Exception event is currently active or
nested at some level.

2

(R/NW)

NMI IV NMI Pending.

When set, the IPEND.NMI bit indicates that the NMI event is currently active or nest-
ed at some level.

1

(R/NW)

RST IV Reset Pending.

When set, the IPEND.RST bit indicates that the Reset event is currently active or nest-
ed at some level.

0

(R/NW)

EMU IV Emulator Pending.

When set, the IPEND.EMU bit indicates that the Emulator event is currently active.

Blackfin+ BP Register Descriptions
Branch Predictor (BP) contains the following registers.

Table 4-32: Blackfin+ BP Register List

Name Description

BP_CFG BP Configuration Register

BP_STAT BP Status Register

Blackfin+ BP Register Descriptions

4–80 ADSP-BF7xx Blackfin+ Processor

BP Configuration Register

The BP_CFG register configures branch predictor features such as enabling dynamic branch prediction for various
types of branch instructions, controlling updates to the branch prediction table, permitting access to entries in the
prediction table and prediction table memory, and clearing the branch prediction table.

Clear Not Found Learn

Clear Branch Prediction TableClear Duplicate Found Learn

RTS EnableCall 32-Bit Enable

Unconditional JUMP EnableCall 64-Bit Enable

Conditional JUMP EnableStore Timeout Value

CLRNFL (R/W)

CLRBP (R0/W)CLRDFL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

RTSEN (R/W)CALL32EN (R/W)

JUMPEN (R/W)CALL64EN (R/W)

JUMPCCEN (R/W)STMOUTVAL (R/W)

0
31

0
30

0
29

1
28

0
27

1
26

1
25

0
24

0
23

1
22

1
21

1
20

0
19

1
18

1
17

0
16

Figure 4-23: BP_CFG Register Diagram

Table 4-33: BP_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W)

STMOUTVAL Store Timeout Value.

The BP_CFG.STMOUTVAL bits select a timeout value (in CCLK cycles) for the wait
status state for access requests to the store buffer.

22

(R/W)

CALL64EN Call 64-Bit Enable.

The BP_CFG.CALL64EN bit enables branch prediction for CALL instructions encod-
ed as 64-bit opcodes.

0 Disable prediction

1 Enable prediction

21

(R/W)

CALL32EN Call 32-Bit Enable.

The BP_CFG.CALL32EN bit enables branch prediction for CALL instructions encod-
ed as 32-bit opcodes.

0 Disable prediction

1 Enable prediction

Blackfin+ BP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–81

Table 4-33: BP_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

RTSEN RTS Enable.

The BP_CFG.RTSEN bit enables branch prediction for RTS instructions.

0 Disable prediction

1 Enable prediction

17

(R/W)

JUMPEN Unconditional JUMP Enable.

The BP_CFG.JUMPEN bit enables branch prediction for unconditional JUMP instruc-
tions.

0 Disable prediction

1 Enable prediction

16

(R/W)

JUMPCCEN Conditional JUMP Enable.

The BP_CFG.JUMPCCEN bit enables branch prediction for conditional JUMP instruc-
tions.

0 Disable prediction

1 Enable prediction

2

(R/W)

CLRDFL Clear Duplicate Found Learn.

The BP_CFG.CLRDFL bit clears the BP_STAT.DFL bit and keeps it cleared. When
enabled, BP_CFG.CLRDFL prevents the normal behavior of the branch predictor re-
porting branch entry duplicate found errors from occurring.

0 Disable

1 Enable

1

(R/W)

CLRNFL Clear Not Found Learn.

The BP_CFG.CLRNFL bit clears the BP_STAT.NFL bit and keeps it cleared. When
enabled, BP_CFG.CLRNFL prevents the normal behavior of the branch predictor re-
porting branch entry not found errors from occurring.

0 Disable

1 Enable

0

(R0/W)

CLRBP Clear Branch Prediction Table.

The BP_CFG.CLRBP bit clears (W1A) the tag valid field for all the entries in the
branch prediction table.

Blackfin+ BP Register Descriptions

4–82 ADSP-BF7xx Blackfin+ Processor

BP Status Register

The BP_STAT register indicates the status of the branch predictor state machine, store buffer, and current operation.

BP Idle State

BP Access TypeBP Predict State

PC AddressBP Check State

Duplicate Found LearnBP Process State

Not Found LearnBP Learn State

BP RAM Wait State

BP Address Mispredict StateStore Buffer 0 Full

BP Update Instruction Mispredict StateStore Buffer 1 Full

BP Update BRCC StateStore Buffer Timeout Counter

BPIDLE (R)

BPACCTYP (R)BPPRD (R)

PCADR (R)BPCHK (R)

DFL (R)BPPRC (R)

NFL (R)BPLRN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

RAMWT (R)

BPAMSP (R)ST0FULL (R)

BPUIMSP (R)ST1FULL (R)

BPUPDBRCC (R)STMOUTCNTR (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 4-24: BP_STAT Register Diagram

Table 4-34: BP_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/NW)

STMOUTCNTR Store Buffer Timeout Counter.

The BP_STAT.STMOUTCNTR bits hold the value of the count remaining for the store
buffer timeout. This field is automatically loaded when the BP_CFG.STMOUTVAL field
is loaded and resets to that value when store buffer access occurs before the count ex-
pires. The count decrements every core clock (CCLK) cycle while the branch predictor
is in the wait state (BP_STAT.RAMWT = 1).

23

(R/NW)

ST1FULL Store Buffer 1 Full.

The BP_STAT.ST1FULL bit indicates whether or not the branch predictor store buf-
fer 1 is full.

0 Store buffer 1 not full

1 Store buffer 1 full

Blackfin+ BP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–83

Table 4-34: BP_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

22

(R/NW)

ST0FULL Store Buffer 0 Full.

The BP_STAT.ST0FULL bit indicates whether or not the branch predictor store buf-
fer 0 is full.

0 Store buffer 0 not full

1 Store buffer 0 full

21

(R/NW)

RAMWT BP RAM Wait State.

The BP_STAT.RAMWT bit indicates whether or not the branch predictor is waiting for
access to the branch predictor memory.

0 Not waiting

1 Waiting

18

(R/NW)

BPAMSP BP Address Mispredict State.

The BP_STAT.BPAMSP bit indicates whether or not the branch predictor is in the Ad-
dress Mispredict state.

0 Not in Address Mispredict state

1 In Address Mispredict state

17

(R/NW)

BPUIMSP BP Update Instruction Mispredict State.

The BP_STAT.BPUIMSP bit indicates whether or not the branch predictor is in the
Instruction Mispredict state.

0 Not in Instruction Mispredict state

1 In Instruction Mispredict state

16

(R/NW)

BPUPDBRCC BP Update BRCC State.

The BP_STAT.BPUPDBRCC bit indicates whether or not the branch predictor is in the
Update BRCC state.

0 Not in Update BRCC state

1 In Update BRCC state

15

(R/NW)

BPLRN BP Learn State.

The BP_STAT.BPLRN bit indicates whether or not the branch predictor is in the
Learn state.

0 Not in Learn state

1 In Learn state

Blackfin+ BP Register Descriptions

4–84 ADSP-BF7xx Blackfin+ Processor

Table 4-34: BP_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/NW)

BPPRC BP Process State.

The BP_STAT.BPPRC bit indicates whether or not the branch predictor is in the Proc-
ess state.

0 Not in Process state

1 In Process state

13

(R/NW)

BPCHK BP Check State.

The BP_STAT.BPCHK bit indicates whether or not the branch predictor is in the
Check state.

0 Not in Check state

1 In Check state

12

(R/NW)

BPPRD BP Predict State.

The BP_STAT.BPPRD bit indicates whether or not the branch predictor is in the Pre-
dict state.

0 Not in Predict state

1 In Predict state

11

(R/NW)

BPIDLE BP Idle State.

The BP_STAT.BPIDLE bit indicates whether or not the branch predictor is in the Idle
state.

0 Not in Idle state

1 In Idle state

10

(R/NW)

BPACCTYP BP Access Type.

The BP_STAT.BPACCTYP bit indicates whether the most recent branch prediction ta-
ble access was made for predicting or learning the branch.

0 Learning the branch

1 Predicting the branch

9:3

(R/NW)

PCADR PC Address.

The BP_STAT.PCADR bits provide the branch predictor memory address within the
branch prediction table corresponding to the most recent PC entry accessed.

2

(R/NW)

DFL Duplicate Found Learn.

The BP_STAT.DFL bit indicates whether or not a duplicate branch prediction table
entry was found during a BP Learn state.

0 No status

1 Duplicate entry found

Blackfin+ BP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 4–85

Table 4-34: BP_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

NFL Not Found Learn.

The BP_STAT.NFL bit indicates whether or not a branch prediction table entry was
found during a BP Learn state.

0 No status

1 Entry not found

Blackfin+ BP Register Descriptions

4–86 ADSP-BF7xx Blackfin+ Processor

5 Core Timer (TMR)

Each Blackfin+ core features a dedicated timer. Unlike other peripherals, the core timer resides inside the Blackfin+
core and runs at the core clock (CCLK) rate. The core timer is typically used as a system tick clock for generating
periodic operating system interrupts.

TMR Features
The core timer is a programmable 32-bit interval timer which can generate periodic interrupts. Core timer features
include:

• 32-bit timer with 8-bit prescaler

• Operates at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

TMR Functional Description
The TMR (core timer) is a programmable 32-bit interval timer in each processor core. The following sections de-
scribe the TMR features:

• TMR Block Diagram

Blackfin+ TMR Register List

Table 5-1: Blackfin+ TMR Register List

Name Description

TCNTL Core Timer Control Register (TCNTL)

TCOUNT Core Timer Count Register (TCOUNT)

TPERIOD Core Timer Period Register (TPERIOD)

TSCALE Core Timer Scale Register (TSCALE)

Core Timer (TMR)

ADSP-BF7xx Blackfin+ Processor 5–1

TMR Block Diagram

The Core Timer Block Diagram shows the core timer block diagram.

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32

Figure 5-1: Core Timer Block Diagram

External Interfaces

The core timer does not directly interact with any external pins on the device.

Internal Interfaces

The core timer is accessed through the 32-bit register access bus (RAB). The core clock (CCLK) is the source clock
for the module. The dedicated interrupt request of the timer is a higher priority than requests from all other periph-
erals.

TMR Operation
The software initializes the timer count (TCOUNT) register before the timer is enabled. The TCOUNT register can be
written directly, but writes to the timer period (TPERIOD) register also pass through to TCOUNT.

When the timer is enabled by setting the TCNTL.EN bit, the TCOUNT register is decremented once every TSCALE+ 1
CCLK cycles. When the value of the TCOUNT register reaches 0, the core timer generates an interrupt and the
TCNTL.INT bit is set.

If the TCNTL.AUTORLD bit is set, then hardware automatically reloads the TCOUNT register with the contents of the
TPERIOD register, and the count begins again. If the TCNTL.AUTORLD bit is not set, the timer stops operation.

Clear the TCNTL.PWR bit to put the core timer into low-power mode, which disables clocks to the core timer to
reduce power consumption. Before using the timer, set the TCNTL.PWR bit to restore clocks to the timer unit before
setting the TCNTL.EN bit to enable the core timer.

NOTE: Hardware behavior is undefined if TCNTL.EN is set when TCNTL.PWR= 0.

TMR Functional Description

5–2 ADSP-BF7xx Blackfin+ Processor

Interrupt Processing

The core timer's dedicated interrupt request is a higher priority than interrupt requests from all other peripherals.
The request goes directly to the core event controller (CEC), thus bypassing the system event controller (SEC) en-
tirely. As such, interrupt processing is completely in the CCLK domain.

NOTE: The core timer interrupt request is edge-sensitive. Hardware clears it automatically as soon as the interrupt
is serviced.

The TCNTL.INT bit indicates that the core timer has generated an interrupt. Programs must write a 0 (not W1C) to
clear it, though this write is optional. The core timer module does not provide any further interrupt enable bit.
When the timer is enabled, interrupts can be masked in the CEC controller.

Blackfin+ TMR Register Descriptions
Timer (TMR) contains the following registers.

Table 5-2: Blackfin+ TMR Register List

Name Description

TCNTL Core Timer Control Register (TCNTL)

TCOUNT Core Timer Count Register (TCOUNT)

TPERIOD Core Timer Period Register (TPERIOD)

TSCALE Core Timer Scale Register (TSCALE)

TMR Operation

ADSP-BF7xx Blackfin+ Processor 5–3

Core Timer Control Register (TCNTL)

The TCNTL register is used for timer configuration and status.

Core Timer EnableAuto-Reload Mode Enable

Low-Power Mode DisableCore Timer Interrupt (Sticky)

EN (R/W)AUTORLD (R/W)

PWR (R/W)INT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-2: TCNTL Register Diagram

Table 5-3: TCNTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

INT Core Timer Interrupt (Sticky).

The TCNTL bit indicates whether or not the Core Timer has generated an interrupt.

0 Core timer has not generated an interrupt

1 Core timer has generated an interrupt

2

(R/W)

AUTORLD Auto-Reload Mode Enable.

By default, when TCOUNT reaches 0, the timer generates an interrupt and halts. When
the TCNTL.AUTORLD bit is set, Auto-reload mode is enabled and TCOUNT will auto-
matically be reloaded from TPERIOD when the timer generates the interrupt, and the
timer continues to count.

0 Disable Auto-reload mode

1 Enable Auto-reload mode

1

(R/W)

EN Core Timer Enable.

The TCNTL.EN denotes whether or not the core timer is enabled. It is only meaningful
when the TCNTL.PWR bit is also set.

0 Disable core timer

1 Enable core timer

0

(R/W)

PWR Low-Power Mode Disable.

The TCNTL.PWR bit determines whether or not the core timer is in the Low-power
mode, where the CCLK is gated from clocking the core timer unit.

0 Timer is in Low-power mode

1 Timer is in active state

Blackfin+ TMR Register Descriptions

5–4 ADSP-BF7xx Blackfin+ Processor

Core Timer Count Register (TCOUNT)

The TCOUNT register decrements once every TSCALE + 1 core clock cycles. When the value of TCOUNT reaches 0, an
interrupt is generated, and the TCNTL.INT bit is set.

Values written to the TPERIOD register are automatically copied to the TCOUNT register as well. Nevertheless, the
TCOUNT register can be written directly. In Auto-reload mode, the value written to TCOUNT may differ from the
TPERIOD setting to let the initial period be shorter or longer than the rest that follow. To accomplish this, write to
TPERIOD first and then subsequently overwrite TCOUNT.

Writes to TCOUNT are ignored once the timer is running.

Timer Count

Timer Count

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-3: TCOUNT Register Diagram

Table 5-4: TCOUNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT Timer Count.

Blackfin+ TMR Register Descriptions

ADSP-BF7xx Blackfin+ Processor 5–5

Core Timer Period Register (TPERIOD)

The TPERIOD register is used to configure the periodicity of the core timer interrupt. Writes to the TPERIOD regis-
ter automatically propagate to the TCOUNT register to set the time-out for the core timer to generate the interrupt.

When Auto-reload is enabled by the TCNTL.AUTORLD bit, the TCOUNT register is reloaded with the contents of
TPERIOD whenever it reaches 0. Writes to TPERIOD are ignored when the timer is running.

Timer Period

Timer Period

PERIOD[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PERIOD[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-4: TPERIOD Register Diagram

Table 5-5: TPERIOD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

PERIOD Timer Period.

Blackfin+ TMR Register Descriptions

5–6 ADSP-BF7xx Blackfin+ Processor

Core Timer Scale Register (TSCALE)

The TSCALE register contains the scaling value that is one less than the number of core clock cycles between decre-
ments of the TCOUNT register. For example, if the value in the TSCALE register is 0, the TCOUNT register will decre-
ment every CCLK cycle. If TSCALE is 1, TCOUNT decrements once every two CCLK cycles.

Scaling factor
SCALE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-5: TSCALE Register Diagram

Table 5-6: TSCALE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

SCALE Scaling factor.

Blackfin+ TMR Register Descriptions

ADSP-BF7xx Blackfin+ Processor 5–7

6 Address Arithmetic Unit

Like most digital signal processor (DSP) and reduced instruction set computer (RISC) platforms, the Blackfin+ pro-
cessors have a load/store architecture. Computation operands and results are always represented by core registers.
Prior to computation, data is loaded from memory into core registers, and results are stored back by explicit move
operations. The Address Arithmetic Unit (AAU) provides all the required support to keep data transport between
memory and core registers efficient and seamless. Having a separate arithmetic unit for address calculations prevents
the data computation block from being burdened by address operations. Not only can the load and store operations
occur in parallel to data computations, but memory addresses can also be calculated at the same time.

The AAU uses Data Address Generators (DAGs) to generate addresses for data moves to and from memory. By gen-
erating addresses, the DAGs let programs refer to addresses indirectly, using a DAG register instead of an absolute
address. The figure shows the AAU block diagram.

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

TO L1 DATA MEMORY TO SEQUENCER

DA1 DA0
32

32 32

PREG

RAB
32

Figure 6-1: AAU Block Diagram

The AAU architecture supports several functions that minimize overhead in data access routines. These functions
include:

• Supply address - provides an address during a data access

• Supply address and post-modify - provides an address during a data move and auto-increments/decrements the
stored address for the next move

• Supply address with offset - provides an address from a base with an offset without incrementing the original
address pointer

• Modify address - increments or decrements the stored address without performing a data move

Address Arithmetic Unit

ADSP-BF7xx Blackfin+ Processor 6–1

• Bit-reversed carry address - provides a bit-reversed carry address during a data move without reversing the stor-
ed address

The AAU comprises two DAGs, nine pointer registers, four index registers and four complete sets of related modify,
base, and length registers. These registers (shown in the AAU figure) hold the values that the DAGs use to generate
addresses. The types of registers are:

• Index (I[3:0]) registers. Unsigned 32-bit index registers hold an address pointer to memory. For example, the
R3 = [I0]; instruction loads the data value found at the memory location pointed to by the I0 register.
Index registers can be used for 16- and 32-bit memory accesses.

• Modify (M[3:0]) registers. Signed 32-bit modify registers provide the increment, or step size, by which an in-
dex register is modified after a register move. For example, the R0 = [I0 ++ M1]; instruction directs the
DAG to output the address in register I0, load the contents of the memory address pointed to by theI0 regis-
ter into the R0 register, and then modify the value of theI0 register by the value in the M1 register

• Base (B[3:0]) and length (L[3:0]) registers. Unsigned 32-bit base and length registers set up the the starting
address and length of a buffer, respectively. Each B/L pair is always grouped with a corresponding index register.
For example, I3, B3, and L3 are used collectively to handle a single buffer, but any modify register can be used
to update the dedicated index register. If the length register is set to 0, the buffer is unbound and linear. If the
length register is non-zero, the buffer is bound and circular, meaning that index modification beyond the end
of the buffer will wrap back to the base address. For more information on circular buffers, see Addressing Cir-
cular Buffers.

• Pointer registers. The core has six general-purpose (P[5:0]) pointer registers, a Frame Pointer (FP) register, a
User (Mode) Stack Pointer (USP) register, and a Stack Pointer (SP) register. Each is a 32-bit pointer register
holding the value of an address in memory and can be manipulated and used in various instructions. For exam-
ple, the R3 = [P0]; instruction loads the R3 register with the data found at the memory location pointed to
by the P0 register. The pointer registers have no effect on circular buffer addressing and can be used for 8-, 16-,
and 32-bit memory accesses. For added mode protection, the SP register is only accessible in Supervisor mode,
and the USP register is an alias that is either implicitly accessed via the stack pointer from User mode or explic-
itly accessed from Supervisor mode.

Address Arithmetic Unit

6–2 ADSP-BF7xx Blackfin+ Processor

 Address Arithmetic Unit Registers

P0

P1

P2

P3
P4

P5

User SP
Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

 Data Address Registers
 Pointer
 Registers

Figure 6-2: Address Arithmetic Unit

Addressing with the AAU
The DAGs can generate an address that is incremented by an immediate value or by a value in another register. In
post-modify addressing, the DAG outputs the index register value unchanged, then adds the content of a modify
register or an immediate value to the value in the index register.

In indexed addressing, the DAG can add a small value in the pointer register without updating the pointer register
with the new value, thus providing an offset for that particular memory access.

In direct addressing, the entire address is specified in the instruction and does not depend upon the value in any
register.

The processor is byte-addressed. Depending on the type of data used, increments and decrements to the address
registers can be by 1, 2, or 4 bytes to align with the respective 8-, 16-, or 32-bit accesses.

For example, consider the following instruction:

R0 = [P3++];

This instruction fetches the 32-bit word pointed to by the address in the P3 register and places it in the 32-bit R0
register. It then post-increments P3 by four to point to the data after the 32-bit word that was just fetched.

Now consider this instruction:

R0.L = W [I3++];

The W modifier in this instruction indicates that this is a 16-bit access to the address pointed to by the I3 register.
As such, the destination register must be a 16-bit entity, in this case the low half of one of the data registers (R0.L),
and the address in the I3 register is post-incremented by two after the access is made.

Finally, there is the byte access:

R0 = B [P3++] (Z) ;

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–3

This instruction fetches a byte that is pointed to by the address in the P3 register, places it in the destination regis-
ter, R0, and then post-increments the address in P3 by one. Unlike the previous 16-bit move instruction that chose a
destination register of the same width as the access, the 32-bit destination register is satisfied by this instruction's
inclusion of the zero extension (Z), which fills the upper 24 bits with zeros. Sign-extension (X) of bit 7 through the
upper 24 bits of the register is also supported.

Instructions using index registers can use either a modify register or a small immediate value (+/- 2 or 4) as the
modifier. Instructions using pointer registers use a small immediate value or another pointer register as the modifier.
For more details, see AAU Instruction Summary.

There are no restrictions on data alignment. A 32-bit word can be fetched from any address, and the four contigu-
ous bytes starting from the specified address are fetched. Similarly, a 16-bit access may be to any two adjacent ad-
dresses in memory. The byte order of the memory is little-endian, so the lower addressed byte always contains the
least significant bits of the stored value.

Pointer Register File

The general-purpose pointer registers (or Preg), are organized as:

• a 6-entry pointer register file (P[5:0], see Pointer Register)

• a Frame Pointer (FP), used to point to the current procedure's activation record (see Frame Pointer Register)

• a Stack Pointer (SP), used to point to the last used location on the run-time stack (see Stack Pointer Register)

Pointer registers are 32 bits wide. Although pointer registers are primarily used for address calculations, they may
also be used for general integer arithmetic with a limited set of arithmetic operations. However, unlike data registers,
pointer register arithmetic does not affect the bits in the Arithmetic Status register (ASTAT).

Frame and Stack Pointers

In many respects, the frame and stack pointer registers perform like the other pointer registers, P[5:0]. They can
act as general pointers in any of the load/store instructions (e.g., R1 = B[SP] (Z);). However, FP and SP have
additional functionality. For more information, see the following:

• Frame Pointer Register

• Stack Pointer Register

• User Stack Pointer Register .

Stack pointer registers include:

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register are accessed using the register alias SP. De-
pending on the current processor operating mode, only one of these registers is active and accessible as SP:

Addressing with the AAU

6–4 ADSP-BF7xx Blackfin+ Processor

• In User mode, any reference to SP (e.g., the R0 = [SP++]; stack pop instruction) implicitly uses the USP
as the effective address to access.

• In Supervisor mode, the same reference to SP uses the Supervisor Stack Pointer as the effective address to ac-
cess. To manipulate the User Stack Pointer from code running in Supervisor mode, explicitly use the register
alias USP. When the processor is in Supervisor mode, a move from the USP register (e.g., R0 = USP;) moves
the current User Stack Pointer into R0. The USP register alias can only be used in Supervisor mode.

The following load/store instructions use FP and SP:

• FP-indexed load/store, which extends the addressing range for 16-bit encoded load/stores

• Stack push/pop instructions, including those for pushing and popping multiple registers

• Link/unlink instructions implicitly use both, as they control stack frame space and manage the frame pointer
register (FP) for that space

DAG Register Set

Embedded processor instructions primarily use the 32-bit Data Address Generator (DAG) register set for addressing,
which is comprised of:

• I[3:0] - index addresses (see Index (Circular Buffer) Register)

• M[3:0] - modify values (see Modify (Circular Buffer) Register)

• B[3:0] - base addresses (see Base (Circular Buffer) Register)

• L[3:0] - buffer length values (see Length (Circular Buffer) Register)

The I (index) and B (base) registers always contain addresses of individual bytes in memory, with the index registers
containing an effective address. The M (modify) registers contain an offset value that is added to or subtracted from
one of the index registers.

The B and L (length) registers define buffers. The B register contains the starting address of a buffer, and the L
register contains the length (in bytes) for any buffer defined to be circular in nature. If the L register is 0, the buffer
is unbounded, where indexing will never wrap. If the L register is non-zero, indexing through the buffer will wrap
from the "base plus length" address back to the base address. Each B/L register pair is associated with the corre-
sponding I register. For example, the buffer defined by the L0 and B0 register pair is always indexed using the I0
register. However, any M register may be associated with any I register (i.e., I0 may be modified by M3).

Indexed Addressing with Index and Pointer Registers

Indexed addressing instructions use the value in the index or pointer register as an effective address. This type of
instruction can load or store 16- or 32-bit values, and the default is a 32-bit transfer. If a 16-bit transfer is required,
then the W (16-bit word) designator is used to preface the load or store.

For example:

R0 = [I2] ;

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–5

loads a 32-bit value from the address pointed to by I2 and stores it in the 32-bit destination register R0.

R0.H = W [I2] ;

loads a 16-bit value from the address pointed to by I2 and stores it in the 16-bit destination register R0.H.
[P1] = R0 ;

is an example of a 32-bit store operation.

Pointer registers can also be used for 8-bit loads and stores. For example:

B [P1] = R0 ;

stores the 8-bit value from the least signficant byte of the R0 register to the address pointed to by the P1 register.

Loads with Zero- or Sign-Extension

When a 32-bit register is loaded by an 8- or 16-bit memory read, the value can be extended to the full register
width. A trailing (Z) on the instruction is used to zero-extend the loaded value, whereas an (X) forces sign-extension.
The following examples assume that P1 points to a memory location that contains a value of 0x8080.

R0 = W[P1] (Z) ; /* R0 = 0x0000 8080 */
R1 = W[P1] (X) ; /* R1 = 0xFFFF 8080 */
R2 = B[P1] (Z) ; /* R2 = 0x0000 0080 */
R3 = B[P1] (X) ; /* R3 = 0xFFFF FF80 */

Indexed Addressing with Immediate Offset

Indexed addressing allows programs to obtain values from data tables with references to the base of that table. The
pointer register is modified by the immediate field and that value is then used as the effective address to access. The
value of the pointer register, however, is not updated.

For example, if P1 = 0x13, then R0 = [P1 + 0x11] would effectively be equal to R0 = [0x24], but the value
of the pointer register would be unchanged when this instruction executes.

Auto-increment and Auto-decrement Addressing

Auto-increment addressing updates the pointer and index registers after the access. The amount the address is incre-
mented by depends on the size of the access. An 32-bit access results in an update of the pointer by four. A 16-bit
access updates the pointer by 2, and an 8-bit access updates the pointer by 1. Both 8- and 16-bit read operations
may specify to either sign- or zero-extend the read contents into the upper bits of the destination register. Pointer
registers may be used for 8-, 16-, and 32-bit accesses, while index registers may only be used for 16- and 32-bit
accesses. For example:

R0 = W [P1++] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address pointed to by the P1 pointer register. The
pointer is then incremented by two, and the word is zero-extended to fill the 32-bit destination register.

Indexed Addressing with Index and Pointer Registers

6–6 ADSP-BF7xx Blackfin+ Processor

Auto-decrement works the same way by decrementing the address after the access. For example:

R0 = [I2--] ;
loads a 32-bit value into the destination register and decrements the index register by four.

Pre-modify Stack Pointer Addressing

The only pre-modify instruction in the processor uses the stack pointer register, SP. The address in SP is first decre-
mented by four and then used as the effective address for the store. The [--SP] = R0; instruction is used for
stack push operations and can support only 32-bit word transfers.

Post-modify Addressing

Post-modify addressing uses the value in the index or pointer registers as the effective address and then modifies it by
the contents of another register. Pointer registers are modified by other pointer registers, whereas index registers are
modified by modify registers. Post-modify addressing does not support the pointer registers as destination registers,
nor does it support byte-addressing. For example:

R5 = [P1++P2] ;
loads a 32-bit value into the R5 register from the memory location pointed to by the P1 register. The value in the P2
register is then added to the value in the P1 register.

R2 = W [P4++P5] (Z) ;
loads a 16-bit word from the memory location pointed to by the P4 register into the low half of the destination
register R2, zero-filling it to 32 bits. The value in the P5 register is then added to the value in the P4 register.

R2 = [I2++M1] ;

loads a 32-bit word from the address pointed to by I2 into the destination register R2, and then the value in the I2
index register is then modified by the value in the M1 modify register.

Direct Addressing

Direct addressing uses the immediate value field in the instruction as the effective address. The location addressed
does not depend upon the contents of any register. The source or destination may be a pointer register, a data regis-
ter, or a data register half. Both 8- and 16-bit read operations may specify to either sign- or zero-extend the value
into the upper bits of the destination register. For example:

[0x100] = SP ;
stores the stack pointer register in the 32-bit word at address 0x100.

Sometimes, the address can be specified as a symbolic value defined at the assembler level:

R0 = B [myvar] (Z) ;
This instruction loads a byte from an address identified by the symbolic value myvar, which might be defined with
a .VAR directive in either a native or compiler-produced assembly source file.

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–7

Direct address instructions are convenient for accessing memory-mapped registers, which are always at defined ad-
dresses. They also enable context saving without the need to modify any core registers. For example, a CPLB miss
handler could be written to switch to a private stack in a known safe region of memory to protect against the case
where the stack pointer itself caused the CPLB miss to begin with:

.SECTION scratchpad;

.ALIGN 4;

.VAR save_sp, safe_stack[BIG_ENOUGH];

...
[save_sp] = SP; // save stack pointer
SP = safe_stack+BIG_ENOUGH; // make it point to the safe stack
// now registers can be saved into the safe area
[--SP] = (R7:5, P5:P4);
[--SP] = ASTAT;
...
// restore registers
ASTAT = [SP++];
(R7:5, P5:P4) = [SP++];
SP = [save_sp]; // restore stack pointer
RTX;

Addressing Circular Buffers

The DAGs support addressing of circular buffers. Circular buffers are a range of addresses containing data that the
DAG steps through repeatedly, wrapping around to the beginning of the buffer again and repeating stepping
through the same range of addresses in a circular fashion. The DAGs use four types of data address registers for
addressing circular buffers:

• The index (I) register contains the value that the DAG outputs on the address bus. For more information, see
Index (Circular Buffer) Register .

• The modify (M) register contains the post-modify value (positive or negative) that the DAG applies to the in-
dex register at the end of each memory access. Any modify register can be used with any index register. The
modify value can also be an immediate value rather than a value contained in a modify register. The size of the
modify value must be less than or equal to the length register of the circular buffer. For more information, see
Modify (Circular Buffer) Register .

• The length (L) register sets the size of the circular buffer and the address range through which the DAG circu-

lates the index register. L is positive and cannot have a value greater than 232 - 1. If a length register's value is
zero, its circular buffer operation is disabled. For more information, see Length (Circular Buffer) Register .

• The base (B) register plus the length register is the value with which the DAG compares the modified index
register value after each access to check for the wrap condition. When the condition is met, indexing continues
to the base register address. For more information, see Base (Circular Buffer) Register .

To address a circular buffer, the DAG steps the index register through the buffer values, post-modifying and updat-
ing the index on each access with a positive or negative modify value from the modify register. If the resulting index

Addressing with the AAU

6–8 ADSP-BF7xx Blackfin+ Processor

pointer falls outside the buffer's range, the DAG automatically adjusts the value to wrap the index pointer to a
location that is in the buffer.

The starting address that the DAG wraps around to is called the buffer's base address (base register). There are no
restrictions on the value of the base address for circular buffers that contains 8-bit data. Circular buffers that contain
16- or 32-bit data must be 16-bit-aligned or 32-bit-aligned, respectively. Circular buffering uses post-modify ad-
dressing.

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

1

2

3

4

5

6

7

8

9

10

11

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

Figure 6-3: Circular Data Buffers

As seen in the Circular Data Buffers figure, on the first post-modify access to the buffer, the DAG outputs the index
register value on the address bus, then modifies the address by adding the modify value.

• If the updated index value is within the buffer length, the DAG writes the value to the index register.

• If the updated index value exceeds the buffer length, the DAG subtracts (for a positive modify value) or adds
(for a negative modify value) the length register value before writing the updated index value to the index regis-
ter.

In equation form, these post-modify and wrap-around operations work as follows, shown for "I+M" operations.

• If M is positive:

• Inew = Iold + M, if Iold + M < buffer base + length (end of buffer)

• Inew = Iold + M - L, if Iold + M > buffer base + length (end of buffer)

• If M is negative:

• Inew = Iold + M, if Iold + M > buffer base (start of buffer)

• Inew = Iold + M + L, if Iold + M < buffer base (start of buffer)

Addressing with Bit-reversed Addresses

To obtain results in sequential order, programs need bit-reversed carry addressing for some algorithms, particularly
Fast Fourier Transform (FFT) calculations. To satisfy the requirements of these algorithms, the DAG's bit-reversed

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–9

addressing feature permits repeatedly subdividing data sequences and storing this data in bit-reversed order. For
detailed information about bit-reversed addressing, see the description of the modify/increment instruction.

Modifying Index and Pointer Registers

The DAGs support operations that modify an address value in an index register without outputting an address. The
operation, address-modify, is useful for maintaining pointers.

The address-modify operation modifies addresses in any index and pointer register (I[3:0], P[5:0], FP, SP)
without accessing memory. If the index register's corresponding base and length registers are set up for circular buf-
fering, the address-modify operation performs the specified buffer wrap-around (if needed).

The syntax is similar to post-modify addressing (index += modifier). For index registers, a modify register is
used as the modifier. For pointer registers, another pointer register is used as the modifier.

Consider the example, I1 += M2 ; . This instruction adds M2 to I1 and updates I1 with the new value.

Addressing Mode Summary

The Addressing Modes, Transfers, and Sizes table summarizes the types of transfers and transfer sizes supported by
the addressing modes.

Table 6-1: Addressing Modes, Transfers, and Sizes

Addressing Mode Types of Transfers Supported Transfer Sizes

Auto-increment

Auto-decrement

Indirect

Indexed

Direct

To and from data registers LOADS:

32-bit word

16-bit, zero-extended half word

16-bit, sign-extended half word

8-bit, zero-extended byte

8-bit, sign-extended byte

STORES:

32-bit word

16-bit half word

8-bit byte

To and from pointer registers LOAD:

32-bit word

STORE:

32-bit word

Post-increment To and from data registers LOADS:

32-bit word

16-bit half word to data register high
half

Addressing with the AAU

6–10 ADSP-BF7xx Blackfin+ Processor

Table 6-1: Addressing Modes, Transfers, and Sizes (Continued)

Addressing Mode Types of Transfers Supported Transfer Sizes

16-bit half word to data register low
half

16-bit, zero-extended half word

16-bit, sign-extended half word

STORES:

32-bit word

16-bit half word from data register high
half

16-bit half word from data register low
half

The Addressing Modes table summarizes the addressing modes. In the table, an asterisk (*) indicates the processor
supports the addressing mode.

Table 6-2: Addressing Modes

32-bit
Word

16-bit
Half-Word 8-bit Byte

Sign/zero
Extend

Data Regis-
ter

Pointer
Register

Data Regis-
ter Half

P Auto-inc

[P0++]

* * * * * *

P Auto-dec

[P0--]

* * * * * *

P Indirect

[P0]

* * * * * * *

P Indexed

[P0+im]

* * * * * *

FP indexed

[FP+im]

* * *

P Post-inc

[P0++P1]

* * * * *

I Auto-inc

[I0++]

* * * *

I Auto-dec

[I0--]

* * * *

I Indirect

[I0]

* * * *

I Post-inc * *

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–11

Table 6-2: Addressing Modes (Continued)

32-bit
Word

16-bit
Half-Word 8-bit Byte

Sign/zero
Extend

Data Regis-
ter

Pointer
Register

Data Regis-
ter Half

[I0++M0]

Direct

[im]

* * * * * * *

AAU Instruction Summary

The AAU Instructions table lists the AAU instructions. In the table, note the meaning of these symbols:

• Dreg denotes any data register file register.

• Dreg_lo denotes the lower 16 bits of any data register file register.

• Dreg_hi denotes the upper 16 bits of any data register file register.

• Preg denotes any pointer register, FP, or SP register.

• Ireg denotes any index register.

• Mreg denotes any modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bit wide, immediate value.

• uimmAmB denotes an unsigned, A-bit wide, immediate value that is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

AAU instructions do not affect the ASTAT register status bits.

Table 6-3: AAU Instructions

Instruction

Preg = [Preg] ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4] ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg - uimm17m4] ;

Addressing with the AAU

6–12 ADSP-BF7xx Blackfin+ Processor

Table 6-3: AAU Instructions (Continued)

Instruction

Preg = [FP - uimm7m4] ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg --] ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg - uimm17m4] ;

Dreg = [Preg ++ Preg] ;

Dreg = [FP - uimm7m4] ;

Dreg = [uimm32] ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg] ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (Z) ;

Dreg =W [Preg + uimm5m2] (Z) ;

Dreg =W [Preg + uimm16m2] (Z) ;

Dreg =W [Preg - uimm16m2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

Dreg =W [uimm32] (Z) ;

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2] (X) ;

Dreg =W [Preg - uimm16m2] (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg =W [uimm32] (X) ;

Dreg_hi = W [Ireg] ;

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–13

Table 6-3: AAU Instructions (Continued)

Instruction

Dreg_hi = W [Ireg ++] ;

Dreg_hi = W [Ireg --] ;

Dreg_hi = W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg_hi = W [uimm32] ;

Dreg_lo = W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo = W [Ireg --] ;

Dreg_lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg] ;

Dreg_lo = W [uimm32] ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (Z) ;

Dreg = B [Preg + uimm15] (Z) ;

Dreg = B [Preg - uimm15] (Z) ;

Dreg = B [uimm32] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Dreg = B [Preg - uimm15] (X) ;

Dreg = B [uimm32] (X) ;

[Preg] = Preg ;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4] = Preg ;

[Preg + uimm17m4] = Preg ;

[Preg - uimm17m4] = Preg ;

[FP - uimm7m4] = Preg ;

[uimm32] = Preg ;

Addressing with the AAU

6–14 ADSP-BF7xx Blackfin+ Processor

Table 6-3: AAU Instructions (Continued)

Instruction

[Preg] = Dreg ;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4] = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg - uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP - uimm7m4] = Dreg ;

[uimm32] = Dreg ;

[Ireg] = Dreg ;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg ;

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi ;

W [Preg] = Dreg_hi ;

W [Preg ++ Preg] = Dreg_hi ;

W [uimm32] = Dreg_hi ;

W [Ireg] = Dreg_lo ;

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo ;

W [Preg] = Dreg_lo ;

W [Preg ++ Preg] = Dreg_lo ;

W [uimm32] = Dreg_lo ;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg - uimm16m2] = Dreg ;

Addressing with the AAU

ADSP-BF7xx Blackfin+ Processor 6–15

Table 6-3: AAU Instructions (Continued)

Instruction

W [uimm32] = Dreg ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg - uimm15] = Dreg ;

B [uimm32] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg = uimm32;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg = Preg << 2 ;

Preg = Preg >> 2 ;

Preg = Preg >> 1 ;

Preg = Preg + Preg << 1 ;

Preg = Preg + Preg << 2 ;

Preg -= Preg ;

Ireg -= Mreg ;

ADSP-BF70x Address Arithmetic Unit Register Descriptions
The AAU Register File contains the following registers.

Table 6-4: ADSP-BF70x AAU Register List

Name Description

FP Frame Pointer Register

SP Stack Pointer Register

USP User Stack Pointer Register

P[n] Pointer Register (n = 0 - 5)

I[n] Index (Circular Buffer) Register (n = 0 - 3)

M[n] Modify (Circular Buffer) Register (n = 0 - 3)

B[n] Base (Circular Buffer) Register (n = 0 - 3)

ADSP-BF70x Address Arithmetic Unit Register Descriptions

6–16 ADSP-BF7xx Blackfin+ Processor

Table 6-4: ADSP-BF70x AAU Register List (Continued)

Name Description

L[n] Length (Circular Buffer) Register (n = 0 - 3)

ADSP-BF70x Address Arithmetic Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 6–17

Pointer Register

There are six 32-bit general-purpose pointer registers P[n] that are primarily used for load/store operations. Al-
though pointer registers are primarily used for address calculations, these registers may also be used for general inte-
ger arithmetic with a limited set of arithmetic operations; however, unlike computations involving data registers
(R[n]), pointer register arithmetic does not affect the ASTAT status bits.

Memory Address

Memory Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-4: P[n] Register Diagram

Table 6-5: P[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Memory Address.

The P[n].ADDR bit field (bits 31:0) holds either an address (for address calculations
or load/store operations) or data for arithmetic operations.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

6–18 ADSP-BF7xx Blackfin+ Processor

Frame Pointer Register

The FP register contains the address of the current frame on the system stack. Frames are required to control pro-
gram flow in the context of sub-routines and consist of the previous FP value, the function return information
(RETS), and the sub-routine's local stack.

The FP register performs like the general-purpose P[n] pointer registers, acting as a general pointer in any load/
store instruction.

The LINK and UNLINK instructions, which control stack frame space, implicitly use and modify the FP register.

Stack Frame Address

Stack Frame Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-5: FP Register Diagram

Table 6-6: FP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Stack Frame Address.

The FP.ADDR bit field (bits 31:0) hold either an address for address calculations or the
address of the current frame on the system stack.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 6–19

Stack Pointer Register

The SP register monitors the current index into the run-time stack, which contains critical run-time information
such as stored context and local variables/arguments. In many respects, the SP register is like the general-purpose
P[n] pointer registers and can be used in any load/store instruction.

To speed up context switching, there are two stack pointer registers, a User stack pointer (USP) and a Supervisor
stack pointer (SP). In assembly code, only the SP syntax is used, as the correct stack pointer register will be used
based on whether the processor is in Supervisor or User mode.

The LINK and UNLINK instructions, which control stack frame space, implicitly use and modify the SP register.

Stack Address

Stack Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-6: SP Register Diagram

Table 6-7: SP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Stack Address.

The SP.ADDR bit field (bits 31:0) holds an address for address calculations or stack
operations in Supervisor mode.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

6–20 ADSP-BF7xx Blackfin+ Processor

User Stack Pointer Register

The User (mode) Stack Pointer (USP) is a virtual register that is used by the processor for SP accesses when it is in
User mode. For context switching while in Supervisor mode, the USP register can be explicitly referenced as USP;
however, if an explicit USP access is attempted while executing in User mode, an exception is generated.

The USP register can be used like the general-purpose P[n] pointer registers, acting as a general pointer in any of
the load/store instructions.

User Mode Stack Address

User Mode Stack Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-7: USP Register Diagram

Table 6-8: USP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR User Mode Stack Address.

The USP.ADDR bit field (bits 31:0) holds an address for address calculations or stack
operations in User mode.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 6–21

Index (Circular Buffer) Register

Instructions primarily use the 32-bit data address generator (DAG) register set for addressing. The I[n] Index regis-
ters (I3 through I0) typically contain indexed addresses within a buffer, but they can be used to access individual
data elements in memory as well.

The I[n] registers always contain byte addresses in memory and are used in conjunction with their associated base
(B[n]) and length (L[n]) registers to manage buffers (i.e., the I0/B0/L0 register set define buffer 0). When a L[n]
register contains a non-zero value, the buffer pointed to by the corresponding B[n] register is defined to be circular,
meaning that indexing through the buffer using the corresponding I[n] register will wrap back to the B[n] address
when the length defined in the corresponding L[n] register is exceeded. While the I[n]/B[n]/L[n] register set are
grouped, any M[n] modify register can be used to post-modify an I[n] register after a load/store operation (e.g., I0
may be modified by M3).

Buffer Index Address

Buffer Index Address

ADDR[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

ADDR[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-8: I[n] Register Diagram

Table 6-9: I[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Buffer Index Address.

The I[n].ADDR bits contain the indexed address within a buffer in memory.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

6–22 ADSP-BF7xx Blackfin+ Processor

Modify (Circular Buffer) Register

The 32-bit M[n] modify registers (M3 through M0) contain byte offsets to be applied to the designated I[n] index
register in any load/store with modify instruction. While the I[n]/B[n]/L[n] register set is grouped by number,
any M[n] modify register can be used to modify an I[n] register when a load/store operation is executed (e.g., I0
may be modified by M3).

Buffer Index Modify Value

Buffer Index Modify Value

MODIFY[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

MODIFY[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-9: M[n] Register Diagram

Table 6-10: M[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

MODIFY Buffer Index Modify Value.

The M[n].MODIFY bits contain the modify value applied to the designated I[n] reg-
ister when a load/store with modify operation is executed.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 6–23

Base (Circular Buffer) Register

The 32-bit B[n] base registers (B3 through B0) contain byte addresses and are used in conjunction with their asso-
ciated index (I[n]) and length (L[n]) registers to manage buffers in memory (i.e., the I0/B0/L0 register set is
grouped and defines buffer 0). When a L[n] register contains a non-zero value, the buffer pointed to by the corre-
sponding B[n] register is defined to be circular, meaning that indexing through the buffer using the corresponding
I[n] register will wrap back to the B[n] address when the length defined in the corresponding L[n] register is
exceeded.

Buffer Base Address

Buffer Base Address

BASE[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

BASE[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-10: B[n] Register Diagram

Table 6-11: B[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

BASE Buffer Base Address.

The B[n].BASE bits contain the base address for a buffer in memory. When the asso-
ciated L[n] register is non-zero, indexing through the buffer wraps to this address
when the length is exceeded.

ADSP-BF70x Address Arithmetic Unit Register Descriptions

6–24 ADSP-BF7xx Blackfin+ Processor

Length (Circular Buffer) Register

The 32-bit L[n] length registers (L3 through L0) contain the length in bytes of a buffer in memory. They are used
in conjunction with their associated base (B[n]) and index (I[n]) registers to manage buffers (i.e., the I0/B0/L0
register set is grouped and defines buffer 0). When a L[n] register contains a non-zero value, the buffer pointed to
by the corresponding B[n] register is defined to be circular, meaning that indexing through the buffer using the
corresponding I[n] register will wrap back to the B[n] address when the length defined in the corresponding
L[n] register is exceeded.

Circular Buffer Length

Circular Buffer Length

LENGTH[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

LENGTH[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 6-11: L[n] Register Diagram

Table 6-12: L[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

LENGTH Circular Buffer Length.

The L[n].LENGTH bits contain the length of the circular buffer, which determines
the offset from the associated B[n] base address where indexing through the buffer
will wrap back to the base. When L[n].LENGTH is 0, the buffer is defined to be un-
bounded (indexing will never wrap).

ADSP-BF70x Address Arithmetic Unit Register Descriptions

ADSP-BF7xx Blackfin+ Processor 6–25

7 Memory

Blackfin+ processors support a hierarchical memory model with different performance and size parameters, depend-
ing on the memory location within the hierarchy. Level 1 (L1) instruction and data memories interconnect closely
and efficiently with the Blackfin+ core to achieve the best performance. Separate blocks of L1 memory can be ac-
cessed simultaneously through multiple bus systems. Instruction memory is separated from data memory, but unlike
classic Harvard architectures, all L1 memory blocks are accessed by a unified addressing scheme. Portions of L1
memory can be configured to function as cache memory.

The Blackfin+ processors feature on-chip Level 2 (L2) memory, which can freely store both instructions and data
but take more core clock cycles to access than L1 memory, as well as external memory space (including asynchro-
nous memory for static RAM devices and synchronous memory for dynamic RAM, such as DDR SDRAM devices).

This chapter discusses the architecture and principles of L1 memories, as well as memory protection and caching
mechanisms. For memory sizes, locations, and definitions for both L2 and off-chip memory interfaces, refer to the
specific Blackfin+ Processor Hardware Reference.

Memory Architecture
Blackfin+ processors have a unified 4 GB address range that spans a combination of on-chip and off-chip memory
and memory-mapped I/O resources. Of this range, some of the address space is dedicated to internal, on-chip re-
sources, populated as:

• Level-1 (Core) Static Random Access Memories (L1 SRAM)

• Level-2 (Core) Static Random Access Memories (L2 SRAM)

• A set of memory-mapped registers (MMRs)

• A boot Read-Only Memory (ROM)

The Processor Memory Architecture figure shows a block diagram.

Memory

ADSP-BF7xx Blackfin+ Processor 7–1

NON-DMA PERIPHERALS

EBIU

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

DMA PERIPHERALS

PERIPHERAL
ACCESS
BUS (PAB)

16

R
O

M 16

16

16

16

16

Figure 7-1: Processor Memory Architecture

Overview of On-Chip Level-1 (L1) Memory

The L1 memory system performance provides high bandwidth and low latency. Because SRAMs provide determinis-
tic access time and very high throughput, embedded processing systems have traditionally achieved performance im-
provements by providing fast SRAM on the chip.

The addition of instruction and data caches (SRAMs with cache control hardware) provides both higher perform-
ance and a simple programming model. Caches eliminate the need to explicitly manage data movement into and out
of L1 memory. Code can be ported to or developed for the processor quickly, without requiring performance opti-
mization for the memory organization.

L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory accesses per clock cycle (one 64-bit instruc-
tion fetch, two 32-bit data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM accesses at the processor's core clock rate (CCLK) for critical algorithms and fast context switching

• Instruction and data cache options for microcontroller code

• Excellent High-Level Language (HLL) support

• Ease-of-programming cache control instructions such as PREFETCH and FLUSH
• Memory protection

L1 instruction memory is a continuous region of memory which may only be used to store instructions. A portion
of this memory is dedicated instruction SRAM, and the remainder may be configured as instruction cache or as

Memory Architecture

7–2 ADSP-BF7xx Blackfin+ Processor

dedicated instruction SRAM. L1 instruction memory cannot normally be accessed by load or store instructions by
the core.

Typical L1 data memory is divided into three blocks. Two, known as block A and block B, are equal-sized and may
be configured as cache or SRAM, and the third, known as block C or scratchpad, is a small region of dedicated data
SRAM often used for system stacks and heaps. Concurrent accesses by the core or DMA to separate blocks proceed
in parallel, whereas concurrent accesses to the same block may be stalled due to a sub-bank conflict.

The L1 memory system contains special-purpose memory spaces, such as cache tags and parity bits, to which direct
access by load or store instructions is normally restricted. An Extended Data Access mode is supported, in which all
restricted memory spaces including L1 instruction memory may be directly accessed by suitably privileged software.

Overview of Other On-Chip (L2) and Off-Chip (L3) Memories

Blackfin+ processors feature an on-chip Level-2 (L2) memory, so named because it forms an on-chip memory hierar-
chy with L1 memory. On-chip L2 memory provides more capacity than L1 memory, but the access latency is higher.
It is capable of storing both instructions and data biut cannot be configured as cache. The L2 memory also contains
the processor Boot ROM.

Blackfin+ processors also feature external (off-chip) memory controllers which enable access to dynamic external
DRAM via standard protocols such as DDR2, as well as to static RAM and flash memory devices. The external
memory is sometimes referred to as Level-3 (L3) memory.

For details of the on-chip and off-chip memory map, refer to the Blackfin+ Processor Hardware Reference.

L1 Instruction Memory
L1 instruction memory is a continuous region of the address space which may only be used for storing instructions.
On all Blackfin+ processors, a subset of this space must be used as directly addressable SRAM, but a dedicated por-
tion of this L1 instruction memory space can be optionally be configured as instruction cache memory. Control bits
in the L1IM_ICTL register can be used to configure this portion of L1 instruction memory as a 4-Way, set-associa-
tive instruction cache.

The L1 instruction memory content is not accessible by core load or store operations during normal operation. This
memory's content may be read and modified using either DMA or by loads and stores in Extended Data Access
mode.

L1 Instruction SRAM

The processor core reads instruction memory via a 64-bit instruction fetch bus. All addresses from this bus are 64-
bit aligned. Each instruction fetch can return any combination of 16-, 32- and 64-bit instructions (i.e., four 16-bit
instructions, two 16-bit instructions and one 32-bit instruction, two 32-bit instructions, or one 64-bit instruction).

The pointer registers and index registers, which are described in the Address Arithmetic Unit chapter, may only access
L1 instruction memory directly when Extended Data Access is enabled (see Extended Data Access), otherwise a di-
rect access to an address in instruction memory SRAM space generates an exception. Write access to the L1 instruc-
tion SRAM memory may also be made through the 64-bit system DMA port.

Memory Architecture

ADSP-BF7xx Blackfin+ Processor 7–3

Typically, the SRAM is implemented as a collection of single-ported sub-banks. Writes to one sub-bank may proceed
in parallel with reads from another, effectively making the instruction memory dual-ported.

L1 Instruction Cache

For information about cache terminology, see Terminology.

A portion of the L1 instruction memory can be configured as a 16 KB 4-way set-associative instruction cache, fea-
turing a cache line size of 32 bytes. To improve the average access latency for critical code sections, each line of the
cache can be locked independently. When the memory is configured as cache, it can only be accessed directly by
loads and stores if Extended Data Access mode is enabled.

When cache is enabled, only memory pages further specified as cacheable by the cacheability protection lookaside
buffers (CPLBs) are cached. When CPLBs are enabled, any memory location that is accessed must have an associat-
ed page definition available, else a CPLB exception is generated. CPLBs are described in Memory Protection and
Properties.

The figures in Cache Lines show the organization of the Blackfin+ processor instruction cache memory.

Enabling L1 Instruction Cache

The L1IM_ICTL.CFG bit reserves a portion of L1 instruction SRAM to serve as cache. Setting this bit also causes
the cache tags and dirty bits to be initialized to the Invalid state.

To store instructions in L2 and off-chip memories in the cache, enable the ICPLBs using the L1IM_ICTL.ENCPLB
bit and the ICPLB descriptors (L1IM_ICPLB_DFLT or L1IM_ICPLB_DATAx and L1IM_ICPLB_ADDRx registers).
The configuration must specify the desired memory pages as cacheable. For more information, see Memory Protec-
tion and Properties.

The memory system must maintain a consistent view of the cacheability of any memory word. As such, use SSYNC
instructions to ensure there is no memory traffic in progress while the cache mode is being changed. The code that
enables or disables the instruction cache must also not be cacheable itself. Additionally, do not enable ICPLBs when
the cache is initializing.

The recommended sequence for enabling the instruction cache is:

• with ICPLBs disabled, execute an SSYNC; instruction to ensure that any outstanding instruction fetches have
completed

• set L1IM_ICTL.CFG to reserve the cache and initialize the cache tags

• program the L1IM_ICPLB_DFLT, L1IM_ICPLB_DATAx and L1IM_ICPLB_ADDRx registers as required

• execute a CSYNC; instruction to ensure tag initialization is complete

• set L1IM_ICTL.ENCPLB to enable ICPLBs

• execute one final SSYNC; instruction

NOTE: The entire code sequence above must not be in a cacheable region of memory.

L1 Instruction Memory

7–4 ADSP-BF7xx Blackfin+ Processor

Cache Lines

As shown in the Instruction Cache Organization figure, the cache consists of a collection of cache lines. Each cache
line is made up of a tag component and a data component.

• The tag component incorporates a 20-bit address tag, replacement policy bits (including a Priority bit), and a
Valid bit.

• The data component is made up of four 64-bit words of instruction data.

The tag and data components of cache lines are stored in the tag and data memory arrays, respectively.

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 127

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 126

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 3

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 127

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 126

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 2

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 127

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 126

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 1

32-BIT IAB ADDRESS
FOR LOOKUP

4:1 MUX

64-BIT
IDB DATA

31 12 11 5 04

BYTE
SELECT

ADDRESS TAG

LINE
SELECT

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 127

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 126

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 3

.

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 2

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 1

VALID REPL ADDRESS WD3 WD2 WD1 WD0 LINE 0

1 2+1 20 4 x 64

WAY 0

Figure 7-2: Instruction Cache Organization

The Replacement bits are part of a round-robin replacement algorithm used to determine which cache line should
be replaced if a cache miss occurs.

The Valid bit indicates the state of a cache line. A cache line is always valid or invalid.

• Invalid cache lines have their Valid bit cleared, indicating the line will be ignored during an address-tag com-
pare operation.

• Valid cache lines have their Valid bit set, indicating the line contains valid instruction data that is consistent
with the source memory.

The tag and data components of a cache line are illustrated in the Cache Line - Tag and Data Portions figure.

L1 Instruction Cache

ADSP-BF7xx Blackfin+ Processor 7–5

TAG

PRIO

REPL V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
PRIO - PRIORITY BIT FOR LINE LOCKING
REPL - REPLACEMENT POLICY STATE
V - VALID BIT

Figure 7-3: Cache Line - Tag and Data Portions

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from the core matches a valid entry in the
cache. Specifically, a cache hit is determined by comparing the upper 20 bits of the instruction fetch address to the
address tags of valid lines currently stored in a cache set. The cache set (cache line across ways) is selected using bits
11 through 5 of the instruction fetch address. If the address tag compare operation results in a match in any of the
four ways and the respective cache line is valid, a cache hit occurs. If the address tag compare operation does not
result in a match in any of the four ways or the respective line is not valid, a cache miss occurs.

When a cache miss occurs, the instruction memory unit generates a cache line fill access to retrieve the missing in-
struction from the source memory external to the core. The address for the external memory access is the address of
the 32-byte block containing the target instruction word.

A location in the cache is selected to store the missing block once the cache line fill has completed. If the tag address
compare operation results in a cache miss, the Valid, Replacement and Priority bits for the selected set are examined
by a cache line replacement unit to determine the entry to use for the new cache line (whether that is Way0, Way1,
Way2, or Way3).

The cache line replacement unit first checks for invalid entries (entries with the Valid bit cleared). If there are no
invalid entries in the set, an entry with the Priority bit cleared is selected. In the last resort, the cache line replace-
ment unit will select an entry with its Priority bit set. Valid entries are selected using a replacement algorithm de-
signed to choose the entry that is statistically least likely to be accessed again. The Replacement bits play a role in the
implementation of this algorithm.

When a cache miss occurs, the core halts until the target instruction word is returned from external memory.

Instruction Cache Management

The system DMA controller and the core DAGs cannot normally access the instruction cache directly. By a combi-
nation of instructions and the use of Extended Data Access mode, it is possible to initialize the instruction tag and
data arrays and provide a mechanism for instruction cache test, initialization, and debug.

Instruction Cache Bypass Mode

The L1IM_ICTL.CBYPASS bit enables Instruction Cache Bypass mode. In this mode, instructions in cacheable
memory are loaded directly from the system without disturbing the contents of the cache. To ensure a consistent

L1 Instruction Cache

7–6 ADSP-BF7xx Blackfin+ Processor

view of cacheability in the memory, system code that enables, disables and configures cache must respect the follow-
ing guidelines:

• bypass mode must not be cacheable

• execute a SSYNC; instruction before enabling and after disabling cache bypass mode

Instruction Cache Locking by Line

The CPRIO bits in the LIIM_ICPLB_DATAx registers (see Memory Protection and Properties) are used to enhance
control over which code remains resident in the instruction cache. When a cache line is filled, the state of this bit is
stored along with the line's tag. It is then used with the replacement policy to determine which way is victimized if
all the cache ways are occupied when a new cacheable line is fetched. This bit indicates that a line is of either "low"
or "high" importance. In a modified replacement policy, a high can replace a low, but a low cannot replace a high. If
all four ways are occupied by highs, a cacheable low may replace a high. If all previously cached highs ever become
less important, they may be simultaneously transformed into lows by setting the L1IM_ICTL.CPRIORST bit.

When the L1IM_ICTL.CPRIORST bit is set to 1, the cached states of all CPRIO bits are cleared. This simultaneous-
ly forces all cached lines to be of equal (low) importance. L1IM_ICTL.CPRIORST must be 0 to allow the state of
the CPRIO bits to be stored when new lines are cached.

Instruction Cache Invalidation

The instruction cache can be invalidated as a whole, by address, or by cache line.

The simplest method for invalidating the entire instruction cache is to disable and then re-enable it. Setting
L1IM_ICTL.CFG to 0, and then, in a second write, setting L1IM_ICTL.CFG to 1 causes the cache to be re-initial-
ized with all Valid bits set to the Invalid state. As with any code that changes the instruction cache mode, these
writes must be preceded and followed by an SSYNC instruction, and the instruction sequence must not be in cachea-
ble memory.

The IFLUSH instruction can explicitly invalidate cache lines based on their line addresses. The target address of the
instruction is generated from the pointer registers. Because the instruction cache should not contain modified (dirty)
data, the cache line is simply invalidated and is not "flushed".

In the following example, the P2 register contains the address of a valid memory location. If this address has been
brought into cache, the corresponding cache line is invalidated after the execution of this IFLUSH instruction:

IFLUSH [P2] ; /* Invalidate cache line containing address that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in the memory map and its corresponding
cache line, it is most useful when the buffer being invalidated is less than the cache size.

Finally, larger portions of the cache can be invalidated by writing directly to the Valid bits while Extended Data
Access is enabled (see Extended Data Access).

Instruction Cache Management

ADSP-BF7xx Blackfin+ Processor 7–7

L1 Data Memory
L1 data memory is organized as a number of distinct blocks, each of which constitutes a separate contiguous region
of the address space. Accesses to different blocks are guaranteed not to collide, whereas accesses within a single block
will not collide if they are to different sub-banks. When there are no collisions, the following L1 data traffic could
occur in a single core clock cycle:

• Two 32-bit data accesses (two loads or one load and one store)

• One DMA I/O, up to 32 bits

• One 64-bit cache fill or victim access

There are three blocks of L1 data SRAM, blocks A, B and C. Parts of the two larger blocks, A and B, may be config-
ured as data cache, as controlled by bits in the L1DM_DCTL register.

The processor cannot fetch instructions directly from L1 data memory.

L1 Data SRAM

L1 data SRAM is directly addressable by the processor core and by the DMA controller. Core accesses are performed
with no stalls, so long as access collisions are avoided; therefore, configuring the whole of L1 data memory as SRAM
is potentially the most efficient way to use it. However, this is at the cost of additional software complexity when
data structures are larger than available L1 memory. In a common use case, DMA engines transfer data between L1
and the system while the core processes data previously loaded to L1.

To optimize memory performance, the programmer must ensure that stalls due to collisions are avoided. The Black-
fin+ architecture guarantees that accesses to different blocks do not collide. For example, a tight loop which loads
two operands per cycle will not incur stalls due to the loads if the operands are placed in separate blocks.

Depending on the memory microarchitecture, two accesses to the same block may not collide. However, a collision
due to two loads in a parallel issue instruction will not take more cycles than the additional cycles resulting from
executing one of the loads in a separate instruction.

Collisions between the core and DMA are less common because DMA runs at system clock speeds, which are some
fraction of the core clock. DMA accesses are also usually delayed behind core accesses, but after some delay a fairness
algorithm ensures that the DMA gets access to L1. If possible, DMA accesses should be to a different block than
concurrent core accesses.

L1 Data Cache

For definitions of cache terminology, see Terminology.

Each of the A and B blocks of L1 data memory can be configured to serve as a 16 KB 2-way set associative data
cache (up to 32 KB total), featuring a cache line length of 32 bytes. When the memory is configured as cache, it can
only be accessed directly by loads and stores if Extended Data Access mode is enabled.

L1 Data Memory

7–8 ADSP-BF7xx Blackfin+ Processor

If cache is enabled in the L1DM_CTL.CFG[1:0] bits, data CPLBs must also be enabled by setting the
L1DM_CTL.ENDCPLB bit. Only memory pages specified as cacheable by data CPLBs will be cached. The default
behavior when data CPLBs are disabled is for nothing to be cached.

Access to core MMR space is not controlled by the data CPLBs, so this region cannot be configured as cacheable.

Enabling L1 Data Cache

The L1DM_DCTL.CFG[1:0] bits can reserve a portion of L1 data SRAM to serve as cache. At reset, all L1 data
memory serves as SRAM by default, but these bits allow for either 16 KB (from block A only) or 32 KB (16 KB
from each of blocks A and B) to be enabled as cache. Configuring either one or two blocks as cache also causes the
cache tags to be initialized with the Valid bit set to the Invalid state.

To store data from L2 and off-chip memories in the cache, enable the DCPLBs using the L1DM_DCTL.ENCPLB bit.
The DCPLB descriptors (L1DM_DCPLB_DFLT or LDIM_DCPLB_DATAx and L1DM_DCPLB_ADDRx registers) must
specify the desired memory pages as cacheable. For more information, see Memory Protection and Properties.

The memory system must maintain a consistent view of the cacheability of any memory word. Use SSYNC instruc-
tions to ensure that there is no memory traffic in progress while the cache is being enabled or disabled. Also, avoid
enabling the cache while the cache tags are initializing. The recommended sequence for enabling the data cache is:

• Execute a SSYNC instruction with DCPLBs disabled to ensure that any outstanding memory traffic has com-
pleted.

• Set the L1DM_DCTL.CFG[1:0] bits, as appropriate, to reserve the cache and initialize the cache tags.

• Program the L1DM_DCPLB_DFLT, L1DM_DCPLB_DATAx and L1DM_DCPLB_ADDRx registers, as required.

• Execute a CSYNC instruction to ensure tag initialization is complete.

• Set L1DM_CTL.ENCPLB to enable DCPLBs.

• Execute one final SSYNC instruction to ensure strong ordering against potential subsequent read instructions.

Data Cache Access

The cache controller tests the address from the DAGs against the tag bits. If the logical address is present in L1
cache, a cache hit occurs, and the data is accessed in L1. If the logical address is not present, a cache miss occurs, and
the memory transaction is passed to the next level of memory via the system interface.

The set index and replacement policy for the cache controller determines the cache tag and data space that are allo-
cated for the data coming back from external memory.

A data cache line is in one of three states: Invalid, Exclusive (valid and clean), or Modified (valid and dirty). If valid
data already occupies the allocated line and the cache is configured for write-back storage, the controller checks the
state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data overwrite the old line.

L1 Data Cache

ADSP-BF7xx Blackfin+ Processor 7–9

• If the state of the line is modified (dirty), then the cache contains the only valid copy of the data. This is copied
back to external memory before the new tag and data is written to the cache.

Cache Write Method

Cache write memory operations can be implemented by using either a write-through method or a write-back meth-
od:

• For each store operation, write-through caches initiate a write to external memory immediately upon the write
to cache. If the cache line is replaced or explicitly flushed by software, the contents of the cache line are invali-
dated rather than written back to external memory.

• A write-back cache does not write to external memory until the line is replaced by a load operation that needs
the line. For most applications, a write-back cache is more efficient than a write-through cache, as the external
memory accesses are less frequent.

The cache-write method is selected by the data CPLB descriptors (see Memory Protection and Properties). Since the
cache mode is independently selectable between memory pages, these cache modes can be used simultaneously.

Data Cache Block Select

When both data blocks A and B have memory serving as cache, the L1DM_DCTL.DCBS bit may be used to control
whether the sets in each block are to act as a single cache or as two caches which may be accessed in parallel. For the
best general-purpose operation, a single cache (DCBS=0) should be selected.

When both blocks A and B are configured as cache, they operate as two independent 16 KB 2-way set-associative
caches that can be independently mapped into the Blackfin+ processor address space. The L1DM_DCTL.DCBS bit
designates address bit A[14] or A[23] as the cache selector, which selects the cache implemented by data block A
or the cache implemented by data block B:

• If DCBS = 0, then A[14] is part of the address index. All addresses in which A[14] = 0 use data block B,
and all addresses in which A[14] = 1 use data block A. In this case, A[23] is treated as merely another bit in
the address that is stored with the tag in the cache and compared for hit/miss processing by the cache.

• If DCBS = 1, then A[23] is part of the address index. All addresses in which A[23] = 0 use data block B,
and all addresses in which A[23] = 1 use data block A. In this case, A[14] is treated as merely another bit in
the address that is stored with the tag in the cache and compared for hit/miss processing by the cache.

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects data block A instead of data block B. Alternating 16 KB regions of the non-L1
memory map will target the two respective 16 KB caches implemented by the two data blocks A and B. As a
result, the cache operates as if it were a single, contiguous, 2-way set-associative 32 KB cache. Each way is 16
KB in length, and all of the data elements with the same first 14 address bits will index to a unique set, in
which up to two elements can be stored (one in each way).

L1 Data Cache

7–10 ADSP-BF7xx Blackfin+ Processor

• For a given large region of memory, data in the first 16 KB of that memory (offset 0x0000 - 0x3FFF) will
be cached only in data block B. Data in the next 16 KB address range (offset 0x4000 - 0x7FFF) will be
cached only in data block A, and so on.

• If DCBS = 1, A[23] selects data block A instead of data block B. With DCBS = 1, the system functions more
like two independent 16 KB caches, each being 2-way set-associative and serving alternating blocks of 8 MB
source memory regions. Data block B caches all data accesses for the first 8 MB of the memory address range,
with each access vying for the two line entries. Likewise, data block A caches data located above 8 MB and
below 16 MB, and so on.

For example, if DCBS = 1 and the application utilizes a 1 MB data buffer located entirely in the first 8 MB of
memory, it is effectively served by only half the cache, as the 2-Way set associative 16 KB cache associated with data
block B is the only cache memory it can target. In this instance, the application never derives any benefit from data
block A.

However, if the application is working from two data sets located at least 8 MB apart in memory, closer control over
how the cache maps to the data is possible. For example, if the program is doing a series of dual-MAC operations in
which both DAGs are accessing data on every cycle, the DAG0 data set can be mapped to one 8 MB region of
memory while the DAG1 data is mapped to another, thus ensuring that:

• DAG0 gets its data from data block A for all of its accesses, and

• DAG1 gets its data from data block B.

This arrangement causes the core to use both data buses for cache line transfers and achieves the maximum data
bandwidth between the cache and the core.

The Data Cache Mapping figure shows an example of how mapping is performed when DCBS = 1.

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

DATA BANK B

DATA BANK B

Figure 7-4: Data Cache Mapping When DCBS = 1

Data Cache Bypass Mode

The L1DM_DCTL.CBYPASS bit enables Data Cache Bypass mode, where data in cacheable memory is loaded direct-
ly from the system without disturbing the contents of the cache. To ensure a consistent view of cacheability in the

L1 Data Cache

ADSP-BF7xx Blackfin+ Processor 7–11

memory, system code that enables, disables and operates in data cache bypass mode should be preceded by and
followed by an SSYNC instruction.

Data Cache Control Instructions

The processor defines three data cache control instructions that are accessible in User and Supervisor modes. The
instructions are PREFETCH, FLUSH, and FLUSHINV.

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the L1 cache. If the prefetch hits in the cache,
generates an exception, or addresses a cache-inhibited region, PREFETCH functions like a NOP. To improve per-
formance, it can be used to begin a data fetch prior to when the processor needs the data.

• FLUSH (Data Cache Flush) causes the data cache to synchronize the specified cache line with external memory.
If the cached data line is dirty, the instruction writes the line out and marks the line clean in the data cache. If
the specified data cache line is already clean or does not exist, FLUSH functions like a NOP.

• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data cache to perform the same function as the
FLUSH instruction and then invalidate the specified line in the cache. If the line is in the cache and dirty, the
cache line is written out to external memory, and the Valid bit in the cache line is cleared. If the line is not in
the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC instruction after the FLUSH instruction
to ensure that the flush operation has completed. If strong ordering is desired to ensure that previous stores have
been pushed through all the logic, place an SSYNC instruction before the FLUSH.

Data Cache Invalidation

Besides the FLUSHINV instruction, explained in the previous section, two additional methods are available to inva-
lidate the data cache when flushing is not required.

The simplest method for invalidating the entire data cache is to disable and then re-enable it by first setting
L1DM_DCTL.CFG to 0. Then, in a second write, set L1DM_DCTL.CFG to 1 to cause the cache to be re-initialized
with all Valid bits set to the Invalid state. As with any code that changes the data cache mode, these write operations
must be preceded by and followed by an SSYNC instruction.

The second technique directly invalidates cache lines by writing directly to the Valid bits while Extended Data Ac-
cess mode is enabled (see Extended Data Access).

Extended Data Access
The L1 memory system contains special-purpose memory spaces to which direct access by load or store instructions
is normally restricted. When extended data accesses are enabled, all restricted memory spaces including L1 instruc-
tion memory may be directly accessed by suitably-privileged software. The extended data accesses are typically not as
fast as regular L1 data SRAM accesses.

Setting the Extended Data Access Enable bit (L1DM_DCTL.ENX) enables data access to restricted L1 memory spaces.
When enabled, regular load and store instructions may be used to read or write these memory spaces:

L1 Data Cache

7–12 ADSP-BF7xx Blackfin+ Processor

• L1 data SRAM currently being used as cache

• L1 instruction SRAM, whether being used as cache or not

Extended data access is also possible to these additional memory spaces which are mapped into otherwise unused
parts of the core's L1 address space:

• cache tags

• cache Dirty bits

• Parity bits

When extended data accesses are enabled, loads or stores to all the restricted regions (including L1 instruction
SRAM) are controlled by the data CPLBs if they are enabled. When extended data accesses are disabled, a load or
store to any of these restricted memory regions will cause a Data Access CPLB Protection Violation exception, irre-
spective of the CPLB setting.

Loads and stores to restricted memory regions can only be through DAG0. An attempt to access them through
DAG1 will cause a Data Access CPLB Protection Violation exception.

Loads and stores to cache tags and dirty bits should be 32-bit accesses and 32-bit aligned, else incorrect data may be
returned with no exception raised.

Writes to L1 instruction SRAM to initialize instruction memory should be followed by a CSYNC instruction to en-
sure the processor flushes its pipeline and fetches the next instruction from the modified SRAM.

Extended data access mode does not affect DMA access to these memory regions. DMA access is never permitted to
Parity bits, cache tags, Dirty bits, or SRAM configured as cache.

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory pages, Cacheability Protection Lookaside
Buffer (CPLB) management, MMU management, and CPLB registers.

Memory Management Unit (MMU)

The Blackfin+ processor contains a page-based Memory Management Unit (MMU). This mechanism provides con-
trol over the cacheability of memory ranges, as well as management of protection attributes at a page level. The
MMU provides great flexibility in allocating memory and I/O resources between tasks, with complete control over
access rights and cache behavior.

The MMU is implemented as two 16-entry Content Addressable Memory (CAM) blocks and two default descrip-
tors. Each entry is referred to as a Cacheability Protection Lookaside Buffer (CPLB) descriptor. When enabled, every
valid entry in the MMU is examined on any fetch, load, or store operation to determine whether or not there is a
match between the address being requested and the page described by the CPLB entry. If a match occurs, the cache-
ability and protection attributes contained in the descriptor are used for the memory transaction with no additional
cycles added to the execution of the instruction. If no valid CPLB entry matches, the cacheability and protection
attributes are provided by the default descriptor.

Memory Protection and Properties

ADSP-BF7xx Blackfin+ Processor 7–13

Because the L1 memories are separated into instruction and data memories, the CPLB entries are also divided be-
tween instruction and data CPLBs. Sixteen CPLB entries and one default descriptor are used for instruction fetch
requests (ICPLBs). Another sixteen CPLB entries are used for data transactions (DCPLBs). The ICPLBs and
DCPLBs are enabled by setting the appropriate bits in the L1 Instruction Memory Control (L1IM_ICTL) and L1
Data Memory Control (L1DM_DCTL) registers, respectively.

Data accesses to system and core MMR space are never controlled by CPLBs. If the data CPLBs are enabled, data
accesses to all memory spaces (including extended data accesses, when enabled) are controlled by the data CPLBs.

Instruction CPLB

The Instruction CPLB (ICPLB) governs instruction fetches. Each of the 16 ICPLB page descriptors consists of a
pair of 32-bit values:

• L1IM_ICPLB_ADDR[n] defines the start address of the page described by the ICPLB descriptor. For more in-
formation, see Instruction Memory CPLB Address Registers .

• L1IM_ICPLB_DATA[n] defines the properties of the page described by the ICPLB descriptor. For more infor-
mation, see Instruction Memory CPLB Data Registers .

The L1IM_ICPLB_DFLT register provides default properties should no valid page descriptor match. For more infor-
mation, see Instruction Memory CPLB Default Settings Register .

NOTE: To ensure proper behavior and future compatibility, all reserved bits in the L1IM_ICPLB_DATAx and
L1IM_ICPLB_DFLT registers must be set to 0 whenever these registers are written.

Data CPLB

The Data CPLB (DCPLB) governs data accesses by load and store instructions. Each of the 16 DCPLB page de-
scriptors consists of a pair of 32-bit values:

• The L1DM_DCPLB_ADDR[m] defines the start address of the page described by the DCPLB descriptor. For
more information, see the Data Memory CPLB Address Registers .

• L1DM_DCPLB_DATA[m] defines the properties of the page described by the DCPLB descriptor. For more in-
formation, see the Data Memory CPLB Data Registers .

The L1DM_DCPLB_DFLT register provides default properties should no valid page descriptor match. For more infor-
mation, see the Data Memory CPLB Default Settings Register .

CAU-
TION:

OTP memory does not support burst transfers, which is required to support cache line fills. As such,
OTP memory should not be covered by a cache-enabled DCPLB. If it is, the OTP controller will re-
turn an error when a read access is attempted.

NOTE: To ensure proper behavior and future compatibility, all reserved bits in the L1DM_DCPLB_DATAx and
L1DM_DCPLB_DFLT register must be set to 0 whenever these registers are written.

Memory Protection and Properties

7–14 ADSP-BF7xx Blackfin+ Processor

CPLB Page Descriptors

A CPLB page descriptor is a two-word descriptor consisting of an address descriptor word
(L1IM_ICPLB_ADDR[n] or L1DM_DCPLB_ADDR[n]) and a properties descriptor word (L1IM_ICPLB_DATA[n]
or L1DM_DCPLB_DATA[n]). Each valid CPLB entry describes a memory page.

The 4 GB address space of the processor can be divided into smaller ranges of memory or I/O, referred to as memo-
ry pages. Every address within a page shares the attributes defined for that page. The architecture supports 11 differ-
ent page sizes:

• 1 KB

• 4 KB

• 16 KB

• 64 KB

• 256 KB

• 1 MB

• 4 MB

• 16 MB

• 64 MB

• 256 MB

• 1 GB

Different page sizes provide a flexible mechanism for matching the mapping of attributes to different kinds of mem-
ory and I/O.

The CPLB address descriptor word provides the base address of the page in memory. Each page must be aligned on
a boundary that is an integer multiple of its size (e.g., a 4 MB page must start on an address divisible by 4 MB,
whereas a 1 KB page can start on any 1 KB boundary).

Memory Page Properties

The second word of a CPLB page descriptor, L1IM_ICPLB_DATA[n] or L1DM_DCPLB_DATA[n], specifies the
other properties or attributes of the page. These properties include:

• Page size - any power of 4 between 1 KB and 1 GB.

• Cacheability properties:

• Cacheable/non-cacheable: accesses to this page use the cache or bypass the cache.

Cacheability may be specified separately for L1 and L2 cache.

Memory Protection and Properties

ADSP-BF7xx Blackfin+ Processor 7–15

• If cacheable: write-through or write-back determines whether data writes propagate directly to memory or
are deferred until the cache line is reallocated.

• If non-cacheable: I/O device space or regular memory. Data reads from I/O device space are non-specula-
tive. This is suitable for use with memory-mapped devices with read side-effects, but it is considerably less
efficient than a regular memory access and should not be used indiscriminately.

• Protection properties:

• Supervisor write access permission: enables or disables writes to this page when in Supervisor mode (ap-
plies to data pages only).

• User write access permission: enables or disables writes to this page when in User mode (applies to data
pages only).

• User read access permission: enables or disables reads from this page when in User mode.

• CPLB entry status:

• Valid: the processor ignores the CPLB page descriptor unless this bit is set.

• Dirty: the data in this page in memory has changed since the CPLB was last loaded. Writes to a page
without this bit set cause a CPLB protection exception. Software is responsible for setting the bit to enable
writes to the page and for propagating any subsequent modifications to the page further down the memo-
ry hierarchy. Ensure this bit is always set in data CPLBs if it is not required to track modifications to indi-
vidual pages.

• Lock: keep this entry in the MMU, and do not participate in CPLB replacement policy. This bit is ignor-
ed by the hardware and reserved for use by software implementing the CPLB replacement policy.

Default Memory Properties

Cacheability and protection properties may be set for memory spaces not described by the CPLB page descriptors.
Once the processor has found no valid CPLB page descriptor matching an address, it looks up the default properties
in the L1IM_ICPLB_DFLT register for instruction fetches and in the L1DM_DCPLB_DFLT register for data accesses.

The registers specify properties for L1 and non-L1 (system) memory separately.

• EOM (No Exception on Miss): when this bit is cleared, an access to the memory space (L1 or system) which
does not match a valid CPLB page descriptor causes a CPLB miss exception. When this bit is set, the properties
from this register are used when no valid CPLB page descriptor matches.

• Protection properties:

• Supervisor write access permission (applies to data CPLB only).

• User write access permission (applies to data CPLB only).

• User read access permission.

• Cacheability properties (system memory only):

CPLB Page Descriptors

7–16 ADSP-BF7xx Blackfin+ Processor

• Cacheable or non-cacheable in L1 and/or L2 cache

• If cacheable: write-through or write-back mode (applies to data CPLB only).

• If non-cacheable: I/O device space or regular memory (applies to data CPLB only).

The default memory properties are only used when CPLBs are enabled and the EOM bit is set.

CPLB Status Registers

Bits in the DCPLB Status (L1DM_DSTAT) and ICPLB Status (L1IM_ISTAT) registers provide information about
the cause of CPLB-related exceptions and help identify the CPLB entry that has triggered the exception. The excep-
tion service routine may also inspect the SEQSTAT.EXCAUSE field and the CPLB entries to infer the cause of the
fault. For more information, see the Data Memory CPLB Status Register and the Instruction Memory CPLB Status
Register .

NOTE: The L1DM_DSTAT and L1IM_ISTAT registers are valid only while in the faulting exception service rou-
tine.

DCPLB and ICPLB Fault Address Registers

The DCPLB Fault Address (L1DM_DCPLB_FAULT_ADDR) and ICPLB Fault Address
(L1IM_ICPLB_FAULT_ADDR) registers hold the address that has caused a fault in L1 Data Memory and L1 Instruc-
tion Memory, respectively. For more information, see the Data Memory CPLB Fault Address Register and the In-
struction Memory CPLB Fault Address Register .

CPLB Management

Use of CPLBs is optional. If all L1 memory is configured as SRAM and no memory protection is required by the
application, then CPLBs need not be enabled. However, CPLBs must be used if cache or memory protection is re-
quired.

NOTE: Before caches are enabled, the MMU and its supporting data structures must be set up and enabled.

Upon reset, CPLBs are disabled, and the Memory Management Unit (MMU) is not used. CPLBs are enabled sepa-
rately for instruction fetches (by setting the L1IM_DCTL.ENCPLB bit) and data accesses (by setting the
L1DM_ICTL.ENCPLB bit).

Once the CPLBs are enabled, an exception occurs when the Blackfin+ processor issues a memory operation for
which no valid CPLB page descriptor exists and the default CPLB register indicates EOM (exception on miss). This
exception places the processor into Supervisor mode and vectors to the MMU exception handler. The handler is
typically part of the operating system (OS) kernel that implements the CPLB replacement policy.

The MMR storage locations for CPLB entries are limited to 16 page descriptors for instruction fetches and 16 page
descriptors for data load and store operations.

CPLB Page Descriptors

ADSP-BF7xx Blackfin+ Processor 7–17

For small and/or simple memory models, it may be possible to define a set of CPLB page descriptors combined with
defaults that fit into these 32 entries, cover the entire addressable space, and never need to be replaced. This type of
definition is referred to as a static memory management model.

However, operating environments commonly define more CPLB descriptors (to cover the addressable memory and
I/O spaces) than will fit into the available on-chip CPLB MMRs. When this happens, a Page Descriptor Table is
used, which stores all the potentially required CPLB descriptors. The specific format for the Page Descriptor Table is
not defined as part of the Blackfin+ processor architecture. Different operating systems, which have different memo-
ry management models, can implement Page Descriptor Table structures that are consistent with the OS require-
ments. This allows adjustments to be made between the level of protection afforded versus the performance attrib-
utes of the memory-management support routines.

NOTE: Before CPLBs are enabled, valid CPLB page descriptors (defaults) must be in place for both the Page De-
scriptor Table and the MMU exception handler. The LOCK bits of these CPLB page descriptors are com-
monly set so that they are not inadvertently replaced in software.

The MMU exception handler uses the faulting address to index into the Page Descriptor Table structure to find the
correct CPLB descriptor data to load into one of the on-chip CPLB page descriptor register pairs. If all on-chip
registers contain valid CPLB entries, the handler selects one of the descriptors to be replaced, and the new descriptor
information is loaded. Before loading new descriptor data into any CPLBs, the corresponding group of sixteen
CPLBs must be disabled by clearing the ENCPLB bit in either L1DM_DCTL or L1IM_ICTL.

After the new CPLB page descriptor is loaded, the CPLB is re-enabled, the exception handler returns, and the fault-
ing memory operation is restarted. This operation should now find a valid CPLB descriptor for the requested ad-
dress, and it should proceed normally.

A single instruction may generate an instruction fetch as well as one or two data accesses. It is possible that more
than one of these memory operations references data for which there is no valid or default CPLB page descriptor. In
this case, the exceptions are prioritized and serviced in this order:

• Instruction page miss

• Data page miss using DAG0

• Data page miss using DAG1

CrossCore® Embedded Studio provides an MMU exception handler and automatic generation of the Page Descrip-
tor Table structure. Please refer to the Cache and CPLBs section of the System Run-Time Documentation.

CPLB Exception Cause

An exception service routine can inspect the SEQSTAT.EXCAUSE field to determine the cause of a fault. If the cause
is a CPLB- or L1 memory-related exception, further information can be obtained from the CPLB status and fault
address registers.

The DCPLB Status (L1DM_DSTAT) and ICPLB Status (L1IM_ISTAT) registers provide information about the
cause of CPLB-related exceptions and help identify the CPLB entry that has triggered the exception. The exception

Memory Protection and Properties

7–18 ADSP-BF7xx Blackfin+ Processor

service routine can also inspect the CPLB entries to infer the cause of the fault. For more information, see the Data
Memory CPLB Status Register and the Instruction Memory CPLB Status Register .

The DCPLB Fault Address (L1DM_DCPLB_FAULT_ADDR) and ICPLB Fault Address
(L1IM_ICPLB_FAULT_ADDR) registers hold the address that caused a fault in L1 data memory and L1 instruction
memory, respectively. For more information, see the Data Memory CPLB Fault Address Register and the Instruction
Memory CPLB Fault Address Register .

NOTE: The L1DM_DSTAT, L1IM_ISTAT, L1DM_DCPLB_FAULT_ADDR, and L1IM_ICPLB_FAULT_ADDR regis-
ters are valid only while in the faulting exception service routine.

L1 Parity Protection
The following sections provide details of L1 parity error support on Blackfin+ processors.

Parity Protection Coverage

Data and instruction L1 SRAM are parity-protected using one bit per byte. Data and instruction L1 cache tag arrays
and dirty bits are also parity-protected using at least one bit per byte.

The parity bits are calculated and stored on every write to L1 SRAM or cache, either by the processor or by system
traffic such as DMA and cache fill requests. Parity error checking is disabled by default. On power-up and upon
reset, L1 SRAM and the parity bits are in an undefined state. Software must write to all locations of L1 to initialize
the memory and parity bits before enabling parity read checking. This is performed automatically by the processor
Boot ROM code upon power-up.

Parity Error Detection and Notification

Parity error checking may be enabled separately for L1 instruction memory and for L1 data memory by setting the
Read Parity Checking Enable (RDCHK) bit in the L1IM_ICTL and L1DM_DCTL registers, respectively.

Parity errors are checked for whenever L1 memory is read. Parity checking is distributed so that all simultaneous L1
read traffic (DAG reads, instruction reads, DMA reads, and victim reads) can be simultaneously examined.

If a parity error is detected during any L1 read, an NMI is raised. The error is immediately signaled to the processor,
even if the read is speculative in nature. L1 reads by the processor are intercepted before they lead to further immedi-
ate consequence. The core will receive an NMI, be immediately stalled, and will remain stalled until it vectors to the
handler in response to the NMI. This guarantees that core state is not modified based on a corrupted L1 memory
state.

If the read was not initiated by the local processor, an NMI is raised but the transfer is unstoppable. To guarantee
that the system is not corrupted by an L1 parity error, external reads of L1 by DMA or another processor must not
be used, and write-back cache must also not be used. Note that write-through cache is a safe alternative to write-
back cache, since it does not generate victim traffic.Typically, it is better to accept the risk of some system corrup-
tion, which can be isolated by the parity error handler, to benefit from the increased performance of write-back
cache or DMA.

L1 Parity Protection

ADSP-BF7xx Blackfin+ Processor 7–19

The core will signal a double fault error to the SEC if a parity error is detected while servicing a Reset or Emulation
event. An NMI is not raised if a Parity Error is detected while servicing an NMI, but the Parity Error Status registers
are updated.

Parity Error Recovery

When a parity error is detected on a L1 read, the L1 memory has already been corrupted and must be restored to a
known good state. Read-only data in SRAM might be restored from a known good copy in ROM or ECC-protected
L2 or L3 memory. Volatile data may need to be recomputed by rerunning a computation from a checkpointed good
state. Caches can be recovered by completely invalidating the cache (by disabling and then immediately re-enabling
it) so that all lines would be reacquired from non-L1 memory.

The location of a parity error can be determined by inspecting the SEQSTAT register in combination with the In-
struction Memory Parity Error Status (L1IM_IPERR_STAT) or Data Memory Parity Error Status
(L1DM_DPERR_STAT) registers. For more information, see the Instruction Parity Error Status Register and the Data
Memory Parity Error Status Register .

Four bits in the SEQSTAT register indicate whether the parity error occurred in instruction or data memory and
whether it was detected on a read by the processor or a read by the system:

• PEIC indicates a parity error on a L1 instruction memory read by the processor.

• PEDC indicates a parity error on a L1 data memory read by the processor.

• PEIX indicates a parity error on a L1 instruction memory read by the system.

• PEDX indicates a parity error on a L1 data memory read by the system.

Once the general location of the error has been identified, the precise location can be discovered by reading
L1IM_IPERR_STAT (for an error in L1 instruction memory) or L1DM_DPERR_STAT (for an error in L1 data mem-
ory).

If the fault is in SRAM, the LOCATION field is set to zero, the ADDRESS field is set to bits 21:3 of the aligned ad-
dress of the eight bytes containing the faulting location, and a bit is set in the BYTELOC for each byte of the eight
bytes that contains an error (e.g., BYTELOC[0] is set if byte 0 has an error, and so on).

When a misaligned memory read crosses an 8-byte boundary and errors occur on both sides of the boundary, then
only the errors on the lower side of the boundary are reported.

If the fault is in a cache tag array, the LOCATION field is set to a non-zero value. In this case, knowledge of the
memory microarchitecture is required to interpret the LOCATION, ADDRESS and BYTELOC fields. See Extended Da-
ta Access to L1 Caches.

The LOCATION and BYTELOC fields of the L1IM_IPERR_STAT and L1DM_DPERR_STAT registers are sticky. They
are set when hardware encounters a parity error and are cleared only on reset or when the processor explicitly writes
to the MMR. As these bits are write-1-to-clear (W1C), they can be cleared by writing back the value read from the
registers.

L1 Parity Protection

7–20 ADSP-BF7xx Blackfin+ Processor

If a parity error is detected while servicing an NMI or a higher-priority event, the Parity Error Status registers are set.
When the processor is at thread level or servicing a lower-priority event and bits in the LOCATION or BYTELOC
fields are set, then an NMI is raised. As such, it is recommended that the NMI handler read and write back the
Parity Error Status registers to clear these bits for all NMI events associated with parity errors. If any further parity
errors are detected while still in the NMI handler, the status registers will update again, thus causing the processor to
vector again to the NMI handler immediately upon exiting it to handle the new error(s).

Parity Errors Simultaneous with Exceptions and Interrupts

The Concurrent Parity Error and Interrupt bit (SEQSTAT.CPARINT) indicates a parity error was detected simulta-
neously with an exception or an interrupt.

If an instruction causes both a parity error and an exception, CPARINT is set, IPEND[3] and IPEND[2] are set,
RETN is set to the address of the exception handler, and RETX is set to the address of the instruction that caused the
parity error. It may not be possible to recover from this situation, as the exception may actually be a side-effect of the
parity error (if that is what caused the instruction to be corrupted).

If an interrupt is latched at the same time that a parity error is detected, CPARINT is set, IPEND[3] and the IPEND
bit for the interrupt are set, RETN is set to the address of the interrupt handler, and RETX is set to the address of the
instruction that caused the parity error. This enables the interrupt handler to be executed upon returning from the
NMI handler, but this also means that RETN should not be inspected to determine the location of the parity error
on an instruction read; rather, L1IM_IPERR_STAT should be used.

Direct Access To Parity Bits for L1 SRAM

In support of both parity error interrupt servicing and hardware test, it is possible to inspect the state of a parity bit
without generating a parity error and write the state of a parity bit to an intentionally incorrect state by reading from
and writing to extended L1 memory locations. When extended data access to L1 memory is enabled (by setting the
L1DM_DCTL.ENX bit), a number of extended accesses are allowed, as listed in the Permitted Extended Accesses table.

Table 7-1: Permitted Extended Accesses

Access Type Address Parity

Read L1 SRAM address + 0x80000 Read data at address without parity checking

Read L1 SRAM address + 0xC0000 Read parity bits for 32-bit word at address

Write L1 SRAM address + 0xC0000 Write 32-bit value to word at address and invert
parity bits to create an intentional parity error for
test purposes

Parity bits are read into the low-order bit of each byte. The value of the remaining bits may not be zero and cannot
be relied upon.

Direct access to parity bits for L1 cache tags and dirty bits is possible only when extended data access is enabled.
Knowledge of the memory microarchitecture is required to do this (see Extended Data Access to L1 Caches).

L1 Parity Protection

ADSP-BF7xx Blackfin+ Processor 7–21

L1 Initialization Requirements

If parity checking is to be used, software must write all locations of L1 after each processor power-up. This includes
initial device power-up, as well as subsequent exits from the Hibernate state. Normally, this process takes place in the
processor's boot code. These writes are necessary to initialize the otherwise random states of parity bits to legitimate
states. All of L1 must be initialized, rather than just those locations expected to be read, otherwise speculative access-
es have the potential to trigger unintended parity errors.

To allow the processor to be able to initialize L1 without the risk of triggering these unwanted parity errors, L1
parity error-checking on reads is disabled by default. Writes are always performed with parity bits calculated and
stored. This mode is controlled by the Read Parity Checking Enable (RDCHK) bit in the L1IM_ICTL and
L1DM_DCTL registers. This bit is deasserted by hardware reset and must be set by software (after L1 initialization) to
enable read parity checking. Initialization of L1 may be achieved through any combination of DMA and processor
L1 accesses.

When the cache is enabled, all the tags are written to. As such, enabling the cache also initializes the parity bits
protecting the tags. However, enabling the cache does not initialize the parity bits for the SRAM holding the cache
data arrays. These must be initialized prior to enabling the cache as part of the L1 SRAM initialization process de-
scribed above.

Additional Notes on Parity Errors

Although hardware provides a means for determining the locations of corrupted L1, this may not provide sufficient
clues to identify the locations outside the core that receive corrupted data from L1. The system can receive corrup-
ted L1 data through either direct access by another core, DMA, or via cache victimization. In the case of direct sys-
tem access, an L1 source address may not alone implicate the system target address. In the case of cache victimiza-
tion, the victim address stored in the Tag array is typically overwritten with a Fill address prior to all victim data
being extracted from L1 memory. Therefore, cache will not natively be able to provide the system address of a cor-
rupt victim.

A cache bypass mode is provided to allow direct access to system memory. Cache bypass is enabled by setting the
appropriate bypass bit (L1DM_ICTL.CBYPASS for data cache and L1IM_DCTL.CBYPASS for instruction cache).
This can be useful during servicing of L1 parity errors. While cache is bypassed, CPLB cache settings are ignored,
and cache hits are blocked. This preserves the cache in the precise state it was in prior to being bypassed, ignoring
any already active fill, flush and victimization servicing, which continues until completed. While cache is being by-
passed, extended data accesses may still be used to access cache content.

Example Parity Handler
.section NONCACHED_ECC_PROTECTED_DATA;
.var saved_sp;
.var nmi_handler_stack[BIG_ENOUGH];

.section NONCACHED_ECC_PROTECTED_CODE;

.extern nmi_handler;
nmi_handler:
/* switch to ECC-protected stack */

L1 Parity Protection

7–22 ADSP-BF7xx Blackfin+ Processor

[saved_sp] = SP;
SP = nmi_handler_stack + BIG_ENOUGH;
/* save other registers on ECC-protected stack */

/* If program used system MMRs or memory with read side-effects, check for non-speculative
access abort. */
R7 = SEQSTAT;
CC = BITTST(R7, BITP_SEQSTAT_NSPECABT);
IF CC JUMP unrecoverable_error;

/* If there are other sources of NMI, check for external NMI which vectors to the same
handler as parity. */
CC = BITTST(R7, BITP_SEQSTAT_SYSNMI);
IF CC JUMP nmi_handler;

/* CPARINT indicates parity error simultaneous with exception or interrupt, not necessarily
recoverable. */
CC = BITTST(R7, BITP_SEQSTAT_CPARINT);
IF CC JUMP unrecoverable_error;

/* If DMA may have read L1 or Write-back cache is enabled, check for parity error on system
read */
CC = BITTST(R7, BITP_SEQSTAT_PEIX);
IF CC JUMP unrecoverable_error;
CC = BITTST(R7, BITP_SEQSTAT_PEDX);
IF CC JUMP unrecoverable_error;

/* We have a recoverable parity error. */
CC = BITTST(R7, BITP_SEQSTAT_PEIC);
IF CC JUMP parity_in_instruction_L1;

/* Parity error in data L1. */
R7 = [REG_L1DM_DPERR_STAT];
/* clear the error by writing BYTELOC and LOCATION */
[REG_L1DM_DPERR_STAT] = R7;
/* test for error in cache TAG or MOD */
R5 = R7 << 29;
CC = R5 == 0;
IF !CC JUMP parity_error_in_data_cache;

/* compute the error address */
R6 = [REG_L1DM_SRAM_BASE_ADDR];
R5 = R7 << 8;
R5 = R5 >> 8;
R6 = R6 + R5;
/* if address is in non-cache SRAM goto reload */

/* otherwise reset data cache */
parity_in_data_cache:
R7 = [REG_L1DM_DCTL];

L1 Parity Protection

ADSP-BF7xx Blackfin+ Processor 7–23

R6 = R7;
BITCLR(R6, BITP_L1DM_DCTL_CFG+1);
BITCLR(R6, BITP_L1DM_DCTL_CFG);
[REG_L1DM_DCTL] = R6; /* disable cache */
CSYNC;
[REG_L1DM_DCTL] = R7; /* re-enable cache */
CSYNC; /* wait for cache to reinitialize */
JUMP return_from_parity_error;

parity_in_instruction_L1:
R7 = [REG_L1IM_IPERR_STAT];
/* clear the error by writing BYTELOC and LOCATION */
[REG_L1IM_IPERR_STAT] = R7;
/* test for error in cache TAG or MOD */
R5 = ~BITM_L1DM_DPERR_STAT_LOCATION;
R5 = R7 & R5;
CC = R5 == 0;
IF !CC JUMP parity_error_in_instruction_cache;
/* compute the error address */
R6 = [REG_L1DM_SRAM_BASE_ADDR];
R5 = BITM_L1DM_DPERR_STAT_ADDRESS;
R5 = R7 & R5;
R6 = R6 + R5;
/* if address is in non-cache SRAM goto reload */

/* otherwise reset instruction cache */
parity_in_instruction_cache:
R7 = [REG_L1IM_ICTL];
BITCLR(R7, BITP_L1IM_ICTL_CFG);
[REG_L1IM_ICTL] = R7; /* disable cache */
CSYNC;
BITSET(R7, BITP_L1IM_ICTL_CFG);
[REG_L1IM_ICTL] = R7; /* re-enable cache */
CSYNC;
BITSET(R7, 1);
[REG_L1IM_ICTL] = R7; /* re-enable cache */
CSYNC;
BITSET(R7, BITP_L1IM_ICTL_CFG);
[REG_L1IM_ICTL] = R7; /* re-enable cache */
CSYNC; /* wait for cache to reinitialize */

return_from_parity_error:
/* restore registers */
SP = [saved_sp]; /* restore stack */
RTN;

L1 Parity Protection

7–24 ADSP-BF7xx Blackfin+ Processor

Memory Transaction Model
Both internal and external memory locations are accessed in little-endian byte order. The Data Stored in Little Endi-
an Order figure shows a data word stored in register R0 and in memory at address location addr. B0 refers to the
least significant byte of the 32-bit word.

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

Figure 7-5: Data Stored in Little Endian Order

The Instructions Stored in Little Endian Order figure shows 16- and 32-bit instructions stored in memory. The
diagram on the left shows 16-bit instructions stored in memory, with the most significant byte of the instruction
stored in the high address (byte B1 in addr+1) and the least significant byte in the low address (byte B0 in addr).

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

Figure 7-6: Instructions Stored in Little Endian Order

The diagram on the right shows 32-bit instructions stored in memory. Note that the most significant 16-bit half-
word of the instruction (bytes B3 and B2) is stored in the low addresses (addr+1 and addr), and the least significant
half-word (bytes B1 and B0) is stored in the high addresses (addr+3 and addr+2).

Load/Store Operation
The Blackfin+ processor architecture supports the RISC concept of a Load/Store machine. This machine is the char-
acteristic in RISC architectures whereby memory operations (loads and stores) are intentionally separated from the
arithmetic functions that use the targets of the memory operations. The separation is made because memory opera-
tions, particularly instructions that access off-chip memory or I/O devices, often take multiple cycles to complete
and would normally halt the processor, preventing an instruction execution rate of one instruction per cycle.

In write operations, the store instruction is considered complete as soon as it executes, even though many cycles may
elapse before the data is actually written to an external memory or I/O location. This arrangement allows the pro-
cessor to execute one instruction per clock cycle, and it implies that the synchronization between when writes com-
plete and when subsequent instructions execute is not guaranteed. Moreover, this synchronization is considered un-
important in the context of most memory operations.

Memory Transaction Model

ADSP-BF7xx Blackfin+ Processor 7–25

Interlocked Pipeline

In the execution of instructions, the Blackfin+ processor architecture implements an interlocked pipeline. When a
load instruction executes, the target register of the read operation is marked as busy until the value is returned from
the memory system. If a subsequent instruction tries to access this register before the new value is present, the pipe-
line will stall until the memory operation completes. This stall guarantees that instructions that require the use of
data resulting from the load do not use the previous or invalid data in the register, even though instructions are
allowed to start executing before the memory read completes.

This mechanism allows the execution of independent instructions between the load and the instructions that use the
read target without requiring the programmer or compiler to know how many cycles are actually needed for the
memory read operation to complete. If the instruction immediately following the load uses the same register, it sim-
ply stalls until the value is returned. Consequently, it operates as the programmer expects. However, if four other
instructions are placed after the load but before the instruction that uses the same register, all of them execute, and
the overall throughput of the processor is improved.

Alignment

Non-aligned memory operations are supported. Loads and stores with addresses which are not a multiple of the data
size access the bytes at sequential addresses starting with the address passed to the instruction, as expected. This may
generate multiple memory read or write operations, but generally the instruction will not take more cycles than the
equivalent two aligned loads and stores.

Aligned addresses are required in special circumstances, such as access to MMRs, I/O device space, exclusive loads
and stores, and extended data access. In these cases, an address which is not a multiple of the data size causes a Mis-
aligned Address exception.

For backward compatibility, some instructions in the quad 8-bit group and those used with the DISALGNEXCPT
instruction do not cause alignment exceptions, but ignore the low order bits of a non-aligned address to access
aligned data.

Ordering of Loads and Stores

The relaxation of synchronization between memory access instructions and their surrounding instructions is referred
to as weak ordering of loads and stores. Weak ordering implies that the timing of the actual completion of the mem-
ory operations - even the order in which these events occur - may not align with how they appear in the sequence of
the program source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a subsequent instruction.

• Load operations using data previously written will use the updated values.

• Store operations will eventually propagate to their ultimate destination.

Because of weak ordering, the memory system is allowed to prioritize reads over writes. In this case, a write that is
queued anywhere in the pipeline, but not completed, may be deferred by a subsequent read operation, and the read
is allowed to be completed before the write. Reads are prioritized over writes because the read operation has a de-
pendent operation waiting on its completion, whereas the processor considers the write operation complete, and the

Load/Store Operation

7–26 ADSP-BF7xx Blackfin+ Processor

write does not stall the pipeline if it takes more cycles to propagate the value out to memory. This behavior could
cause a read that occurs in the program source code after a write in the program flow to actually return its value
before the write has been completed. This ordering provides significant performance advantages in the operation of
most memory instructions.

Speculative Load Execution

Load operations from memory do not change the state of the memory value. Consequently, issuing a speculative
memory read operation for a subsequent load instruction usually has no undesirable side-effect. In some code se-
quences, such as a conditional branch instruction followed by a load, performance may be improved by speculatively
issuing the read request to the memory system before the conditional branch is resolved. For example:

 IF CC JUMP away_from_here;
 RO = [P2];
 . . .
away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any results that are in the process of being
returned can be ignored. Conversely, if the branch is not taken, the memory will have returned the correct value
earlier than if the operation were stalled until the branch condition was resolved.

Store operations never access memory speculatively because this could cause modification of a memory value before
it is determined whether or not the instruction should have executed.

Interruptible Load Behavior

Because it is interruptible, a load instruction may generate more than one memory read operation. If an interrupt of
sufficient priority occurs between the load instruction entering the pipeline and the completion of the load instruc-
tion, the sequencer cancels the instruction. After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a memory read operation was initiated before
the load was canceled, and this would be followed by a second read operation after the load is executed again. For
most memory accesses, multiple reads of the same memory address have no side-effects.

There is no corresponding issue with store instructions, as the memory write operation only happens after a store
instruction has committed. As such, the store can only be interrupted before the memory write has been initiated,
and it is canceled with no visible side-effect. The store instruction is re-executed on return from the interrupt and
ultimately initiates the memory write.

For alternative load behavior, see Non-Speculative, Non-Interruptible Loads.

Hazards of the High-Performance Memory Architecture

The Blackfin+ memory model, with weak ordering of reads and writes and redundant read operations, enables a
long pipeline while avoiding stalls and maintaining fast interrupt response. However, it can cause side-effects that
the programmer must be aware of to avoid improper system operation.

When sharing data with another core or device via memory accessible to both, the order of how read and write
operations complete is often significant, as the writing core must be sure the data is visible to the reading device

Load/Store Operation

ADSP-BF7xx Blackfin+ Processor 7–27

before signalling that the data is available. Similarly, when writing to or reading from non-memory locations such as
off-chip I/O device registers, the order of how read and write operations complete is also significant. For example, a
read of a status register may depend on a write to a control register. If the address is the same, the read would return
a value from the store buffer rather than from the actual I/O device register, and the order of the read and write at
the register may be reversed. Both these phenomena could cause undesirable side-effects in the intended operation of
the program and peripheral.

Redundant memory reads can also be an issue. Interruptible load behavior can cause multiple memory read opera-
tions where only one was intended. For most memory accesses, multiple reads of the same memory address have no
side-effects; however, for some off-chip memory-mapped devices such as peripheral data FIFOs, reads are destructive
(i.e., each time the device is read, the FIFO advances and the data cannot be recovered and re-read). The redundant
memory reads due to speculation will also cause problems if the load from a peripheral with destructive read behav-
ior, such as a FIFO, is subsequently aborted.

Speculation can also be a problem where a load from an illegal address is aborted. A redundant memory read opera-
tion from a non-L1 address which does not map to any memory or device in the system will cause an External
Memory Addressing error. Note that the load might be aborted because it is in the shadow of a conditional jump
that tests whether or not the address is valid.

In summary, the following hazards exist:

• Reordering of an externally visible write with another externally visible action.

• Reordering of an externally visible read and write to the same location.

• Reordering of an externally visible read and write to different locations.

• Caches and write buffers can prevent memory operations becoming externally visible at all.

• Destructive reads that are not generated because they are serviced from the write buffer or cache.

• Repeated destructive reads due to interruptible loads.

• Unintended destructive reads due to speculative loads.

• Unintended access to illegal addresses causing spurious error interrupts.

The Blackfin+ architecture provides a number of solutions to these problems. Synchronization instructions (CSYNC
or SSYNC) may be used to impose a precise ordering at the points in the code where it is required while generally
retaining the benefits of weak ordering.

Cachebility properties may be specified in the CPLBs, which control the external visibility of memory operations
and specify some regions as I/O device space. Loads from MMRs and I/O device space are never executed specula-
tively and are non-interruptable. All reads and writes to MMRs are strongly ordered.

CPLBs may be used to avoid spurious illegal address exceptions, as the memory read operation will not be initiated
for a load that causes a page miss exception, but the exception will be suppressed in the case of a speculative load.

Load/Store Operation

7–28 ADSP-BF7xx Blackfin+ Processor

Synchronizing Instructions

When strong ordering of loads and stores is required, as may be the case for sequential accesses to shared memory,
use the core or system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures that all pending core operations have completed and that the store buffer between
the processor core and the L1 memories has been flushed before proceeding to the next instruction. Pending core
operations include any pending interrupts, speculative states (such as branch predictions), and exceptions. Consider
the following example code sequence:

 IF CC JUMP away_from_here;
 CSYNC;
 R0 = [P0];
away_from_here:

The CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved, forcing stalls into the execution pipe-
line until the condition is resolved and any entries in the processor store buffer have been flushed.

• All pending interrupts or exceptions have been processed before CSYNC completes.

• The load is not speculatively fetched from memory.

The SSYNC instruction ensures that all side-effects of previous operations are propagated out through the interface
between the L1 memories and the rest of the chip. In addition to performing the core synchronization functions of
CSYNC, the SSYNC instruction flushes any write buffers between the L1 memory and the system domain and gener-
ates a sync request to the system that requires acknowledgement before SSYNC completes.

Where the external visibility of memory operations or interaction with system MMRs is a concern, SSYNC must be
used. CSYNC is sufficient to control interaction with core MMRs and the L1 memory system.

Cache Coherency

For shared data, software must provide cache coherency support, as required. To accomplish this, use the FLUSH
instruction (see the FLUSH description in Data Cache Control Instructions) and/or explicit line invalidation (see
Data Cache Invalidation).

Whenever the external visibility of reads and writes is a concern, the cachebility properties specified in the CPLBs
must be considered. A store to write-back L1 cache is only guaranteed to become visible externally after a FLUSH
instruction is executed, whereas stores to write-through L1 is visible after the memory write completes.

If the memory region is written by another core or device, there is no automatic coherence mechanism to ensure
earlier values in the cache are invalidated. As such, a load operation might return stale data from the cache unless
explicit line invalidation is used to ensure coherency.

Commonly shared data which is updated by more than one writer should be maintained in non-cacheable regions.

Load/Store Operation

ADSP-BF7xx Blackfin+ Processor 7–29

I/O Device Space

The I/O device space property may be specified in the CPLBs. Load instructions from memory with this property
behave in a manner more suitable for access to devices with destructive reads, such as FIFOs.

I/O device space is not cached. Reads from I/O device space are executed in a non-interruptible manner and are
never executed speculatively. However, writes to I/O device space may be buffered. Reads will not be serviced from
the write buffer, so a write followed by a read to the same location will always become externally visible and execute
in the correct order. Reads and writes to different locations, however, may get reordered unless they are separated by
a SSYNC instruction.

Loads and stores to I/O device space may not be executed in parallel with another memory operation, and addresses
must be aligned to the data size.

Memory-Mapped Registers

A portion of the address space is reserved for Memory-Mapped Registers (MMRs), which is split into a region for
system MMRs and a region for core MMRs. System MMRs are located in the memory space from
0x20000000-0x2FFFFFFF, and core MMRs are mapped to 0x1FC00000-0x1FFFFFFF. Refer to the Blackfin
Processor Hardware Reference for more information.

All MMRs are only accessible in Supervisor mode. Accesses to MMRs in User mode generate an Illegal Use of Su-
pervisor Resource exception. The same exception is also raised if a load or store to an MMR is issued in parallel with
another load or store. Loads from MMRs are non-speculative and non-interruptible. All loads and stores to each
MMR space are strongly ordered.

The core MMR space is located in the same memory region on every Blackfin+ core in a system. Core MMRs may
only be accessed by load and store instructions executed by the local core and are not accessible via DMA. Like non-
memory-mapped registers, the core MMRs connect to the 32-bit Register Access Bus (RAB) and are accessed at the
CCLK rate.

All core MMRs must be read and written with 32-bit-aligned accesses; however, some MMRs have fewer than 32
bits defined. In this case, the unused bits are reserved and must be written as zero when writing the register. System
MMRs connect through the system crossbars (SCBs) and must be accessed aligned to the data size. Accesses to non-
existent MMRs generate an Illegal Access exception, and writes to read-only MMRs are ignored.

Each chapter in this manual describing a portion of the processor architecture includes a description of any related
core MMRs. System MMRs are described in each chapter of the processor's hardware reference manual.

Non-Speculative, Non-Interruptible Loads

Loads from MMRs and I/O device space are non-speculative and non-interruptible. When a load from one of these
spaces is encountered, a non-speculative request is sent to the sequencer. The sequencer will then disable all inter-
rupts that can be disabled and stall the pipeline below the load instruction, at which point the non-speculative read
is issued. Interrupts are subsequently re-enabled after the read data is returned. Even though most interrupts are dis-
abled, there are four interrupt levels (IVG0-IVG3) that are effectively non-maskable and therefore might interrupt a
non-speculative read:

Load/Store Operation

7–30 ADSP-BF7xx Blackfin+ Processor

• Emulator hardware interrupt (IVG0): emulator hardware interrupts can interrupt I/O accesses. However, this
would only be during debugging sessions.

• Reset (IVG1): a reset event can interrupt non-speculative accesses. Since the core is being reset, this is expected
behavior.

• NMI (IVG2): Non-Maskable Interrupts (NMIs) come from three possible sources:

• External events on the NMI pin

• RAISE 2; instruction (which is committed before I/O starts, so it cannot interrupt an non-speculative
access)

• Parity errors (which can interrupt a non-speculative access if caused by DMA of cache victim traffic)

• Exception (IVG3): always related to an instruction executing. The non-speculative read mechanism is designed
to allow all exceptions in the pipeline before the non-speculative read to be taken before the non-speculative
read is placed on the bus. As such, there will never be an exception during an non-speculative read.

If a non-speculative read is interrupted, whether to an I/O device page or a MMR, the Non-Speculative Access Was
Aborted bit (SEQSTAT.NSPECABRT) is set. As the effect of the interrupted non-speculative read might be that a
read side-effect occurred but the read data was lost, this is a non-recoverable error condition.

Exclusive Load, Store, and Sync (Spin Lock Example)

The load from memory exclusive, store to memory exclusive, and synchronize exclusive state instructions enable the
implementation of software semaphores to control the interaction between tasks on separate processor cores or to
separate tasks running on a single processor core.

A load exclusive instruction reads data from memory in the same manner as a regular load instruction. The load
exclusive instruction also establishes exclusive access to that memory location. A store exclusive instruction only
modifies memory if the task still has exclusive access to the location. An intervening load exclusive instruction from
another task causes the exclusive access to be lost. The state of exclusive operations is tracked in the XMONITOR,
XWACTIVE and XWAVAIL bits in the SEQSTAT register. The SYNCEXCL instruction synchronizes this state with the
processor state, ensuring the CC bit in ASTAT has been updated to indicate whether a previous store exclusive in-
struction was performed successfully. The address passed to an exclusive load or store instruction must be aligned to
the size of the data.

The following code sequence implements a spin lock:

P0 = lock; /* address of lock */
R1 = 1; /* lock value */
spin:
R0 = B[P0] (Z,EXCL);
CC = R0==0; /* is semaphore unlocked? */
if !CC JUMP spin; /* no - try again */
CC = (B[P0] = R1) (EXCL); /* try to lock */
SYNCEXCL; /* wait for write and copy to CC */
IF !CC JUMP spin; /* failed - try again */

Load/Store Operation

ADSP-BF7xx Blackfin+ Processor 7–31

/* critical section */

R1 = 0; /* unlocked value */
B[P0] = R1; /* unlock */

Semaphores controlling interaction between tasks on separate cores should be placed in non-cacheable, non-L1
memory that is accessible by both cores. In this case, the load and store exclusive instructions generate exclusive
transactions on the system bus, and the memory controller participates in a protocol that ensures that a store exclu-
sive instruction will fail if the memory location has been modified by another core since the corresponding load
exclusive instruction.

Semaphores controlling interaction between tasks on the same core may be placed in cacheable memory or L1
SRAM. In this case, the load and store exclusive instructions do not generate special memory transactions. The
SYNCEXCL instruction must be called in context switch code to clear any pending exclusive transactions and to pre-
serve the result of any store exclusive instructions in the CC bit of the preserved ASTAT register.

/* context switch */
SYNCEXCL;
[--SP] = ASTAT; /* saves store excl result if one was pending */

Interrupt handlers that are known not to use exclusive operations may leave the exclusive state unmodified. Any
pending exclusive write operations will complete and update the state in SEQSTAT which will be read by a
SYNCEXCL instruction upon returning from the interrupt.

SYNCEXCL should also be used in the exception handler to reset exclusive state on exceptions caused by load or store
exclusive instructions.

Load exclusive and store exclusive instructions must be aligned and may not be used with MMRs, I/O device space,
or extended data accesses.

Execution results for exclusive load instructions and exclusive store instructions vary, depending on whether the
memory addressed is shareable or non-shareable. The shareability of memory spaces is determined from the memory
space and the CPLB settings, as shown in the Memory Kinds table.

An exclusive load or exclusive store to an illegal memory location causes an exception. An exclusive load or exclusive
store to a non-shareable memory location succeeds, but the operation is not exclusive with respect to other cores. The
operation is exclusive with respect to other threads running on the core executing the instruction. An exclusive load
or exclusive store to a shareable memory location ensures exclusivity with respect to other cores by using exclusive
transactions on the memory bus. Exclusive transactions require hardware support in the memory device. If that sup-
port is not available, an uncached exclusive load from that memory will cause an exception.

Table 7-2: Memory Kinds (Example for ADSP-BF70x Processors)

Memory CPROPS Meaning "0" Shareability

MMR any Core or system MMR Illegal

L1 any L1 sram Non-shareable

non-L1 CPLBEN=0 CPLB Disabled Shareable

Load/Store Operation

7–32 ADSP-BF7xx Blackfin+ Processor

Table 7-2: Memory Kinds (Example for ADSP-BF70x Processors) (Continued)

Memory CPROPS Meaning "0" Shareability

non-L1 CPLBBYPASS=1 Cache temporarily disabled Shareable

non-L1 000 Page is non-cacheable memory Shareable

non-L1 001 Write-Back Cacheable in L1 Non-shareable

non-L1 100 I/O Device Space Illegal

non-L1 101 Write-Through Cacheable in L1 Non-shareable

Atomic TESTSET Instruction (Spin Lock Example)

The processor provides an atomic TESTSET instruction. This is primarily provided for backward compatability and
is recomended to use with Exclusive Load and Store instructions, which make more efficient use of system resources.
The TESTSET instruction reads an indirectly-addressed memory byte, tests whether it is zero, and then writes the
byte back to memory with the most significant bit (MSB) set, all as one indivisible operation. If the byte is originally
zero, the instruction sets the CC bit. If the byte is originally non-zero, the instruction clears the CC bit.

The TESTSET instruction is used with a regular store instruction to implement a spin lock, as follows:

P0 = lock;
spin:
TESTSET (P0);
IF !CC JUMP spin;

/* critical section */

R1 = 0; /* unlock value */
B[P0] = R1; /* unlock */

NOTE: For more information, see the TESTSET instruction's reference page.

L1 Memory Microarchitecture
This section provides an overview of the L1 memory system in the Blackfin+ processors.

L1 Memory Access

Processor access to the L1 memory space is intended to occur in a single cycle. The L1 memory has four virtual
ports: DAG0 read, DAG1 read, Store, and DMA read/write. The memories used to implement L1 are physically
single-ported, so access conflicts are possible. To reduce the likelihood of such memory conflicts, L1 memory is divi-
ded into individually accessible 4 KB sub-banks, each having its own port multiplexor and a dedicated data bus. A
memory conflict will only occur when multiple ports request at least one byte from the same sub-bank in the same
cycle.

Load/Store Operation

ADSP-BF7xx Blackfin+ Processor 7–33

The incoming addresses for the four L1 ports are centrally decoded into sub-bank selects, which are then compared
for collisions. The collisions are prioritized, and the winner is allowed to access the memory. The losers receive a stall
and try again in the next cycle.

Load instructions present the read address to the memory system in pipeline stage F (DF1). The memory read oc-
curs in stage G (DF2). The result is returned to the processor's history buffer in stage H (EX1). Store instructions
are described in L1 Data Stores.

The DCPLB page descriptors generate exceptions in pipe stage G (DF2). The exception information is pipelined
along with the memory operation and deposited into the history buffer in pipe stage H (EX1).

DMA accesses use the same timing as DAG reads and writes, which is three cycles for reads and two cycles for
writes.

Memory Logical Sub-Bank Arrangement

The L1 memory sub-banks are logically arranged into rows and columns, as shown in the ADSP-BF70x Data Block
A Address Mapping to Sub-Banks figure. The datapath width consists of the number of memory columns times the
width of a sub-bank. All sub-banks are identical. The sub-banks are four bytes wide, and there are two columns;
thus, the datapath width is eight bytes. The number of rows is determined by the desired amount of L1 memory.

The address provided by the DAGs is a byte address. The lower three bits of the address index bytes across the eight
byte datapath width. The next set of bits address memory words within a sub-bank. In data blocks A and B, each
sub-bank is also logically split into an upper and lower half, with bit 14 selecting which half. As such, address bits
31:20 select L1 memory and the block within L1 memory. Address bits 19:15, 13, 12, and 2 select the sub-bank.
Address bit 14 and 11:3 select the row within the sub-bank. Finally, address bits 1:0 select the byte within the row.
Data bank C only contains two sub-banks, where bit 2 selects the sub-bank and bits 13:3 select the row. As descri-
bed, the addresses are contiguous.

L1 Memory Access

7–34 ADSP-BF7xx Blackfin+ Processor

SUB BANK 6 LO SUB BANK 7 LO

SUB BANK 4 LO SUB BANK 5 LO

SUB BANK 2 LO SUB BANK 3 LO

SUB BANK 0 LO SUB BANK 1 LO

SUB BANK 6 HI SUB BANK 7 HI

SUB BANK 4 HI SUB BANK 5 HI

SUB BANK 2 HI SUB BANK 3 HI

SUB BANK 0 HI SUB BANK 1 HI

512 ROWS

512 ROWS

512 ROWS

512 ROWS

512 ROWS

512 ROWS

512 ROWS

512 ROWS

0x1180 0FF8
...
0x1180 0000

0x1180 1FF8
...
0x1180 1000

0x1180 2FF8
...
0x1180 2000

0x1180 3FF8
...
0x1180 3000

0x1180 4FF8
...
0x1180 4000

0x1180 5FF8
...
0x1180 5000

0x1180 6FF8
...
0x1180 6000

0x1180 7FF8
...
0x1180 7000

4 BYTES4 BYTES
ADDRESS

RANGE

Figure 7-7: ADSP-BF70x Data Block A Address Mapping to Sub-Banks

Misaligned Data Access to L1

Misaligned memory accesses are supported. If all the bytes of an access lie within the address offset from 0-7, then
the misaligned access can be serviced in a single cycle (assuming no sub-bank conflicts). If this requirement is not
satisfied, then the access is considered a "crossed access" and is broken into two pieces within the MMU. The two
halves of a crossed access are handled sequentially and are reassembled in the history buffer and returned to the core
as a single entity. Thus, the core is isolated from the effects of the misaligned access, aside from the extra cycle re-
quired to retrieve all the data.

L1 Data Stores

Processor stores to data memory are more complicated than loads because the store address arrives in pipe stage F
(DF1), but the data does not arrive until pipe stage J (WB). As such, the Memory Controller must create a place-
holder for the address. When the data arrives, it is matched with the address. The address/data pair is then delivered
to L1 memory on the Store port. The block that records the write address is called the Read/Write Buffer.

The name Read/Write Buffer is derived from the fact that it handles uncached loads from the system, as well as all
stores. Each Read/Write buffer entry contains an address which describes a particular set of eight aligned memory
bytes, and data storage for those bytes. The number of bytes stored in a given buffer is determined by the datapath
width. When a new store enters pipe stage G (DF2), its address is compared to the addresses in all currently valid
Read/Write entries. If there is a match, then the existing buffer entry is used, otherwise a new buffer entry is alloca-
ted. The ID of the buffer entry is placed in a queue called the Store Queue. The Store Queue performs the function
of matching incoming store data with the proper Read/Write entry. When valid write data is present in the Read/
Write buffer, it gets scheduled for "draining" to L1 memory using the L1 Store port.

L1 Memory Access

ADSP-BF7xx Blackfin+ Processor 7–35

Write Gathering is supported. Consider a sequence of byte writes to L1 memory, starting with an aligned address.
The first byte will allocate a Read/Write entry, and the address of the second byte will match the Read/Write entry
of the first. These two bytes will use the same Read/Write entry and is called write gathering. The Read/Write buffer
entry tracks which of the eight bytes has been loaded with valid data. Only these bytes are written to memory.

Write Data Forwarding is supported. Consider a byte write, followed by a read of the same byte. The read operation
must wait for the write data to become available in the memory. Once the write data arrives at the memory system,
it often takes several cycles to get the data into the L1 memory sub-bank. Write forwarding short circuits this process
by delivering the write data to the history buffer as soon as it arrives at the memory controller.

System Slave Interface

The Blackfin+ core interface is an SCB slave interface used to access a core's L1 memory. The width of the read and
write data buses are 32 bits. This interface is used for DMA access to the L1 memory spaces.

SCB transaction burst lengths of one to sixteen are supported. All burst types (Fixed address, Incrementing address,
and Wrap mode) and sizes less than or equal to the bus width are supported, as are arbitrary write strobes. However,
locked/exclusive accesses and SCB cache information signaling are not supported by the interface.

The slave interface does not reorder read or write transactions; however, no ordering is enforced between the read
and write transaction streams. The slave interface will respond with a slave error for illegal accesses. During read
responses, an error will be reported for every access within the read burst that attempted an illegal access. For write
responses, an error will be reported if any access of the burst attempted an illegal access. Illegal accesses do not result
in transactions being initiated to the L1 memory.

The following accesses result in a slave error:

• Access to a non-populated L1 region

• Access to an L1 region configured as cache

Core MMR Access

Reads of core MMR registers in the MMU are non-speculative in nature and use the same timing as L1 memory
reads. Core MMR reads must be 32-bit-aligned accesses performed in Supervisor mode, else an MMR exception is
generated. Core MMR reads are stalled in pipe stage G (DF2) until all prior MMR writes have committed. This
behavior is necessary because of the functional side effects of MMR writes. MMR writes take effect in the cycle
immediately after write commit in pipe stage J (WB). There is no MMR store queue which could create timing
uncertainty. CPLBs do not control the MMR address space.

System Memory Access

Unlike L1 loads, system loads allocate a Read/Write buffer entry. This is because, like stores, the data arrives late and
an address placeholder and a way to associate the address and data is needed. Unlike stores, each system load is allo-
cated a new Read/Write entry. There is no "read gathering" allowed. The ID of the Read/Write entry allocated for
the system read is passed to the System Read Queue and the history buffer. System reads gather in the System Read
Queue waiting to be dispatched to the System. When the System gasket accepts the read request, the request is

L1 Memory Access

7–36 ADSP-BF7xx Blackfin+ Processor

plucked from the queue. When the read data returns, still tagged with the Read/Write ID, it is forwarded directly to
the history buffer.

System stores behave in a similar fashion to L1 stores. Multiple system stores into the same eight-byte aligned space
will gather into the same Read/Write buffer entry. Write drains to the system gasket are scheduled the same way as
L1 writes. When a system store causes a Read/Write entry to be allocated, subsequent system loads matching that
Read/Write address will use that entry's ID. This is necessary to ensure that the write data is properly forwarded to
the history buffer along with the bytes read from system memory.

System accesses may also be misaligned and result in a crossed access. In this case, two Read/Write entries will be
allocated. The two components of the crossed access are treated as separate transactions by the Read/Write buffer
and system gasket. The history buffer understands that crossed system reads are split and rejoins them before deliv-
ery to the core.

Reads of MMRs, I/O device space, and the read part of the TESTSET instruction are non-speculative and non-inter-
ruptible. These reads are not added to the System Read Queue. Instead, when the read operation is passed to the
history buffer in pipe stage H (EX1), a non-speculative request is sent to the sequencer. The sequencer will then
disable most interrupts and stall the pipeline below the non-speculative read while holding the non-speculative read
in stage H (EX1). Once this is done, the system read request is sent to the System Memory Interface. The non-
speculative read is then issued, and interrupts are re-enabled when the read data is returned.

System Memory Interface

The Blackfin+ core memory interface to the system is used to access memory regions outside of L1 and MMR space.
The data widths of the read and write data buses are 64 bits.

Cache and non-cache transactions are signaled across the memory interface. Cache transactions are 256 bits and
result in a burst of four 64-bit words. The burst type signaled for cache transactions is WRAP mode. For cache reads,
a core expects the critical word to be the first one returned, as signified by the address sent during the read transac-
tion. Non-cache transactions, whether for data or instructions, use a burst type of INCR with a transaction length of
one.

The TESTSET instruction is supported via a bus-locked transaction. When a TESTSET instruction is committed, all
pending memory transactions are completed before the read portion of the TESTSET is initiated. After the read data
is returned, the write portion of the TESTSET instruction will be initiated to the same memory location. After a
write response is received by the interface, other memory transactions will once again be allowed. If the TESTSET
instruction is killed in the processor pipe before it is commited, a dummy write will be performed on the system
crossbar with all byte enables set to inactive to clear the lock.

Load and Store Exclusive instructions are supported by exclusive bus transactions.

As access to the System Memory space crosses from the core clock domain to the system clock domain, synchroniza-
tion circuitry is required to force the timing of the accesses to align properly, which incurs additional read latencies.
As this processor features a single Clock Generation Unit (CGU) to generate all the on-chip clocks, synchronization
among the clock domains is guaranteed for integer CCLK::SYSCLK ratios (M::1). When this is true, the synchron-
izers can optionally be bypassed to reduce read latency by setting the System Memory Sync Bypass bit
(SYSCFG.MEMSBYP).

System Memory Access

ADSP-BF7xx Blackfin+ Processor 7–37

NOTE: Do NOT set the SYSCFG.MEMSBYP bit when the system is programmed with a fractional
CCLK::SYSCLK ratio (M::N).

System MMR Interface

The Blackfin+ system MMR interface is a crossbar master interface used to access the system MMR memory region.
The data width of the read and write data buses are 32 bits. Only a single system MMR transaction can be active at
any time; therefore, the read and write address buses are shared in the interface. The length of all transactions is one,
and the supported transaction sizes are 8-, 16-, and 32-bit.

All reads via the system MMR interface are non-speculative.

As access to the System MMR space crosses from the core clock domain to the system clock domain, synchroniza-
tion circuitry is required to force the timing of the accesses to align properly, which incurs additional read latencies.
As this processor features a single Clock Generation Unit (CGU) to generate all the on-chip clocks, synchronization
among the clock domains is guaranteed for integer CCLK::SYSCLK ratios (M::1). When this is true, the synchron-
izers can optionally be bypassed to reduce read latency by setting the System MMR Sync Bypass bit
(SYSCFG.MMRSBYP).

NOTE: Do NOT set the SYSCFG.MMRSBYP bit when the system is programmed with a fractional
CCLK::SYSCLK ratio (M::N).

L1 Cache Details

The upper 16 KB of L1 instruction SRAM, L1 data block A and L1 data block B, may be individually configured as
cache. When so configured, these 16 KB are reserved for cache lines fetched from non-L1 memory. The cache tags
occupy this memory space only when cache is enabled.

Both data block A and data block B can be configured as data cache. When both are enabled as cache, Address bits
14 and 23 of a cacheable load/store operation select which data cache is searched for a particular cache line (see Data
Cache Block Select).

When accessing a cache line present in L1 cache, the access timing is identical to a standard L1 memory access. On a
cache read, all lines in the set are read in parallel with the cache tag access, and the correct data is selected. On an
instruction fetch, all eight subbanks are read, and a data load may access up to four subbanks. These accesses will
collide with accesses to the other half of these subbanks, which remain in use as L1 SRAM.

Extended Data Access to L1 Caches

When extended data access is enabled by setting the L1DM_DCTL.ENX bit, cache tags, dirty bits and associated pari-
ty bits may be directly accessed with load and store instructions. The data cache tag memory and dirty array reside
in the upper portion of the 256 KB region of L1 data block A. All accesses to these regions must be 32 bits wide,
have an 8-byte-aligned address, issued from DAG0, and not be in parallel with another load or store.

Two bits of the extended data access address encode PARCTL and PARSEL. Setting PARCTL disables parity checking
for the access. When accessing L1 SRAM, setting PARSEL with PARCTL enables parity bits to be toggled to cause
parity errors (for test purposes) when writing to the address and enables SRAM parity bits to be read when reading

System Memory Access

7–38 ADSP-BF7xx Blackfin+ Processor

from the address. When accessing cache tag and dirty arrays, PARSEL has no meaning, as the parity bits can be
directly read or written.

The following tables provide details of the data cache tags. Separate copies of each tag are maintained for accesses by
DAG0 and for accesses by DAG1.

Table 7-3: Data Cache Tags Extended Data Access Address

Address Bit Meaning

A[31:20] L1 Data Block A Address

A[19] PARCTL

A[18] PARSEL

A[17:14] 1111

A[13] 1=Tag for DAG0, 0=Tag for DAG1

A[12:4] Set Index

A[3] Way

A[2:0] 000

Table 7-4: Data Cache Tags Extended Data Access Value

Data Bit Value

D[31:29] 0

D[28] Priority Parity

D[27] Fill Pending Parity

D[26] Next Victim Parity

D[25] Valid Parity

D[24] Tag Parity

D[23] Priority

D[22] Fill Pending

D[21] Next Victim

D[20] Valid

D[19:0] Tag

Each access to the data cache dirty bits reads or writes the bits for both ways of two sets. Only even-addressed sets
can be addressed. As such, the following table always shows Set Index bit 0 and Way as zero.

Table 7-5: Data Cache Dirty Bits Extended Data Access Address

Address Bit Meaning

A[31:20] L1 Data Block A Address

L1 Cache Details

ADSP-BF7xx Blackfin+ Processor 7–39

Table 7-5: Data Cache Dirty Bits Extended Data Access Address (Continued)

Address Bit Meaning

A[19] PARCTL

A[18] PARSEL

A[17:11] 1110100

A[10:5] Set Index Bits 7 to 1

A[4:0] 00000

Table 7-6: Data Cache Dirty Bits Extended Data Access Value

Data Bit Value

D[31:8] 0

D[7] Odd Set Way 1 Dirty Parity

D[6] Odd Set Way 0 Dirty Parity

D[5] Odd Set Way 1 Dirty

D[4] Odd Set Way 0 Dirty

D[3] Even Set Way 1 Dirty Parity

D[2] Even Set Way 0 Dirty Parity

D[1] Even Set Way 1 Dirty

D[0] Even Set Way 0 Dirty

Cached data is stored in SRAM banks which may be accessed at their native address in ENX mode.

Table 7-7: Data Cache Data Extended Data Access Address and Mapping to L1 SRAM Subbank

L1 SRAM Address Bits Cache Location

A[31:21] L1 Data SRAM Address

A[20] Set Index Bit 8 Selects Block A or B

A[19] PARCTL

A[18] PARSEL

A[17:15] Usually 0 (Depends on Size of Data Block)

A[14] 1

A[13] Set Index Bit 7

A[12] Way

A[11:5] Set Index Bits 6:0

A[4:0] Byte Offset in Cache Line

L1 Cache Details

7–40 ADSP-BF7xx Blackfin+ Processor

The 20-bit Tag, 9-bit Set Index, and 5-bit offset within the cache line can be combined to form the home address of
data in the cache.

Table 7-8: Data Address from Tag, Set Index, and Offset

L1DM_DCTL.CFG[1] L1DM_DCTL.DCBS Address

0 0 Tag[19:12], Tag[11], Tag[10:3], Tag[2], Tag[1], Set[7:0], Off-
set[4:0]

0 1 Tag[19:12], Tag[2], Tag[10:3], Tag[11], Tag[1], Set[7:0], Off-
set[4:0]

1 0 Tag[19:12], Tag[11], Tag[10:3], Set[8], Tag[1], Set[7:0], Off-
set[4:0]

1 1 Tag[19:12], Set[8], Tag[10:3], Tag[11], Tag[1], Set[7:0], Off-
set[4:0]

The instruction cache has a slightly different format because it has four ways and 128 sets, unlike the data cache
(which has two ways and 256 sets).

Table 7-9: Instruction Cache Tags Extended Data Access Address

Address Bit Meaning

A[31:20] L1 Instruction SRAM Address

A[19] PARCTL

A[18] PARSEL

A[17:13] 11111

A[12:5] Set Index

A[4:3] Way

A[2:0] 000

The Instruction Cache Tags extended data access value is the same as for data cache.

Table 7-10: Instruction Cache Data Extended Data Access Address and Mapping to L1 SRAM Subbank

L1 SRAM Address Bits Cache Location

A[31:20] L1 Instruction SRAM Address

A[19] PARCTL

A[18] PARSEL

A[17:15] Usually b#001 (Depends on Size of L1 Instruction SRAM)

A[14] 1

A[13:12] Way

A[11:5] Set Index

L1 Cache Details

ADSP-BF7xx Blackfin+ Processor 7–41

Table 7-10: Instruction Cache Data Extended Data Access Address and Mapping to L1 SRAM Subbank (Continued)

L1 SRAM Address Bits Cache Location

A[4:0] Byte Offset in Cache Line

Cache Fills and Victims

Cacheable accesses do not use the Read/Write buffer, but instead use a similar structure called the Fill/Victim buffer.
These buffers are used on a cache read miss and when a cache read miss generates a victim cache line that needs to
be written back to memory. A Fill/Victim buffer entry consists of an address, 32 bytes of data, and cache line status
information.

The CPLBs describe the cache mode to be used for various memory regions, either non-cacheable, Write-Back
cacheable, or Write-Through cacheable. Traffic for non-cacheable memory is described in System Memory Access.

• In write-through mode, a write to external memory is initiated immediately upon the write to cache. If the
cache line is present in cache, it is also updated there, but the cache line is not fetched on a write miss. If the
cache line is replaced or explicitly flushed by software, the contents of the cache line are invalidated rather than
written back to external memory.

• In write-back mode, the cache does not write to external memory until the line is replaced by a load operation
that needs the line. For most applications, a write-back cache is more efficient than a write-through cache, as
the external memory accesses are less frequent. On a write miss, the cache line is filled from the system and
then modified in the cache by the write data.

When a read miss occurs, a cache line fill is always initiated.

A cacheable write or a read which misses the cache will allocate a Fill/Victim buffer entry. If a write also causes a
cache fill, the write data and fill data will be merged into the Fill buffer before being drained to L1 memory.

When a modified cache line is evicted from the cache, it must be written back to memory. In the reverse process of a
fill, a Fill buffer is allocated to receive the cache line from L1 memory before it is then forwarded to system memory.
The process of reading the cache victim from L1 requires the DAG interface to be stalled, as the DAG0 read port is
used to read the victimized cache line from L1 memory. Cache victims are created by cache flush operations or when
a cache fill displaces a cache line in the same set because the cache set is full.

The Fill/Victim buffer performs data forwarding in the same manner as the Read/Write buffer. If valid data exists in
the Fill/Victim buffer, it can be forwarded to the history buffer with few limitations. Write gathering is also done in
the Fill/Victim buffer.

The Fill/Victim buffer can stall the L1 memory pipeline if buffers are not available or if it is in a state where it
cannot respond to a request.

Terminology
The following terminology is used to describe memory.

L1 Cache Details

7–42 ADSP-BF7xx Blackfin+ Processor

cache block

The smallest unit of memory that is transferred to/from the next level of memory from/to a cache memory as a
result of a cache miss.

cache hit

A memory access that is satisfied by a present entry in the cache with its Valid bit set.

cache line

Same as cache block.

cache miss

A memory access that does not match any valid entry in the cache.

direct-mapped

Cache architecture in which each line has only one place in which it can appear in the cache. Also described as 1-
Way associative.

dirty/modified

A state bit, stored along with the tag, indicating whether the data in the data cache line has been changed since it
was copied from the source memory and, therefore, needs to be updated in that source memory.

exclusive, clean

The state of a data cache line, indicating that the line is valid and that the data contained in the line matches that in
the source memory. The data in a clean cache line does not need to be written to source memory before it is re-
placed.

fully associative

Cache architecture in which each line can be placed anywhere in the cache.

index

Address portion that is used to select an array element (for example, a line index).

invalid

Describes the state of a cache line. When a cache line is invalid, a cache line match cannot occur.

Terminology

ADSP-BF7xx Blackfin+ Processor 7–43

least recently used (LRU) algorithm

Replacement algorithm, used by some caches, that first replaces lines that have been unused for the longest time
(this is the legacy Blackfin implementation).

Level 1 (L1) memory

Memory that is directly accessed by the core with no intervening memory subsystems between it and the core.

little endian

The native data store format of the Blackfin processor. Words and half words are stored in memory (and registers)
with the least significant byte at the lowest byte address and the most significant byte in the highest byte address of
the data storage location.

replacement policy

The function used by the processor to determine which line to replace on a cache miss. In Blackfin+ processors, a
round-robin algorithm is employed (ways are iteratively cycled through as replacement is required).

set

A group of N-line storage locations in the Ways of an N-Way cache, selected by the INDEX field of the address (see
the Cache Lines figures).

set associative

Cache architecture that limits line placement to a number of sets (or Ways).

tag

Upper address bits, stored along with the cached data line, to identify the specific address source in memory that the
cached line represents.

valid

A state bit, stored with the tag, indicating that the corresponding tag and data are current/correct and can be used to
satisfy memory access requests.

victim

A dirty cache line that must be written to memory before it can be replaced to free space for a cache line allocation.

Terminology

7–44 ADSP-BF7xx Blackfin+ Processor

Way

An array of line storage elements in an N-Way cache (see the Cache Lines figures).

write back

A cache write policy, also known as copyback

Blackfin+ L1IM Register Descriptions
L1 Instruction Memory Unit (L1IM) contains the following registers.

Table 7-11: Blackfin+ L1IM Register List

Name Description

L1IM_ICPLB_ADDR[n] Instruction Memory CPLB Address Registers

L1IM_ICPLB_DATA[n] Instruction Memory CPLB Data Registers

L1IM_ICPLB_DFLT Instruction Memory CPLB Default Settings Register

L1IM_ICPLB_FAULT_ADDR Instruction Memory CPLB Fault Address Register

L1IM_ICTL Instruction Memory Control Register

L1IM_IPERR_STAT Instruction Parity Error Status Register

L1IM_ISTAT Instruction Memory CPLB Status Register

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–45

Instruction Memory CPLB Address Registers

Each of the L1IM_ICPLB_ADDR[n] registers, along with its corresponding L1IM_ICPLB_DATA[n] register, com-
prise a single valid Instruction Cacheability Protection Lookaside Buffer (ICPLB) table entry descriptor pair re-
quired by the Memory Management Unit to configure and enable cache and/or memory protection.

NOTE: To ensure proper behavior and future compatibility, all reserved bits in this register must be cleared when-
ever this register is written.

For instruction fetch operations, L1IM_ICPLB_ADDR[n] defines the start address of the page described by the
ICPLB descriptor, and the associated L1IM_ICPLB_DATA[n] register defines the properties of the page described
by the ICPLB descriptor.

ICPLB Page Address

ICPLB Page Address

ADDR[5:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[21:6] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-8: L1IM_ICPLB_ADDR[n] Register Diagram

Table 7-12: L1IM_ICPLB_ADDR[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:10

(R/W)

ADDR ICPLB Page Address.

The L1IM_ICPLB_ADDR[n].ADDR bits contain the start address for the page defined
by the associated L1IM_ICPLB_DATA[n] register for address match operations by the
Memory Management Unit.

Blackfin+ L1IM Register Descriptions

7–46 ADSP-BF7xx Blackfin+ Processor

Instruction Memory CPLB Data Registers

Each of the L1IM_ICPLB_DATA[n] registers, along with its corresponding L1IM_ICPLB_ADDR[n] register, com-
prise a single valid Instruction Cacheability Protection Lookaside Buffer (ICPLB) table entry descriptor pair re-
quired by the Memory Management Unit to configure and enable cache and/or memory protection.

NOTE: To ensure proper behavior and future compatibility, all reserved bits in this register must be cleared when-
ever this register is written.

For instruction fetch operations, L1IM_ICPLB_ADDR[n] defines the start address of the page described by the
ICPLB descriptor, and the associated L1IM_ICPLB_DATA[n] register defines the properties of the page described
by the ICPLB descriptor.

Allow User Read

CPLB LockCache Line Priority

CPLB ValidCacheability Properties

Page Size

UREAD (R/W)

LOCK (R/W)CPRIO (R/W)

VALID (R/W)CPROPS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PSIZE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-9: L1IM_ICPLB_DATA[n] Register Diagram

Table 7-13: L1IM_ICPLB_DATA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PSIZE Page Size.

The L1IM_ICPLB_DATA[n].PSIZE bits select the page size according to the formu-
la:

page size = 4(L1IM_ICPLB_DATA[n].PSIZE+5).

0 1 KB

1 4 KB

2 16 KB

3 64 KB

4 256 KB

5 1 MB

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–47

Table 7-13: L1IM_ICPLB_DATA[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6 4 MB

7 16 MB

8 64 MB

9 256 MB

10 1 GB

11-15 RESERVED

13:12

(R/W)

CPROPS Cacheability Properties.

The L1IM_ICPLB_DATA[n].CPROPS field determines whether or not the defined
memory region can be placed in L1 instruction cache memory.

0 Non-cacheable

1 Cacheable in L1

2 Non-cacheable

3 Cacheable in L1

8

(R/W)

CPRIO Cache Line Priority.

The L1IM_ICPLB_DATA[n].CPRIO bit indicates whether the cache line priority is
marked as low or high importance when an entry from this page enters the cache.

0 Low importance

1 High importance

2

(R/W)

UREAD Allow User Read.

The L1IM_ICPLB_DATA[n].UREAD bit indicates whether or not reads to this mem-
ory region are permitted when the processor in in User mode.

0 Restricted

1 Permitted

1

(R/W)

LOCK CPLB Lock.

The L1IM_ICPLB_DATA[n].LOCK bit indicates whether or not the CPLB is locked
(cannot be replaced) in the CPLB table.

0 Not locked

1 Locked

0

(R/W)

VALID CPLB Valid.

The L1IM_ICPLB_DATA[n].VALID bit indicates whether or not the CPLB entry is
valid in the CPLB table.

0 Invalid

1 Valid

Blackfin+ L1IM Register Descriptions

7–48 ADSP-BF7xx Blackfin+ Processor

Instruction Memory CPLB Default Settings Register

The L1IM_ICPLB_DFLT register selects the default CPLB settings for new instruction memory CPLB entries.
These default settings may be changed by writing the CPLB descriptor in the L1IM_ICPLB_DATA[n] register after
the new entry is added.

System User Mode Read Access

Sytem Access exception Disable
L1 Access Exception Disable

system space
Default cacheability properties forL1 User Mode Read Access

SYSUREAD (R/W)

SYSEOM (R/W)
L1EOM (R/W)

SYSCPROPS (R/W)L1UREAD (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-10: L1IM_ICPLB_DFLT Register Diagram

Table 7-14: L1IM_ICPLB_DFLT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

L1UREAD L1 User Mode Read Access.

The L1IM_ICPLB_DFLT.L1UREAD bit configures whether the default setting is to
permit or restrict L1 read accesses from User mode.

0 Restricted

1 Permitted

8

(R/W)

L1EOM L1 Access Exception Disable.

The L1IM_ICPLB_DFLT.L1EOM bit configures whether or not an ICPLB miss to L1
memory space generates an exception.

0 Generate exception

1 Disable exception generation

5

(R/W)

SYSUREAD System User Mode Read Access.

The L1IM_ICPLB_DFLT.SYSUREAD bit configures whether the default setting is to
permit or restrict system memory read accesses from User mode.

0 Restricted

1 Permitted

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–49

Table 7-14: L1IM_ICPLB_DFLT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

SYSEOM Sytem Access exception Disable.

The L1IM_ICPLB_DFLT.SYSEOM bit configures whether or not an ICPLB miss to
system memory space generates an exception.

0 Generate exception

1 Disable exception generation

1:0

(R/W)

SYSCPROPS Default cacheability properties for system space.

The L1IM_ICPLB_DFLT.SYSCPROPS field determines the default behavior as to
whether or not the defined memory region can be placed in L1 instruction cache
memory.

0 Non-cacheable

1 Cacheable in L1

2 Non-cacheable

3 Cacheable in L1

Blackfin+ L1IM Register Descriptions

7–50 ADSP-BF7xx Blackfin+ Processor

Instruction Memory CPLB Fault Address Register

The L1IM_ICPLB_FAULT_ADDR register holds the address of the memory location that caused a fault.

Fault Address

Fault Address

ADDR[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-11: L1IM_ICPLB_FAULT_ADDR Register Diagram

Table 7-15: L1IM_ICPLB_FAULT_ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

ADDR Fault Address.

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–51

Instruction Memory Control Register

The L1IM_ICTL register controls memory management unit operation of ICPLBs. This register enables CPLB op-
eration, configures memory block usage, and selects the configuration of other ICPLB controls.

Cache Bypass Enable

Cache ConfigurationRead Parity Checking Enable

Enable ICPLBCache Line Priority Reset

CBYPASS (R/W)

CFG (R/W)RDCHK (R/W)

ENCPLB (R/W)CPRIORST (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-12: L1IM_ICTL Register Diagram

Table 7-16: L1IM_ICTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

CPRIORST Cache Line Priority Reset.

The L1IM_ICTL.CPRIORST bit determines whether or not the CPRIO bits are stor-
ed when cache lines are stored.

0 Store CPRIO bits

1 Do not store CPRIO bits

9

(R/W)

RDCHK Read Parity Checking Enable.

The L1IM_ICTL.RDCHK bit determines whether or not read parity checking is ena-
bled for this region of memory.

0 Disabled

1 Enabled

8

(R/W)

CBYPASS Cache Bypass Enable.

The L1IM_ICTL.CBYPASS bit determines whether or not the cache is bypassed when
accesses are made to this region of memory.

0 Do not bypass cache

1 Bypass cache

Blackfin+ L1IM Register Descriptions

7–52 ADSP-BF7xx Blackfin+ Processor

Table 7-16: L1IM_ICTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

CFG Cache Configuration.

The L1IM_ICTL.CFG bit determines whether or not the configurable block of L1 In-
struction SRAM is enabled as cache.

0 SRAM

1 Cache

1

(R/W)

ENCPLB Enable ICPLB.

The L1IM_ICTL.ENCPLB bit determines whether or not ICPLBs are enabled to pro-
vide memory protection and/or cache support.

0 Disable ICPLBs

1 Enable ICPLBs

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–53

Instruction Parity Error Status Register

The L1IM_IPERR_STAT register contains status information for identifying the location and properties of a parity
error occurring during a read access of an address in L1 instruction memory.

Parity Error LocationParity Error Address

Parity Error Port

Parity Error AddressParity Error Byte Indicators

LOCATION (R/W1C)ADDRESS[12:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PORT (R)

ADDRESS[18:13] (R)BYTELOC (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-13: L1IM_IPERR_STAT Register Diagram

Table 7-17: L1IM_IPERR_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W1C)

BYTELOC Parity Error Byte Indicators.

The L1IM_IPERR_STAT.BYTELOC bits indicate the byte locations within the 8-byte
chunk associated with the L1IM_IPERR_STAT.ADDRESS field that produced read
parity error faults. The error indication for bits in this field is quad-word aligned (i.e, if
a byte access to address 0x11A00005 generated a parity error, the
L1IM_IPERR_STAT.BYTELOC[5] bit is set, not the
L1IM_IPERR_STAT.BYTELOC[0] bit). These bits are sticky, thus a W1C action is re-
quired to clear them.

23:22

(R/NW)

PORT Parity Error Port.

The L1IM_IPERR_STAT.PORT bits contain the encoding for the read port on which
the parity error occurred.

0 Port 0

1 Port 1

2 DMA

3 Cache victim

21:3

(R/NW)

ADDRESS Parity Error Address.

The L1IM_IPERR_STAT.ADDRESS bits provide the byte address of the memory loca-
tion in the most recent read that produced a parity error. This address is the quad-
word aligned base address for the faulting location. Use the
L1IM_IPERR_STAT.BYTELOC field to determine the location of the faulting byte(s).

Blackfin+ L1IM Register Descriptions

7–54 ADSP-BF7xx Blackfin+ Processor

Table 7-17: L1IM_IPERR_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

LOCATION Parity Error Location.

The L1IM_IPERR_STAT.LOCATION bits contain the encoding for the memory type
for the location where the parity error occurred. These bits are sticky, thus a W1C ac-
tion is required to clear them.

0 L1 SRAM

1 Tag 0 memory

2-7 Reserved

Blackfin+ L1IM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–55

Instruction Memory CPLB Status Register

The L1IM_ISTAT register holds information regarding the ICPLB fault that occurred during an access to instruc-
tion memory. These bits indicate the processor mode during the access, whether or not the access was to an illegal
address, and which ICPLB entry is associated with the fault. This status information is only valid while in the con-
text of the ICPLB exception service routine.

Fault Status

Access Mode IndicatorIllegal Address Indicator

FAULT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MODE (R)ILLADDR (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-14: L1IM_ISTAT Register Diagram

Table 7-18: L1IM_ISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R/NW)

ILLADDR Illegal Address Indicator.

The L1IM_ISTAT.ILLADDR bit indicates whether or not the attempted access was to
an illegal memory location.

0 No status

1 Illegal address fault

17

(R/NW)

MODE Access Mode Indicator.

The L1IM_ISTAT.MODE bit indicates which mode the processor was in when the
fault address was accessed.

0 User mode

1 Supervisor mode

15:0

(R/NW)

FAULT Fault Status.

Each bit in the L1IM_ISTAT.FAULT field is associated with an ICPLB entry in the
ICPLB table. A set bit indicates that the fault occurred on that ICPLB entry (e.g., if
the fault occurred on the page defined by the L1IM_ICPLB_DATA5 register, the
L1IM_ISTAT.FAULT[5] bit is set).

Blackfin+ L1DM Register Descriptions
L1 Data Memory Unit (L1DM) contains the following registers.

Blackfin+ L1IM Register Descriptions

7–56 ADSP-BF7xx Blackfin+ Processor

Table 7-19: Blackfin+ L1DM Register List

Name Description

L1DM_DCPLB_ADDR[n] Data Memory CPLB Address Registers

L1DM_DCPLB_DATA[n] Data Memory CPLB Data Registers

L1DM_DCPLB_DFLT Data Memory CPLB Default Settings Register

L1DM_DCPLB_FAULT_ADDR Data Memory CPLB Fault Address Register

L1DM_DCTL Data Memory Control Register

L1DM_DPERR_STAT Data Memory Parity Error Status Register

L1DM_DSTAT Data Memory CPLB Status Register

L1DM_SRAM_BASE_ADDR SRAM Base Address Register

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–57

Data Memory CPLB Address Registers

Each of the L1DM_DCPLB_ADDR[n] registers, along with its corresponding L1DM_DCPLB_DATA[n] register, com-
prise a single valid Data Cacheability Protection Lookaside Buffer (DCPLB) table entry descriptor pair required by
the Memory Management Unit to configure and enable cache and/or memory protection.

NOTE: To ensure proper behavior and future compatibility, all reserved bits in this register must be cleared when-
ever this register is written.

For data fetch operations, L1DM_DCPLB_ADDR[n] defines the start address of the page described by the DCPLB
descriptor, and the associated L1DM_DCPLB_DATA[n] register defines the properties of the page described by the
DCPLB descriptor.

Address Value

Address Value

ADDR[5:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[21:6] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-15: L1DM_DCPLB_ADDR[n] Register Diagram

Table 7-20: L1DM_DCPLB_ADDR[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:10

(R/W)

ADDR Address Value.

The L1DM_DCPLB_ADDR[n].ADDR bits contain the start address for the page defined
by the associated L1DM_DCPLB_DATA[n] register for address match operations by the
Memory Management Unit.

Blackfin+ L1DM Register Descriptions

7–58 ADSP-BF7xx Blackfin+ Processor

Data Memory CPLB Data Registers

Each of the L1DM_DCPLB_DATA[n] registers, along with its corresponding L1DM_DCPLB_ADDR[n] register, com-
prise a single valid Data Cacheability Protection Lookaside Buffer (DCPLB) table entry descriptor pair required by
the Memory Management Unit to configure and enable cache and/or memory protection.

NOTE: To ensure proper behavior and future compatibility, all reserved bits in this register must be cleared when-
ever this register is written.

For data fetch operations, L1DM_DCPLB_ADDR[n] defines the start address of the page described by the DCPLB
descriptor, and the associated L1DM_DCPLB_DATA[n] register defines the properties of the page described by the
DCPLB descriptor.

User Mode Write

User Mode ReadSupervisor Mode Write

Lock CPLBDirty CPLB

Valid CPLBCacheability Properties

Page Size

UWRITE (R/W)

UREAD (R/W)SWRITE (R/W)

LOCK (R/W)DIRTY (R/W)

VALID (R/W)CPROPS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PSIZE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-16: L1DM_DCPLB_DATA[n] Register Diagram

Table 7-21: L1DM_DCPLB_DATA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PSIZE Page Size.

The L1DM_DCPLB_DATA[n].PSIZE bits select the page size according to the formu-
la:

page size = 4(L1DM_DCPLB_DATA[n].PSIZE+5).

0 1 KB

1 4 KB

2 16 KB

3 64 KB

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–59

Table 7-21: L1DM_DCPLB_DATA[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4 256 KB

5 1 MB

6 4 MB

7 16 MB

8 64 MB

9 256 MB

10 1 GB

11-15 RESERVED

14:12

(R/W)

CPROPS Cacheability Properties.

The L1DM_DCPLB_DATA[n].CPROPS bits select the cacheability properties for the
page, determining whether or not the page is cacheable (write-back or write-through)
in L1 memory.

0 Not cacheable

1 Write-back cacheable in L1

2 Not cacheable

3 Write-back cacheable in L1

4 I/O device space

5 Write-through cacheable in L1

6 Not cacheable

7 Write-through cacheable in L1

7

(R/W)

DIRTY Dirty CPLB.

The L1DM_DCPLB_DATA[n].DIRTY bit is used by software to indicate that a write
has been made to the page since the CPLB entry was installed. On the first write to the
page after its installation, the MMU exception handler raises a CPLB dirty exception
and sets this bit. To avoid this exception, software may set this bit when the CPLB
entry is installed. Software may use the L1DM_DCPLB_DATA[n].DIRTY bit to detect
whether a write as been made to a page so that the write may be propagated to further
levels of the memory hierarchy.

0 Clean - CPLB dirty exception raised on page write A
CPLB dirty exception is raised if the page is written to.

1 Dirty - No CPLB dirty exception raised on page write A
CPLB dirty exception is not raised when the page is
written to.

Blackfin+ L1DM Register Descriptions

7–60 ADSP-BF7xx Blackfin+ Processor

Table 7-21: L1DM_DCPLB_DATA[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

SWRITE Supervisor Mode Write.

The L1DM_DCPLB_DATA[n].SWRITE bit selects whether to permit or restrict Super-
visor mode write access. If access is attempted when restricted, the access generates a
protection violation exception.

0 Restricted

1 Permitted

3

(R/W)

UWRITE User Mode Write.

The L1DM_DCPLB_DATA[n].UWRITE bit selects whether to permit or restrict User
mode write access. If access is attempted when restricted, the access generates a protec-
tion violation exception.

0 Restricted

1 Permitted

2

(R/W)

UREAD User Mode Read.

The L1DM_DCPLB_DATA[n].UREAD bit selects whether to permit or restrict User
mode read access. If access is attempted when restricted, the access generates a protec-
tion violation exception.

0 Restricted

1 Permitted

1

(R/W)

LOCK Lock CPLB.

The L1DM_DCPLB_DATA[n].LOCK bit locks or unlocks the CPLB entry. When
locked, the MMU is directed to keep this entry in the MMRs rather than participate
in the CPLB replacement policy algorithm.

0 Unlocked

1 Locked

0

(R/W)

VALID Valid CPLB.

The L1DM_DCPLB_DATA[n].VALID bit indicates whether or not the CPLB entry
contains valid data. Software uses this bit to identify valid CPLB entries in the MMU
exception handler when executing the CPLB replacement policy.

0 Invalid

1 Valid

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–61

Data Memory CPLB Default Settings Register

The L1DM_DCPLB_DFLT register selects the default DCPLB settings for new data memory CPLB entries. These
default settings may be changed by writing the DCPLB descriptor in the L1DM_DCPLB_DATA[n] register after the
new entry is added.

System Supervisor Mode Write

System User Mode WriteL1 Exception On Miss Disable

System User Mode ReadL1 User Mode Read

System Exception On Miss DisableL1 User Mode Write

System Cacheability PropertiesL1 Supervisor Mode Write

SYSSWRITE (R/W)

SYSUWRITE (R/W)L1EOM (R/W)

SYSUREAD (R/W)L1UREAD (R/W)

SYSEOM (R/W)L1UWRITE (R/W)

SYSCPROPS (R/W)L1SWRITE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-17: L1DM_DCPLB_DFLT Register Diagram

Table 7-22: L1DM_DCPLB_DFLT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

L1SWRITE L1 Supervisor Mode Write.

The L1DM_DCPLB_DFLT.L1SWRITE bit selects the default for Supervisor mode write
access to L1 memory, which determines whether to permit or restrict Supervisor mode
write access. If a write is attempted while restricted, the access generates a protection
violation exception. This default setting is overridden by the
L1DM_DCPLB_DATA[n].SWRITE bit in a valid enabled DCPLB entry.

0 Restricted

1 Permitted

10

(R/W)

L1UWRITE L1 User Mode Write.

The L1DM_DCPLB_DFLT.L1UWRITE bit selects the default for User mode write ac-
cess to L1 memory, which determines whether to permit or restrict User mode write
access. If a write is attempted while restricted, the access generates a protection viola-
tion exception. This default setting is overridden by the
L1DM_DCPLB_DATA[n].UWRITE bit in a valid enabled DCPLB.

0 Restricted

1 Permitted

Blackfin+ L1DM Register Descriptions

7–62 ADSP-BF7xx Blackfin+ Processor

Table 7-22: L1DM_DCPLB_DFLT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

L1UREAD L1 User Mode Read.

The L1DM_DCPLB_DFLT.L1UREAD bit selects the default for User mode read access
to L1 memory, which determines whether to permit or restrict User mode read access.
If a read is attempted while restricted, the access generates a protection violation excep-
tion. This default setting is overridden by the L1DM_DCPLB_DATA[n].UREAD bit in
a valid enabled DCPLB entry.

0 Restricted

1 Permitted

8

(R/W)

L1EOM L1 Exception On Miss Disable.

The L1DM_DCPLB_DFLT.L1EOM bit disables access exception generation on a DAG
DCPLB miss to L1 memory space. Default access protection for L1 memory space is
controlled by the L1DM_DCPLB_DFLT.L1UREAD, L1DM_DCPLB_DFLT.L1UWRITE,
and L1DM_DCPLB_DFLT.L1SWRITE bits.

0 Generate exception

1 Disable exception generation

7

(R/W)

SYSSWRITE System Supervisor Mode Write.

The L1DM_DCPLB_DFLT.SYSSWRITE bit selects the default for Supervisor mode
write access to system memory space, which determines whether to permit or restrict
Supervisor mode write access. If a write is attempted while restricted, the access gener-
ates a protection violation exception. This default setting is overridden by the
L1DM_DCPLB_DATA[n].SWRITE bit in a valid enabled DCPLB.

0 Restricted

1 Permitted

6

(R/W)

SYSUWRITE System User Mode Write.

The L1DM_DCPLB_DFLT.SYSUWRITE bit selects the default for User mode write ac-
cess to system memory space, which determines whether to permit or restrict User
mode write access. If a write is attempted while restricted, the access generates a pro-
tection violation exception. This default setting is overridden by the
L1DM_DCPLB_DATA[n].UWRITE bit in a valid enabled DCPLB.

0 Restricted

1 Permitted

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–63

Table 7-22: L1DM_DCPLB_DFLT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

SYSUREAD System User Mode Read.

The L1DM_DCPLB_DFLT.SYSUREAD bit selects the default for User mode read access
to system memory space, which determines whether to permit or restrict User mode
read access. If a read is attempted while restricted, the access generates a protection vio-
lation exception. This default setting is overridden by the
L1DM_DCPLB_DATA[n].UREAD bit in a valid enabled DCPLB.

0 Restricted

1 Permitted

4

(R/W)

SYSEOM System Exception On Miss Disable.

The L1DM_DCPLB_DFLT.SYSEOM bit disables access exception generation on a DAG
DCPLB miss to system memory space. Default access protection for system memory
space is controlled by the L1DM_DCPLB_DFLT.SYSCPROPS,
L1DM_DCPLB_DFLT.SYSUREAD, L1DM_DCPLB_DFLT.SYSUWRITE, and
L1DM_DCPLB_DFLT.SYSSWRITE bits.

0 Generate exception

1 Disable exception generation

2:0

(R/W)

SYSCPROPS System Cacheability Properties.

The L1DM_DCPLB_DFLT.SYSCPROPS bits select the default system memory cachea-
bility properties, which determine whether or not the region cacheable in L1 memory.
This default setting is overridden by the L1DM_DCPLB_DATA[n].CPROPS bits in a
valid enabled DCPLB.

0 Non-cacheable

1 Write-back cacheable in L1

2 Non-cacheable

3 Write-back cacheable

4 I/O device space

5 Write-through cacheable in L1

6 Non-cacheable

7 Write-through cacheable in L1

Blackfin+ L1DM Register Descriptions

7–64 ADSP-BF7xx Blackfin+ Processor

Data Memory CPLB Fault Address Register

The L1DM_DCPLB_FAULT_ADDR register holds the address of the memory location that caused a fault in data
memory.

Fault Address

Fault Address

ADDR[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-18: L1DM_DCPLB_FAULT_ADDR Register Diagram

Table 7-23: L1DM_DCPLB_FAULT_ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

ADDR Fault Address.

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–65

Data Memory Control Register

The L1DM_DCTL register controls memory management unit operation for DCPLBs. This register enables DCPLB
operation, configures memory block usage, and selects the configuration of other DCPLB controls.

Data Cache Bank Select

Cache ConfigurationCache Bypass Enable

Enable DCPLB OperationsRead Parity Check Enable

Extended Data Access Enable

DCBS (R/W)

CFG (R/W)CBYPASS (R/W)

ENCPLB (R/W)RDCHK (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

ENX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-19: L1DM_DCTL Register Diagram

Table 7-24: L1DM_DCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

ENX Extended Data Access Enable.

The L1DM_DCTL.ENX bit enables Extended Data Access mode, where all restricted
memory spaces (including L1 instruction memory) may be directly accessed by suita-
bly-privileged software. For more information, see the Extended Data Access section.

0 Disable (default)

1 Enable

9

(R/W)

RDCHK Read Parity Check Enable.

The L1DM_DCTL.RDCHK bit enables parity checking for read accesses.

0 Disable (default)

1 Enable

8

(R/W)

CBYPASS Cache Bypass Enable.

The L1DM_DCTL.CBYPASS bit enables cache bypass, thus disabling processor use of
the data cache.

0 Do not bypass (default)

1 Bypass

Blackfin+ L1DM Register Descriptions

7–66 ADSP-BF7xx Blackfin+ Processor

Table 7-24: L1DM_DCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

DCBS Data Cache Bank Select.

The L1DM_DCTL.DCBS bit selects whether the memory management unit uses address
bit 14 or 23 to choose between L1 data memory banks A and B. See the Data Cache
Block Select section for details.

0 Bit 14

1 Bit 23

3:2

(R/W)

CFG Cache Configuration.

The L1DM_DCTL.CFG bits set the usage of the configurable regions in L1 memory da-
ta blocks A and B as either cache or SRAM. When this field is cleared, all cache lines
for regions previously configured as cache are invalidated.

0 No cache

1 Data block A cache enable

3 Data blocks A and B cache enable

1

(R/W)

ENCPLB Enable DCPLB Operations.

The L1DM_DCTL.ENCPLB bit enables data memory CPLB operation. When disabled,
the memory management unit only performs minimal address checking.

0 Disable DCPLBs

1 Enable DCPLBs

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–67

Data Memory Parity Error Status Register

The L1DM_DPERR_STAT register contains status information for identifying the location and properties of a parity
error occurring during a read access of an address in L1 data memory.

Location MemoryAddress Value

Port Error Source

Address ValueByte Location

LOCATION (R/W1C)ADDRESS[12:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PORT (R)

ADDRESS[18:13] (R)BYTELOC (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-20: L1DM_DPERR_STAT Register Diagram

Table 7-25: L1DM_DPERR_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W1C)

BYTELOC Byte Location.

The L1DM_DPERR_STAT.BYTELOC bits indicate the byte locations within the 8-byte
chunk associated with the L1DM_DPERR_STAT.ADDRESS field that produced read
parity error faults. The error indication for bits in this field is quad-word aligned (i.e, if
a byte access to address 0x11800005 generated a parity error, the
L1DM_DPERR_STAT.BYTELOC[5] bit is set, not the
L1DM_DPERR_STAT.BYTELOC[0] bit). These bits are sticky, thus a W1C action is re-
quired to clear them.

23:22

(R/NW)

PORT Port Error Source.

The L1DM_DPERR_STAT.PORT bits contain the encoding for the read port on which
the parity error occurred.

0 Port 0

1 Port 1

2 DMA

3 Cache victim

21:3

(R/NW)

ADDRESS Address Value.

The L1DM_DPERR_STAT.ADDRESS bits provide the byte address of the memory loca-
tion in the most recent read that produced a parity error. This address is the quad-
word aligned base address for the faulting location. Use the
L1DM_DPERR_STAT.BYTELOC field to determine the location of the faulting byte(s).

Blackfin+ L1DM Register Descriptions

7–68 ADSP-BF7xx Blackfin+ Processor

Table 7-25: L1DM_DPERR_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

LOCATION Location Memory.

The L1DM_DPERR_STAT.LOCATION bits contain the encoding for the memory type
for the location where the parity error occurred. These bits are sticky, thus a W1C ac-
tion is required to clear them.

0 L1 SRAM

1 Tag 0

2 Tag 1

4 Dirty L1 cache memory

5-7 Reserved

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–69

Data Memory CPLB Status Register

The L1DM_DSTAT register identifies status information for a CPLB fault occurring during an access to data memo-
ry. These bits indicate the processor mode during the access, whether the access was a read or a write, whether or not
it was a DAG access, whether or not the access was to an illegal address, and which DCPLB entry is associated with
the fault. The status information in the L1DM_DSTAT register is only valid while in the context of a fault exception
service routine.

CPLB Fault Indicator

Mode IndicatorDAG Indicator

Read or Write Access IndicatorIllegal Address Indicator

FAULT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MODE (R)DAG (R)

RW (R)ILLADDR (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-21: L1DM_DSTAT Register Diagram

Table 7-26: L1DM_DSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R/NW)

ILLADDR Illegal Address Indicator.

The L1DM_DSTAT.ILLADDR bit indicates whether or not the fault occurred as a result
of an attempt to access non-existent memory.

0 Not illegal access

1 Illegal address

18

(R/NW)

DAG DAG Indicator.

The L1DM_DSTAT.DAG bit indicates whether the fault access was made by DAG0 or
DAG1.

0 DAG 0

1 DAG 1

17

(R/NW)

MODE Mode Indicator.

The L1DM_DSTAT.MODE bit indicates whether the processor mode was User or Super-
visor during the faulting access.

0 User mode

1 Supervisor mode

Blackfin+ L1DM Register Descriptions

7–70 ADSP-BF7xx Blackfin+ Processor

Table 7-26: L1DM_DSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

RW Read or Write Access Indicator.

The L1DM_DSTAT.RW bit indicates whether the faulting access was a read or a write.

0 Read

1 Write

15:0

(R/NW)

FAULT CPLB Fault Indicator.

Each bit in the L1DM_DSTAT.FAULT field is associated with a DCPLB entry in the
DCPLB table. A set bit indicates that the fault occurred on that DCPLB entry (e.g., if
the fault occurred on the page defined by the L1DM_DCPLB_DATA5 register, the
L1DM_DSTAT.FAULT[5] bit is set).

Blackfin+ L1DM Register Descriptions

ADSP-BF7xx Blackfin+ Processor 7–71

SRAM Base Address Register

When the data or instruction memories are configured as SRAM (see the L1DM_DCTL and register descriptions), the
base address is determined from the L1DM_SRAM_BASE_ADDR register. The SRAM base address inputs to the core
are latched into this register at reset. The SRAM base address is aligned to a 4 MB boundary and cannot overlap the
uppermost 4 MB region because this region is reserved for the processor core and chip-level memory-mapped regis-
ters. The L1DM_SRAM_BASE_ADDR register is only accessible in Supervisor mode.

Address Value

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR (R)

0
31

0
30

0
29

1
28

0
27

0
26

0
25

1
24

1
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-22: L1DM_SRAM_BASE_ADDR Register Diagram

Table 7-27: L1DM_SRAM_BASE_ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:22

(R/NW)

ADDR Address Value.

The L1DM_SRAM_BASE_ADDR.ADDR bits hold the SRAM base address. This address
is aligned to any 4 MB boundary except for the uppermost 4 MB region (reserved for
memory-mapped registers).

Blackfin+ L1DM Register Descriptions

7–72 ADSP-BF7xx Blackfin+ Processor

8 Instruction Reference Pages

The instruction reference pages provide detailed information about the syntax and operation of each instruction in
the processor's instruction set. The reference groups the instructions by type and by operation. This grouping stems
from the portion of the processor core (see the Blackfin+ Core Block Diagram figure), on which each instruction
executes. Because each instruction uses specific resources (portions of the processor architecture), understanding the
relationship between the instructions and the architecture can greatly influence how to write efficient code and ach-
ieve optimum code density (applying instruction parallelism).

• Arithmetic Instructions -- execute within the data arithmetic unit

• Sequencer Instructions -- execute within the control unit

• Memory or Pointer Instructions -- execute within the address arithmetic unit

• Specialized Compute Instructions -- execute within the data arithmetic unit

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 8-1: Blackfin+ Core Block Diagram

Instruction Reference Pages

ADSP-BF7xx Blackfin+ Processor 8–1

NOTE: Arithmetic instructions generate status, indicating information about the result of the operation. For more
information, see Arithmetic Status Register . To optimize program execution, many 16- and 32-bit in-
structions may be issued in parallel. For more information, see Issuing Parallel Instructions.

For more information about ADSP-BF70x processor family core architecture or memory infrastructure, see the cor-
responding chapters of this text. For information about ADSP-BF70x processor peripherals, see the hardware refer-
ence manual.

Each instruction reference page provides the following information:

• Syntax -- each section of a syntax table identifies the underlying instruction encoding (e.g., ALU Operations
(Dsp32Alu)). Each line of a syntax table defines the permitted processor resource classes (e.g., a register type)
that is allowed in that syntax position. To see the list of resources in a particular class, follow the link for that
resource class from the syntax line (e.g., DDST0_HL).

• Data Flow -- for instructions with sophisticated data placement options, a data flow diagram is provided (not
provided for all instructions).

• Abstract -- brief (1-2 sentence) description of the instruction.

• Description -- provides a full description of the instruction, including execution options, instruction encoding
size, instruction parallelism (if applicable), any special applications, and affect on status flags (if applicable).

• ASTAT Flags -- a table (where applicable) detailing the status flags affected by the instruction's execution. For
instructions that do not affect status, this section is omitted.

• Example -- provide a code snippet that demonstrates the instruction and its options.

Arithmetic Instructions
The arithmetic instructions provide operations which execute on the data arithmetic unit in the processor core.
Users can take advantage of these instructions to add, subtract, divide, and multiply, as well as to calculate and store
absolute values, detect exponents, round, saturate, and return the number of sign bits.

Arithmetic Instructions

8–2 ADSP-BF7xx Blackfin+ Processor

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 8-2: Blackfin+ Core Block Diagram

The operation types of arithmetic instructions include:

• Add and Subtract Operations

• Bit Operations

• Comparison Operations

• Conversion Operations

• Logic Operations

• Multiplication Operations

• Rotate Operations

• Shift Operations

Add and Subtract Operations

These operations provide addition and/or subtraction operations on register and immediate value operands:

• 16-Bit Add or Subtract (AddSub16)

• Vectored 16-Bit Add or Subtract (AddSubVec16)

• 32-bit Add or Subtract (AddSub32)

• 32-bit Add and Subtract (AddSub32Dual)

• 32-Bit Add or Subtract with Carry (AddSubAC0)

Arithmetic Instructions

ADSP-BF7xx Blackfin+ Processor 8–3

• 32-bit Add Constant (AddImm)

• Accumulator Add or Subtract (AddSubAcc)

• Accumulator Add and Extract (AddAccExt)

• Dual Accumulator Add and Subtract to Registers (AddSubAccExt)

• 32-bit Add then Shift (AddSubShift)

16-Bit Add or Subtract (AddSub16)

General Form

ALU Operations (Dsp32Alu)

DDST0_HL = DREG_L Register Type + DREG_L Register Type SAT2

DDST0_HL = DREG_L Register Type + DREG_H Register Type SAT2

DDST0_HL = DREG_H Register Type + DREG_L Register Type SAT2

DDST0_HL = DREG_H Register Type + DREG_H Register Type SAT2

DDST0_HL = DREG_L Register Type - DREG_L Register Type SAT2

DDST0_HL = DREG_L Register Type - DREG_H Register Type SAT2

DDST0_HL = DREG_H Register Type - DREG_L Register Type SAT2

DDST0_HL = DREG_H Register Type - DREG_H Register Type SAT2

Abstract

This instruction adds or subtracts two signed register halves.

See Also (Vectored 16-Bit Add or Subtract (AddSubVec16))

AddSub16 Description

The AddSub16 instruction adds or subtracts two source values and places the result in a destination register with or
without result saturation.

AddSub16 accepts any combination of upper and lower half-register operands, and places the results in the upper or
lower half of the destination register at the user's discretion.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

In the syntax, where SAT2 appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduc-
tion chapter for a description of saturation behavior.

Add and Subtract Operations

8–4 ADSP-BF7xx Blackfin+ Processor

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see the Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSub16 Example

/* If r0.l = 0x7000 and r7.l = 0x2000, then . . . */
r4.l = r0.l + r7.l (ns) ; /* produces r4.l = 0x9000 (no saturation is enforced) */
r4.l = r0.l + r7.h (s) ; /* produces r4.l = 0x7FFF (saturated to maximum positive value)
*/

r0.l = r2.h + r4.l (ns) ;
r1.l = r3.h + r7.h (ns) ;
r4.h = r0.l + r7.l (ns) ;
r4.h = r0.l + r7.h (ns) ;
r0.h = r2.h + r4.l (s) ; /* saturate the result */
r1.h = r3.h + r7.h (ns) ;
r4.l = r0.l - r7.l (ns) ;
r4.l = r0.l - r7.h (s) ; /* saturate the result */
r0.l = r2.h - r4.l (ns) ;
r1.l = r3.h - r7.h (ns) ;
r4.h = r0.l - r7.l (ns) ;
r4.h = r0.l - r7.h (ns) ;
r0.h = r2.h - r4.l (s) ; /* saturate the result */
r1.h = r3.h - r7.h (ns) ;

Vectored 16-Bit Add or Subtract (AddSubVec16)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = DREG Register Type AOPL DREG Register Type SX

DREG Register Type = DREG Register Type +|+ DREG Register Type, DREG Register Type = DREG Register Type -|- DREG Register
Type SXA

DREG Register Type = DREG Register Type +|- DREG Register Type, DREG Register Type = DREG Register Type -|+ DREG Register
Type SXA

Add and Subtract Operations

ADSP-BF7xx Blackfin+ Processor 8–5

Abstract

This instruction adds or subtracts two set s of two signed 16-bit vectors, and it deposits them into two destination
registers. Optionally, the result of the additions can be saturated. Also, the y inputs can be "crossed" so that instead
of adding Rx.H + Ry.H, the crossed inputs allow for Rx.H + Ry.L(and so on). The output halves can also be
crossed on compute unit 0.

See Also (16-Bit Add or Subtract (AddSub16))

AddSubVec16 Description

The Vector Add / Subtract instruction simultaneously adds and/or subtracts two pairs of registered numbers. It then
stores the results of each operation into a separate 32-bit data register or 16-bit half register, according to the syntax
used. The destination register for each of the quad or dual versions must be unique.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

The AddSubVec16 instruction supports dual and quad 16-Bit operations.

In the syntax, where SX appears (for dual 16-bit operations), substitute a saturation and/or cross output option (s,
co, or sco) . In the syntax, where SXA appears (for quad 16-bit operations), substitute one of the SX values, substi-
tute an arithmetic shift right or left option (asr or asl) ASR (arithmetic shift right). The options shown for quad 16-
bit operations are scaling options. See the Saturation topic in the Introduction chapter for a description of saturation
behavior.

NOTE: A special application of the AddSubVec16 instruction is the FFT butterfly routines in which each of the
registers is considered a single complex number often use the Vector Add / Subtract instruction.
 /* If r1 = 0x0003 0004 and r2 = 0x0001 0002, then . . . */
 r0 = r2 +|- r1(co) ; /* . . . produces r0 = 0xFFFE 0004 */

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see the Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubVec16 Example

r5 = r3 +|+ r4 ;
 /* dual 16-bit operations, add|add */

Add and Subtract Operations

8–6 ADSP-BF7xx Blackfin+ Processor

r6 = r0 -|+ r1(s) ;
 /* same as above, subtract|add with saturation */
r0 = r2 +|- r1(co) ;
 /* add|subtract with half-word results crossed over in the destination register */
r7 = r3 -|- r6(sco) ;
 /* subtract|subtract with saturation and half-word results crossed over in the
 destination register */
r5 = r3 +|+ r4, r7 = r3-|-r4 ;
 /* quad 16-bit operations, add|add, subtract|subtract */
r5 = r3 +|- r4, r7 = r3 -|+ r4 ;
 /* quad 16-bit operations, add|subtract, subtract|add */
r5 = r3 +|- r4, r7 = r3 -|+ r4(asr) ;
 /* quad 16-bit operations, add|subtract, subtract|add, with all results divided
 by 2 (right shifted 1 place) before storing into destination register */
r5 = r3 +|- r4, r7 = r3 -|+ r4(asl) ;
 /* quad 16-bit operations, add|subtract, subtract|add, with all results
 multiplied by 2 (left shifted 1 place) before storing into destination register dual
*/

32-bit Add Constant (AddImm)

General Form

Destructive Binary Operations, dreg with 7bit immediate (CompI2opD)

DREG Register Type += imm7 Register Type

Abstract

This instruction allows the user to add a constant to a register. This instruction does not saturate on overflow

See Also (32-bit Add or Subtract (AddSub32), 32-bit Add and Subtract (AddSub32Dual), 32-Bit Add or Subtract
with Carry (AddSubAC0))

AddImm Description

The Add Immediate instruction adds a constant value to a register without saturation.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Add and Subtract Operations

ADSP-BF7xx Blackfin+ Processor 8–7

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddImm Example

r0 += 40 ; /* increment r0 value by 40 and store in r0 */

32-bit Add or Subtract (AddSub32)

General Form

Compute with 3 operands (Comp3op)

DREG Register Type = DREG Register Type + DREG Register Type

DREG Register Type = DREG Register Type - DREG Register Type

ALU Operations (Dsp32Alu)

DREG Register Type = DREG Register Type + DREG Register Type NSAT

DREG Register Type = DREG Register Type - DREG Register Type NSAT

Abstract

This instruction adds or subtracts two signed registers. The ALU does not saturate the result by default.

See Also (32-bit Add and Subtract (AddSub32Dual), 32-Bit Add or Subtract with Carry (AddSubAC0), 32-bit Add
Constant (AddImm))

AddSub32 Description

The AddSub32 instruction adds or subtracts two source values and places the result in a destination register with or
without result saturation.

AddSub32 accepts any combination of register operands, and places the results in the destination register at the us-
er's discretion.

This instruction is encoded as a 16-bit instruction if the NSAT option is omitted. The 16-bit encoded instruction
16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in parallel
with other instructions.

When the NSAT option is included, the instruction is encoded as a 32-bit instruction. The 32-bit encoded instruc-
tion can sometimes save execution time (over a 16-bit encoded instruction), because it can be issued in parallel with
certain other instructions.

This instruction may be used in either User or Supervisor mode.

Add and Subtract Operations

8–8 ADSP-BF7xx Blackfin+ Processor

In the syntax, where NSAT appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduc-
tion chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSub32 Example

r5 = r2 + r1 ; /* 16-bit instruction length add, no saturation */
r5 = r2 + r1 (ns) ; /* same result as above, but 32-bit instruction length */
r5 = r2 + r1 (s) ; /* saturate the result */
r5 = r2 - r1 ; /* 16-bit instruction length subtract, no saturation */
r5 = r2 - r1 (ns) ; /* same result as above, but 32-bit instruction length */
r5 = r2 - r1 (s) ; /* saturate the result */

32-bit Add and Subtract (AddSub32Dual)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = DREG Register Type + DREG Register Type, DREG Register Type = DREG Register Type - DREG Register
Type SAT

Abstract

This instruction adds and subtracts two signed registers. The ALU does not saturate the result by default.

See Also (32-bit Add or Subtract (AddSub32), 32-Bit Add or Subtract with Carry (AddSubAC0), 32-bit Add Con-
stant (AddImm))

AddSub32Dual Description

The AddSub32Dual instruction simultaneously adds and/or subtracts two pairs of registered numbers. Then, the
instruction stores the results of each operation into a separate 32-bit data register with or without result saturation.
Each destination register must be unique.

AddSub32Dual accepts any combination of register operands, and places the results in the destination registers at
the user's discretion.

Add and Subtract Operations

ADSP-BF7xx Blackfin+ Processor 8–9

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

In the syntax, where SAT appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduction
chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSub32Dual Example

r2=r0+r1, r3=r0-r1 ; /* dual 32-bit operations */
r2=r0+r1, r3=r0-r1 (s) ; /* dual 32-bit operations with saturation */

32-Bit Add or Subtract with Carry (AddSubAC0)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = DREG Register Type + DREG Register Type + ac0 SAT

DREG Register Type = DREG Register Type - DREG Register Type + ac0 - 1 SAT

Abstract

This instruction adds or subtracts two 32-Bit numbers plus a carry bit. This operation is used to to multi-precision
addition. Optionally, the user can saturate the result.

See Also (32-bit Add or Subtract (AddSub32), 32-bit Add and Subtract (AddSub32Dual), 32-bit Add Constant
(AddImm))

AddSubAC0 Description

The AddSubAC0 instruction adds or subtracts two source values plus a carry bit and places the result in a destina-
tion register with or without result saturation.

AddSub32 accepts any combination of register operands, and places the results in the destination register at the us-
er's discretion.

Add and Subtract Operations

8–10 ADSP-BF7xx Blackfin+ Processor

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

When the SAT option is included, the instruction is encoded as a 32-bit instruction. The 32-bit encoded instruction
can sometimes save execution time (over a 16-bit encoded instruction), because it can be issued in parallel with cer-
tain other instructions.

This instruction may be used in either User or Supervisor mode.

In the syntax, where SAT appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduction
chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubAC0 Example

r5 = r2 + r1 + ac0; /* add with carry, no saturation implied */
r5 = r2 + r1 + ac0 (ns) ; /* same result as above */
r5 = r2 + r1 + ac0 (s) ; /* saturate the result */
r5 = r2 - r1 + ac0 - 1 ; /* sub with carry, no saturation implied */
r5 = r2 - r1 + ac0 -1 (ns) ; /* same result as above */
r5 = r2 - r1 + ac0 -1 (s) ; /* saturate the result */

Accumulator Add and Extract (AddAccExt)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = (a0 += a1)

DDST0_HL = (a0 += a1)

Abstract

This instruction adds the two signed accumulators together, then extracts the result to a register.

See Also (Accumulator Add or Subtract (AddSubAcc), Dual Accumulator Add and Subtract to Registers (AddSu-
bAccExt))

Add and Subtract Operations

ADSP-BF7xx Blackfin+ Processor 8–11

AddAccExt Description

The AddAccExt instruction increments the 40-bit A0 accumulator register by A1 with saturation at 40 bits, then
extract the result into a 32-bit register with saturation at 32 bits.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddAccExt Example

r5 = (a0 += a1) ;
r2.l = (a0 += a1) ;
r5.h = (a0 += a1) ;

Accumulator Add or Subtract (AddSubAcc)

General Form

ALU Operations (Dsp32Alu)

a0 += a1

a0 += a1 (w32)

a0 -= a1

a0 -= a1 (w32)

Abstract

This instruction adds or subtracts two signed accumulators. The ALU saturates the result on overflow.

See Also (Accumulator Add and Extract (AddAccExt), Dual Accumulator Add and Subtract to Registers (AddSu-
bAccExt))

Add and Subtract Operations

8–12 ADSP-BF7xx Blackfin+ Processor

AddSubAcc Description

The AddSubAcc instruction adds or subtracts two source values in the accumulator registers and places the result in
a destination acculator register with or without result saturation.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

The syntax of this instruction provides optional saturation/sign-extension of the result.

• (W32) - signed saturate the result at 32 bits, sign extended

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubAcc Example

a0 += a1 ; /* no saturation */
a0 += a1 (w32) ; /* signed saturate at 32 bits, sign extended */
a0 -= a1 ; /* no saturation */
a0 -= a1 (w32) ; /* signed saturate at 32 bits, sign extended */

Dual Accumulator Add and Subtract to Registers (AddSubAccExt)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = a1 + a0, DREG Register Type = a1 - a0 SAT

DREG Register Type = a0 + a1, DREG Register Type = a0 - a1 SAT

Abstract

This instruction adds and subtracts the two accumulators together, then extracts the results.

See Also (Accumulator Add or Subtract (AddSubAcc), Accumulator Add and Extract (AddAccExt))

Add and Subtract Operations

ADSP-BF7xx Blackfin+ Processor 8–13

AddSubAccExt Description

The AddSubAccExt instruction simultaneously adds and subtracts the two 40-bit accumulator registers. Then, the
instruction stores the results of each operation into a separate 32-bit data register with or without result saturation.
Each destination register must be unique.

AddSubAccExt accepts any combination of register operands, and places the results in the destination registers at the
user's discretion.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

In the syntax, where SAT appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduction
chapter for a description of saturation behavior.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubAccExt Example

r4=a1+a0, r6=a1-a0 ;
 /* dual 40-bit accumulator operations with no saturation, A0 added/subtracted from A1 */
r4=a0+a1, r6=a0-a1(s) ;
 /* dual 40-bit accumulator operations with saturation, A1 subtracted from A0 */

32-bit Add then Shift (AddSubShift)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type = (DREG Register Type + DREG Register Type) << 1

DREG Register Type = (DREG Register Type + DREG Register Type) << 2

Abstract

This instruction adds then shifts left one or two places. This instruction always saturates on overflow.

Add and Subtract Operations

8–14 ADSP-BF7xx Blackfin+ Processor

AddSubShift Description

The AddSubShift instruction combines an addition operation with a one- or two-place logical shift left. The left
shift accomplishes a x2 (for shift 1) or x4 (for shift 2) multiplication on sign-extended numbers. Saturation is not
supported.

This instruction does not intrinsically modify values that are strictly input. However, the destination register (DDST)
serves as both an input operand and the result destination, so the DDST is intrinsically modified.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubShift Example

r3 = (r3+r2)<<1 ; /* r3 = (r3 + r2) * 2 */
r3 = (r3+r2)<<2 ; /* r3 = (r3 + r2) * 4 */

Bit Operations

These operations provide bitwise shift operations on registers operands:

• Ones Count (Shift_Ones)

• Redundant Sign Bits (Shift_SignBits32)

• Redundant Sign Bits (Shift_SignBitsAcc)

• Bit Mux (BitMux)

• Bit Modify (Shift_BitMod)

• Bit Test (Shift_BitTst)

• Deposit Bits (Shift_Deposit)

• Extract Bits (Shift_Extract)

Arithmetic Instructions

ADSP-BF7xx Blackfin+ Processor 8–15

Ones Count (Shift_Ones)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = ones DREG Register Type

Abstract

This instruction counts the number of 1's in a XOP register.

See Also (Redundant Sign Bits (Shift_SignBits32), Redundant Sign Bits (Shift_SignBitsAcc))

Shift_Ones Description

The Shift_Ones instruction (one's-population count) loads the number of 1's contained in the souce register
(DSRC1) into the lower half of the destination register (DDST_L).

The range of possible values loaded into DDST_L is 0 through 32.

The DDST_L and DSRC1 can be the same D-register. Otherwise, the One's-Population Count instruction does not
modify the contents of DSRC1.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_Ones Example

r3.l = ones r7 ;

If R7 contains 0xA5A5A5A5, R3.L contains the value 16, or 0x0010.

If R7 contains 0x00000081, R3.L contains the value 2, or 0x0002.

Redundant Sign Bits (Shift_SignBits32)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = signbits DREG Register Type

DREG_L Register Type = signbits DREG_L Register Type

DREG_L Register Type = signbits DREG_H Register Type

Bit Operations

8–16 ADSP-BF7xx Blackfin+ Processor

Abstract

This instruction returns the number of redundant sign bits. For example, if there are five sign bits, this instruction
returns 4. The result can then be used with ASHIFT to normalize the data.

See Also (Ones Count (Shift_Ones), Redundant Sign Bits (Shift_SignBitsAcc))

Shift_SignBits32 Description

The SignBits32 instruction returns the number of sign bits in a number, and can be used in conjunction with a shift
to normalize numbers. This instruction can operate on 16-bit or 32-bit input numbers.

• For a 16-bit input, Sign Bit returns the number of leading sign bits minus one, which is in the range 0 through
15. There are no special cases. An input of all zeros returns +15 (all sign bits), and an input of all ones also
returns +15.

• For a 32-bit input, Sign Bit returns the number of leading sign bits minus one, which is in the range 0 through
31. An input of all zeros or all ones returns +31 (all sign bits).

The result of the SignBits32 instruction can be used directly as the argument to an arithmetic shift instruction
(AShift) to normalize the number. Resultant numbers will be in the following formats (S == signbit, M == magni-
tude bit).

16-bit: S.MMM MMMM MMMM MMMM

32-bit: S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

In addition, the SignBits32 instruction result can be subtracted directly to form the new exponent.

The SignBits32 instruction does not implicitly modify the input value. For 32-bit and 16-bit input, the destination
register (DDST_L) and source sample register (DSRC1) can be the same D-register. Doing this explicitly modifies the
DSRC1.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_SignBits32 Example

r2.l = signbits r7 ;
r1.l = signbits r5.l ;
r0.l = signbits r4.h ;

Redundant Sign Bits (Shift_SignBitsAcc)

General Form

Shift (Dsp32Shf)

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–17

DREG_L Register Type = signbits a0

DREG_L Register Type = signbits a1

Abstract

This instruction returns the number of redundant sign bits. For example, if there are five sign bits, this instruction
returns 4. The result can then be used with ASHIFT to normalize the data.

See Also (Ones Count (Shift_Ones), Redundant Sign Bits (Shift_SignBits32))

Shift_SignBitsAcc Description

The SignBitsAcc instruction returns the number of sign bits in a number, and can be used in conjunction with a
shift to normalize numbers. This instruction can operate on 40-bit input numbers.

• For a 40-bit Accumulator input, Sign Bit returns the number of leading sign bits minus 9, which is in the range
-8 through +31. A negative number is returned when the result in the Accumulator has expanded into the ex-
tension bits; the corresponding normalization will shift the result down to a 32-bit quantity (losing precision).
An input of all zeros or all ones returns +31.

The result of the SignBitsAcc instruction can be used directly as the argument to an arithmetic shift instruction
(AShift) to normalize the number. Resultant numbers will be in the following formats (S == signbit, M == magni-
tude bit).

40-bit: SSSS SSSS S.MMM MMMM MMMM MMMM MMMM MMMM MMMM MMMM

In addition, the SignBitsAcc instruction result can be subtracted directly to form the new exponent.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_SignBitsAcc Example

r6.l = signbits a0 ;
r5.l = signbits a1 ;

Bit Mux (BitMux)

General Form

Shift (Dsp32Shf)

bitmux (DREG Register Type, DREG Register Type, a0) (asr)

bitmux (DREG Register Type, DREG Register Type, a0) (asl)

Bit Operations

8–18 ADSP-BF7xx Blackfin+ Processor

Abstract

This instruction merges two bit streams into the accumulator. Each time you call this instruction, it takes a single bit
from the two source registers, muxes them together, and deposits them into the accumulator. The streams can be
taken from the MSBs of the register pair and shifted into the LSBs of the accumulator (ASL) or taken from the LSBs
of the registers and deposited into the MSBs of the accumulator (ASR).

See Also (Bit Modify (Shift_BitMod), Bit Test (Shift_BitTst))

BitMux Description

The BitMux instruction merges bit streams.

The instruction has two versions, shift right and shift left. This instruction overwrites the contents of source 1
(DSRC1) and source 0 (DSRC0). See the Contents Before Shift table, A Shift Right Instruction table, and A Shift Left
Instruction table.

In the Shift Right version, the processor performs the following sequence.

1. Right shift Accumulator A0 by one bit. Right shift the LSB of DSRC1 into the MSB of the Accumulator.

2. Right shift Accumulator A0 by one bit. Right shift the LSB of DSRC0 into the MSB of the Accumulator.

In the Shift Left version, the processor performs the following sequence.

1. Left shift Accumulator A0 by one bit. Left shift the MSB of DSRC0 into the LSB of the Accumulator.

2. Left shift Accumulator A0 by one bit. Left shift the MSB of DSRC1 into the LSB of the Accumulator.

DSRC1 and DSRC0 must not be the same D-register.

Table 8-1: Contents Before Shift

IF 39............32 31............24 23............16 15..............8 7................0

source_1: xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

source_0: yyyy yyyy yyyy yyyy yyyy yyyy yyyy yyyy

Accumulator A0: zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz

Table 8-2: A Shift Right Instruction

IF 39............32 31............24 23............16 15..............8 7................0

source_1:*1 0xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

source_0:*2 0yyy yyyy yyyy yyyy yyyy yyyy yyyy yyyy

Accumulator A0:*3 yxzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz

*1 source_1 is shifted right 1 place

*2 source_0 is shifted right 1 place

*3 Accumulator A0 is shifted right 2 places

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–19

Table 8-3: A Shift Left Instruction

IF 39............32 31............24 23............16 15..............8 7................0

source_1:*1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx0

source_0:*2 yyyy yyyy yyyy yyyy yyyy yyyy yyyy yyy0

Accumulator A0:*3 zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzyx

*1 source_1 is shifted left 1 place

*2 source_0 is shifted left 1 place

*3 Accumulator A0 is shifted left 2 places

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

BitMux Example

bitmux (r2, r3, a0) (asr) ; /* right shift*/

• If

• R2=0b1010 0101 1010 0101 1100 0011 1010 1010
• R3=0b1100 0011 1010 1010 1010 0101 1010 0101
• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111

then the Shift Right instruction produces:

• R2=0b0101 0010 1101 0010 1110 0001 1101 0101
• R3=0b0110 0001 1101 0101 0101 0010 1101 0010
• A0=0b1000 0000 0000 0000 0000 0000 0000 0000 0000 0001

bitmux (r3, r2, a0) (asl) ; /* left shift*/

• If

• R3=0b1010 0101 1010 0101 1100 0011 1010 1010
• R2=0b1100 0011 1010 1010 1010 0101 1010 0101
• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0000 0111

then the Shift Left instruction produces:

• R2=0b1000 0111 0101 0101 0100 1011 0100 1010
• R3=0b0100 1011 0100 1011 1000 0111 0101 0100

Bit Operations

8–20 ADSP-BF7xx Blackfin+ Processor

• A0=0b0000 0000 0000 0000 0000 0000 0000 0000 0001 1111

Bit Modify (Shift_BitMod)

General Form

Logic Binary Operations (Logi2Op)

bitset (DREG Register Type, uimm5 Register Type)

bittgl (DREG Register Type, uimm5 Register Type)

bitclr (DREG Register Type, uimm5 Register Type)

Abstract

This instruction takes the data register specified and clears, sets, or toggles a bit.

See Also (Bit Mux (BitMux), Bit Test (Shift_BitTst))

Shift_BitMod Description

The BitMod instruction includes BitSet, BitTgl, and BitTst forms:

• The BitSet (bit set) instruction sets the bit designated by the bit position (source immediate value, SRCI) in the
specified D-register destination (DDST). It does not affect other bits in the D-register.

The SRCI range of values is 0 through 31, where 0 indicates the LSB, and 31 indicates the MSB of the 32-bit
D-register.

• The BitTgl (bit toggle) instruction inverts the bit designated by SRCI in the specified D-register. The instruc-
tion does not affect other bits in the D-register.

The SRCI range of values is 0 through 31, where 0 indicates the LSB, and 31 indicates the MSB of the 32-bit
D-register.

• The BitClr (bit clear) instruction clears the bit designated by SRCI in the specified D-register. It does not affect
other bits in that register.

The SRCI range of values is 0 through 31, where 0 indicates the LSB, and 31 indicates the MSB of the 32-bit
D-register.

This 16-bit instruction instruction takes up less memory space (over a 32-bit encoded instruction), but may not be
issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–21

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift_BitMod Example

BitSet Example

bitset (r2, 7) ; /* set bit 7 (the eighth bit from LSB) in R2 */

For example, if R2 contains 0x00000000 before this instruction, it contains 0x00000080 after the instruction.

BitTgl Example

bittgl (r2, 24) ; /* toggle bit 24 (the 25th bit from LSB in R2 */

For example, if R2 contains 0xF1FFFFFF before this instruction, it contains 0xF0FFFFFF after the instruction. Exe-
cuting the instruction a second time causes the register to contain 0xF1FFFFFF.

BitClr Example

bitclr (r2, 3) ; /* clear bit 3 (the fourth bit from LSB) in R2 */

For example, if R2 contains 0xFFFFFFFF before this instruction, it contains 0xFFFFFFF7 after the instruction.

Bit Test (Shift_BitTst)

General Form

Logic Binary Operations (Logi2Op)

cc = !bittst (DREG Register Type, uimm5 Register Type)

cc = bittst (DREG Register Type, uimm5 Register Type)

Abstract

This instruction sets CC bits if the specified condition is true. In the bittst case, the CC bit is set if the specified bit
is a 1. For the !bittst case, it is set if the bit is a zero.

See Also (Bit Mux (BitMux), Bit Modify (Shift_BitMod))

Shift_BitTst Description

The Bit Test instruction sets or clears the CC bit, based on the bit designated by the bit position (source immediate
value, SRCI) in the specified D-register destination (DDST).

One version tests whether the specified bit is set; the other tests whether the bit is clear. The instruction does not
affect other bits in the D-register.

Bit Operations

8–22 ADSP-BF7xx Blackfin+ Processor

The SRCI range of values is 0 through 31, where 0 indicates the LSB, and 31 indicates the MSB of the 32-bit D-
register.

This 16-bit instruction instruction takes up less memory space (over a 32-bit encoded instruction), but may not be
issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift_BitTst Example

cc = bittst (r7, 15) ; /* test bit 15 TRUE in R7 */

For example, if R7 contains 0xFFFFFFFF before this instruction, CC is set to 1, and R7 still contains 0xFFFFFFFF
after the instruction.

cc = ! bittst (r3, 0) ; /* test bit 0 FALSE in R3 */

If R3 contains 0xFFFFFFFF, this instruction clears CC to 0.

Deposit Bits (Shift_Deposit)

General Form

Shift (Dsp32Shf)

DREG Register Type = deposit (DREG Register Type, DREG Register Type)

DREG Register Type = deposit (DREG Register Type, DREG Register Type) (x)

Abstract

The bit field deposit instruction merges the background data in SRC1 with a foreground bit field in SRC0.h and
saves the result into DEST.

See Also (Extract Bits (Shift_Extract))

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–23

Shift_Deposit Description

The Bit Field Deposit instruction merges the background data in SRC1 with a foreground bit field in SRC0.h and
saves the result into DEST. The length of the bit field is stored in SRC0.b0 and the position of the field is stored in
SRC0.b1. This takes the lower SRC0.b0 bits from SRC0.h and deposits them into SRC1 at bit SRC0.b1. The (X)
syntax sign-extends the field. If you are not sign extending the bits above the inserted field are unchanged.

Field deposit
 31 16 15 8 7 0
 +-----------------+--------+--------+
src0: |xxxxxxxxxxxxxSNN | P | L | L--length, P--position
 +-----------------+--------+--------+
 +-----------------+-----------------+
src1 |bbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbb|
 +-----------------+-----------------+

 +-----------------+-----------------+
dst0: |bbbbbbbbbbbbbbSNN bbbbbbbbbbbbbbbbb| SN--inserted field in src0
 +-----------------+-----------------+ b--previous contents of src1

with sign extension
 +-----------------+-----------------+
dst0: |SSSSSSSSSSSSSSSNN bbbbbbbbbbbbbbbbb|
 +-----------------+-----------------+

The Bit Field Deposit instruction merges the background bit field in the background register (DSRC1) with the fore-
ground bit field in the upper half of the foreground register (DSRC0) and saves the result into the destination register
(DDST). The user determines the length of the foreground bit field and its position in the background field.

The input register bit field definitions appear in the Input Register Bit Field Definitions table.

Table 8-4: Input Register Bit Field Definitions

31................24 23................16 15..................8 7....................0

DSRC1*1
bbbb bbbb bbbb bbbb bbbb bbbb bbbb bbbb

DSRC0*2
nnnn nnnn nnnn nnnn xxxp pppp xxxL LLLL

*1 where b = background bit field (32 bits)

*2 where:

• - n = foreground bit field (16 bits); the L field determines the actual number of foreground bits used.

• - p = intended position of foreground bit field LSB in dest_reg (valid range 0 through 31)

• - L = length of foreground bit field (valid range 0 through 16)

The operation writes the foreground bit field of length L over the background bit field with the foreground LSB
located at bit p of the background.

There are a number of boundary cases related to Shift_Deposit instruction operation that should be considered.

Bit Operations

8–24 ADSP-BF7xx Blackfin+ Processor

• Unsigned syntax, L = 0: The architecture copies DSRC1 contents without modification into DDST. By defini-
tion, a foreground of zero length is transparent.

• Sign-extended, L = 0 and p = 0: This case loads 0x0000 0000 into DDST. The sign of a zero length, zero posi-
tion foreground is zero; therefore, sign-extended is all zeros.

• Sign-extended, L = 0 and p = 0: The architecture copies the lower order bits of DSRC1 below position p into
DDST, then sign-extends that number. The foreground value has no effect. For instance, if:

• DSRC1 = 0x0000 8123,

• L = 0, and

• p = 16,

• then:

• DDST = 0xFFFF 8123.

In this example, the architecture copies bits 15-0 from DSRC1 into DDST, then sign-extends that number.

• Sign-extended, (L + p) > 32: Any foreground bits that fall outside the range 31-0 are truncated.

The Bit Field Deposit instruction does not modify the contents of the two source registers. One of the source regis-
ters can also serve as DDST.

The (X) option syntax sign-extends the deposited bit field. If you specify the sign-extended syntax, the operation
does not affect the DDST bits that are less significant than the deposited bit field.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift_Deposit Example

Bit Field Deposit Unsigned

r7 = deposit (r4, r3) ;

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–25

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111 where this is the background bit field

• R3=0b0000 0000 0000 0 000 0000 0111 0000 0011 where bits 31-16 are the foreground bit
field, bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b1111 1111 1111 1111 1111 11 00 0 111 1111
• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111 where this is the background bit field

• R3=0b0000 000 0 1111 1010 0000 1101 0000 1001 where bits 31-16 are the foreground bit
field, bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b1111 1111 11 01 1111 010 1 1111 1111 1111
Bit Field Deposit Sign-Extended

r7 = deposit (r4, r3) (x) ; /* sign-extended*/

• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111 where this is the background bit field

• R3=0b0101 1010 0101 1 010 0000 0111 0000 0011 where bits 31-16 are the foreground bit
field, bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b 0000 0000 0000 0000 0000 0001 0 111 1111
• If

• R4=0b1111 1111 1111 1111 1111 1111 1111 1111 where this is the background bit field

• R3=0b0000 100 1 1010 1100 0000 1101 0000 1001 where bits 31-16 are the foreground bit
field, bits 15-8 are the position, and bits 7-0 are the length

then the Bit Field Deposit (unsigned) instruction produces:

• R7=0b 1111 1111 1111 0101 100 1 1111 1111 1111

Extract Bits (Shift_Extract)

General Form

Bit Operations

8–26 ADSP-BF7xx Blackfin+ Processor

Shift (Dsp32Shf)

DREG Register Type = extract (DREG Register Type, DREG_L Register Type) (z)

DREG Register Type = extract (DREG Register Type, DREG_L Register Type) (x)

Abstract

This instruction extracts specified bits from the SRC1 register and writes them to the low order bits of the destina-
tion register.

See Also (Deposit Bits (Shift_Deposit))

Shift_Extract Description

Extracts specified bits from the SRC1 register and writes them to the low order bits of the destination register. The
bit position is stored in SRC0.b1 and the length is stored in SRC0.b0. The field is either sign extended or zero
extended to fill the 32-bit output register. ((Z) zero fills, (X) sign extends))

Field extraction
 31 16 15 8 7 0
 +--------+----+----+
src0: |xxxxxxxx| P | L | L--length, P--position
 +--------+----+----+
 +--------+---------+
src1 |bbbbbbbbbbSNNbbbbb|
 +--------+---------+

 +--------+---------+
dst0: |000000000000000SNN| SN--inserted field in hi half of src0
 +--------+---------+ b--previous contents of src1
x--unused
with sign extension 0--zero
 +--------+---------+
dst0: |SSSSSSSSSSSSSSSSNN|
 +--------+---------+

The Bit Field Extraction instruction moves only specific bits from the scene register (DSRC1) into the low-order bits
of the destination register (DDST). The user determines the length of the pattern bit field and its position in the
scene field using the pattern register (DSRC0_L).

The input register bit field definitions appear in the Input Register Bit Field Definitions table.

Table 8-5: Input Register Bit Field Definitions

31................24 23................16 15..................8 7....................0

DSRC1:*1
ssss ssss ssss ssss ssss ssss ssss ssss

Bit Operations

ADSP-BF7xx Blackfin+ Processor 8–27

Table 8-5: Input Register Bit Field Definitions (Continued)

DSRC0_L:*2
xxxp pppp xxxL LLLL

*1 The s characters indicate the scene bit field (32 bits).

*2 The p characters indicate the position of pattern bit field LSB in scene_reg (valid range 0 through 31). The L characters indicate the
length of pattern bit field (valid range 0 through 31).

The operation reads the pattern bit field of length L from the scene bit field, with the pattern LSB located at bit p of
the scene. See "Example", below, for more.

There are a number of boundary cases related to Shift_Extract instruction operation that should be considered.

If (p + L) > 32: In the zero-extended and sign-extended versions of the instruction, the architecture assumes that all
bits to the left of the DSRC1 are zero. In such a case, the user is trying to access more bits than the register actually
contains. Consequently, the architecture fills any undefined bits beyond the MSB of the DSRC1 with zeros.

The Bit Field Extraction instruction does not modify the contents of the two source registers. One of the source
registers can also serve as DDST.

The user has the choice of using the (X) option syntax to perform sign-extend extraction or the (Z) option syntax
to perform zero-extend extraction.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift_Extract Example

Bit Field Extraction Unsigned

r7 = extract (r4, r3.l) (z) ; /* zero-extended*/

• If

Bit Operations

8–28 ADSP-BF7xx Blackfin+ Processor

• R4=0b1010 0101 1010 0101 1100 0 011 1 010 1010 where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 0111 0000 0100 where bits 15-8 are the position, and bits
7-0 are the length

then the Bit Field Extraction (unsigned) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0000 0000 0111
• If

• R4=0b1010 0101 10 10 0101 110 0 0011 1010 1010 where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001 where bits 15-8 are the position, and bits
7-0 are the length

then the Bit Field Extraction (unsigned) instruction produces:

• R7=0b0000 0000 0000 0000 0000 000 1 0010 1110
Bit Field Extraction Sign-Extended

r7 = extract (r4, r3.l) (x) ; /* sign-extended*/

• If

• R4=0b1010 0101 1010 0101 1100 0 011 1 010 1010 where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 0111 0000 0100 where bits 15-8 are the position, and bits
7-0 are the length

then the Bit Field Extraction (sign-extended) instruction produces:

• R7=0b0000 0000 0000 0000 0000 0000 0000 0111
• If

• R4=0b1010 0101 10 10 0101 110 0 0011 1010 1010 where this is the scene bit field

• R3=0bxxxx xxxx xxxx xxxx 0000 1101 0000 1001 where bits 15-8 are the position, and bits
7-0 are the length

Then the Bit Field Extraction (sign-extended) instruction produces:

• R7=0b1111 1111 1111 1111 1111 111 1 0010 1110

Comparison Operations

These operations provide 16- and 32-bit maximum/minimum comparison and array search operations on register
operands:

• Vectored 16-Bit Maximum (Max16Vec)

Arithmetic Instructions

ADSP-BF7xx Blackfin+ Processor 8–29

• Vectored 16-Bit Minimum (Min16Vec)

• 32-bit Maximum (Max32)

• 32-Bit Minimum (Min32)

• Vectored 16-Bit Search (Search)

Vectored 16-Bit Maximum (Max16Vec)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = max(DREG Register Type, DREG Register Type) (v)

Abstract

This instruction calculates the maximum of one or two pairs of signed 16-Bit words.

See Also (Vectored 16-Bit Minimum (Min16Vec))

Max16Vec Description

The vector maximum instruction returns the maximum value (meaning the largest positive value, nearest to
0x7FFF) of the 16-bit half-word source registers to the dest_reg.

The instruction compares the upper half-words of src_reg_0 and src_reg_1 and returns that maximum to the
upper half-word of dest_reg. It also compares the lower half-words of src_reg_0 and src_reg_1 and returns that
maximum to the lower half-word of dest_reg. The result is a concatenation of the two 16-bit maximum values.

The vector maximum instruction does not implicitly modify input values. The dest_reg can be the same D-regis-
ter as one of the source registers. Doing this explicitly modifies that source register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Comparison Operations

8–30 ADSP-BF7xx Blackfin+ Processor

Max16Vec Example

r7 = max (r1, r0) (v) ;

• Assume R1 = 0x0007 0000 and R0 = 0x0000 000F, then R7 = 0x0007 000F.

• Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 = 0x000A 7FFF.

• Assume R1 = 0x1234 5678 and R0 = 0x0000 000F, then R7 = 0x1234 5678.

Vectored 16-Bit Minimum (Min16Vec)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = min(DREG Register Type, DREG Register Type) (v)

Abstract

This instruction calculates the minimum of two pairs of signed word vectors.

See Also (Vectored 16-Bit Maximum (Max16Vec))

Min16Vec Description

The Vector Minimum instruction returns the minimum value (the most negative value or the value closest to
0x8000) of the 16-bit half-word source registers to the dest_reg.

This instruction compares the upper half-words of src_reg_0 and src_reg_1 and returns that minimum to the
upper half-word of dest_reg. It also compares the lower half-words of src_reg_0 and src_reg_1 and returns
that minimum to the lower half-word of dest_reg. The result is a concatenation of the two 16-bit minimum val-
ues.

The input values are not implicitly modified by this instruction. The dest_reg can be the same D-register as one
of the source registers. Doing this explicitly modifies that source register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Comparison Operations

ADSP-BF7xx Blackfin+ Processor 8–31

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Min16Vec Example

r7 = min (r1, r0) (v) ;

• Assume R1 = 0x0007 0000 and R0 = 0x0000 000F, then R7 = 0x0000 0000.

• Assume R1 = 0xFFF7 8000 and R0 = 0x000A 7FFF, then R7 = 0xFFF7 8000.

• Assume R1 = 0x1234 5678 and R0 = 0x0000 000F, then R7 = 0x0000 000F.

32-bit Maximum (Max32)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = max(DREG Register Type, DREG Register Type)

Abstract

This instruction calculates the maximum of two signed 32-bit values.

See Also (32-Bit Minimum (Min32))

Max32 Description

The maximum instruction returns the maximum, or most positive, value of the source registers. The operation sub-
tracts src_reg_1 from src_reg_0 and selects the output based on the signs of the input values and the arithmet-
ic status bits.

The maximum instruction does not implicitly modify input values. The dest_reg can be the same D-register as
one of the source registers. Doing this explicitly modifies the source register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Comparison Operations

8–32 ADSP-BF7xx Blackfin+ Processor

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Max32 Example

r5 = max (r2, r3) ;

• Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 = 0x0000000F.

• Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 = 0x0000000F.

• Assume R2 = 0xFFFFFFFF and R3 = 0x0000000F, then R5 = 0x0000000F.

32-Bit Minimum (Min32)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = min(DREG Register Type, DREG Register Type)

Abstract

This instruction calculates the minimum of two signed 32-bit values.

See Also (32-bit Maximum (Max32))

Min32 Description

The minimum instruction returns the minimum value of the source registers to the dest_reg. (The minimum value
of the source registers is the value closest to –∞.) The operation subtracts src_reg_1 from src_reg_0 and selects
the output based on the signs of the input values and the arithmetic status bits.

The minimum instruction does not implicitly modify input values. The dest_reg can be the same D-register as
one of the source registers. Doing this explicitly modifies the source register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Comparison Operations

ADSP-BF7xx Blackfin+ Processor 8–33

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Min32 Example

r5 = min (r2, r3) ;

• Assume R2 = 0x00000000 and R3 = 0x0000000F, then R5 = 0x00000000.

• Assume R2 = 0x80000000 and R3 = 0x0000000F, then R5 = 0x80000000.

• Assume R2 = 0xFFFFFFFF and R3 = 0x0000000F, then R5 = 0xFFFFFFFF.

Vectored 16-Bit Search (Search)

General Form

ALU Operations (Dsp32Alu)

(DREG Register Type, DREG Register Type) = search DREG Register Type (gt)

(DREG Register Type, DREG Register Type) = search DREG Register Type (ge)

(DREG Register Type, DREG Register Type) = search DREG Register Type (lt)

(DREG Register Type, DREG Register Type) = search DREG Register Type (le)

Abstract

This instruction is used in a loop to locate a minimum or maximum in an array. For each compute unit, a value is
compared against the current signed max or min in the accumulator. Two values are tested at a time, the current
winner will be stored in the accumulator and the current value of P0 will be written to the result register if the
comparison is true.

Search Description

This instruction is used in a loop to locate a maximum or minimum element in an array of 16-bit packed data. Two
values are tested at a time. The vector search instruction compares two 16-bit, signed half-words to values stored in
the Accumulators. Then, it conditionally updates each accumulator and destination pointer based on the compari-
son. Pointer register P0 is always the implied array pointer for the elements being searched.

More specifically, the signed high half-word of src_reg is compared in magnitude with the 16 low-order bits in
A1. If src_reg_hi meets the comparison criterion, then A1 is updated with src_reg_hi, and the value in point-
er register P0 is stored in dest_pointer_hi. The same operation is performed for src_reg_low and A0.

Based on the search mode specified in the syntax, the instruction tests for maximum or minimum signed values.

Values are sign extended when copied into the accumulator(s). See the examples for one way to implement the
search loop. After the vector search loop concludes, A1 and A0 hold the two surviving elements, and

Comparison Operations

8–34 ADSP-BF7xx Blackfin+ Processor

dest_pointer_hi and dest_pointer_lo contain their respective addresses. The next step is to select the final
value from these two surviving elements.

Modes

The four supported compare modes are specified by the mandatory searchmode flag.

Table 8-6: Compare Modes

Mode Description

(GT) Greater than. Find the location of the first maximum number in an array.

(GE) Greater than or equal. Find the location of the last maximum number in an array.

(LT) Less than. Find the location of the first minimum number in an array.

(LE) Less than or equal. Find the location of the last minimum number in an array.

Summary (assumed Pointer P0)

src_reg_hi
Compared to least significant 16 bits of A1. If compare condition is met, overwrites lower 16 bits of A1 and
copies P0 into dest_pointer_hi.

src_reg_lo
Compared to least significant 16 bits of A0. If compare condition is met, overwrites lower 16 bits of A0 and
copies P0 into dest_pointer_lo.

This 32-bit instruction can be issued in parallel with the combination of one 16-bit length load instruction to the
P0 register and one 16-bit NOP. No other instructions can be issued in parallel with the vector search instruction.
Note the following legal and illegal forms.

(r1, r0) = search r2 (LT) || r2 = [p0++p3]; /* ILLEGAL */
(r1, r0) = search r2 (LT) || r2 = [p0++]; /* LEGAL */
(r1, r0) = search r2 (LT) || r2 = [p0++]; /* LEGAL */

Search Example

/* Initialize Accumulators with appropriate value for the type of search. */
 r0.l=0x7fff ;
 r0.h=0 ;
 a0=r0 ; /* max positive 16-bit value */
 a1=r0 ; /* max positive 16-bit value */
/* Initialize R2. */
 r2=[p0++] ;
/* Assume P1 is initialized to the size of the vector length. */
 LSETUP (loop_, loop_) LC0=P1>>1 ; /* set up the loop */
 loop_: (r1,r0) = SEARCH R2 (LE) || R2=[P0++];
 /* search for the last minimum in all but the

Comparison Operations

ADSP-BF7xx Blackfin+ Processor 8–35

 last element of the array */
 (r1,r0) = SEARCH R2 (LE);
 /* finally, search the last element */
/* The lower 16 bits of A1 and A0 contain the last minimums of the
array. R1 contains the value of P0 corresponding to the value in
A1. R0 contains the value of P0 corresponding to the value in A0.
Next, compare A1 and A0 together and R1 and R0 together to find
the single, last minimum in the array.
Note: In this example, the resulting pointers are past the actual
surviving array element due to the post-increment operation. */
 cc = a0 <= a1 ;
 r0 += -4 ;
 r1 += -2 ;
 if !cc r0 = r1 ;
/* the pointer to the survivor is in r0 */

Conversion Operations

These operations provide absolute value, negate, pass, and saturate operations on register operands:

• Vectored 16-Bit Absolute Value (Abs2x16)

• 32-bit Absolute Value (Abs32)

• Accumulator0 Absolute Value (AbsAcc0)

• Accumulator Absolute Value (AbsAcc1)

• Accumulator Absolute Value (AbsAccDual)

• Vectored 16-bit Negate (Neg16Vec)

• 32-Bit Negate (Neg32)

• Accumulator0 Negate (NegAcc0)

• Accumulator1 Negate (NegAcc1)

• Dual Accumulator Negate (NegAccDual)

• Fractional 32-bit to 16-Bit Conversion (Pass32Rnd16)

• Accumulator0 32-Bit Saturate (ALU_SatAcc0)

• Accumulator1 32-Bit Saturate (ALU_SatAcc1)

• Dual Accumulator 32-Bit Saturate (ALU_SatAccDual)

Vectored 16-Bit Absolute Value (Abs2x16)

General Form

Arithmetic Instructions

8–36 ADSP-BF7xx Blackfin+ Processor

ALU Operations (Dsp32Alu)

DREG Register Type = abs DREG Register Type (v)

Abstract

This instruction calculates the absolute value of the signed 16-bit input vector. Saturation only applies when the
input is 0x8000.

Abs2x16 Description

The vector absolute value instruction calculates the individual absolute values of the upper and lower halves of a
single 32-bit data register. The results are placed into a 32-bit dest_reg, using the following rules.

• If the input value is positive or zero, copy it unmodified to the destination.

• If the input value is negative, subtract it from zero and store the result in the destination.

This instruction saturates the result.

For example, as shown in the figure, if the source register contains the data shown, the destination register receives
the data shown.

Source Registers Contain

31.......24 23...16 15........8 7........0

l.xh.x:ger_crs

Destination Register Contain s

31.......24 23...16 15........8 7........0

| l.x ||h.x |:ger_tsed

Figure 8-3: Source/Destination Value Placement

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–37

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Abs2x16 Example

/* If r1 = 0xFFFF 7FFF, then . . . */
r3 = abs r1 (v) ;
/* . . . produces 0x0001 7FFF */

32-bit Absolute Value (Abs32)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = abs DREG Register Type

Abstract

This instruction calculates the absolute value of the 32-bit input. Saturation only applies when the input is
0x80000000.

Abs32 Description

This instruction calculates the absolute value of a 32-bit register and stores it into a 32-bit dest_reg. Calculation
is done according to the following rules.

• If the input value is positive or zero, copy it unmodified to the destination.

• If the input value is negative, subtract it from zero and store the result in the destination. Saturation is auto-
matically performed with the instruction, so taking the absolute value of the largest- magnitude negative num-
ber returns the largest-magnitude positive number.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conversion Operations

8–38 ADSP-BF7xx Blackfin+ Processor

Abs32 Example

r3 = abs r1 ;

Accumulator0 Absolute Value (AbsAcc0)

General Form

ALU Operations (Dsp32Alu)

a0 = abs a0

a0 = abs a1

Abstract

This instruction calculates the absolute value of the A0 (accumulator 0) register.

See Also (Accumulator Absolute Value (AbsAcc1), Accumulator Absolute Value (AbsAccDual))

AbsAcc0 Description

This instruction takes the absolute value of a 40-bit input value in a register and produces a 40-bit result. Calcula-
tion is done according to the following rules.

• If the input value is positive or zero, copy it unmodified to the destination.

• If the input value is negative, subtract it from zero and store the result in the destination. Saturation is auto-
matically performed with the instruction, so taking the absolute value of the largest- magnitude negative num-
ber returns the largest-magnitude positive number.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AbsAcc0 Example

a0 = abs a0 ;

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–39

a0 = abs a1 ;

Accumulator Absolute Value (AbsAcc1)

General Form

ALU Operations (Dsp32Alu)

a1 = abs a0

a1 = abs a1

Abstract

This instruction calculates the absolute value of the A1 (accumulator 1) register.

See Also (Accumulator0 Absolute Value (AbsAcc0), Accumulator Absolute Value (AbsAccDual))

AbsAcc1 Description

This instruction takes the absolute value of a 40-bit input value in a register and produces a 40-bit result. Calcula-
tion is done according to the following rules.

• If the input value is positive or zero, copy it unmodified to the destination.

• If the input value is negative, subtract it from zero and store the result in the destination. Saturation is auto-
matically performed with the instruction, so taking the absolute value of the largest- magnitude negative num-
ber returns the largest-magnitude positive number.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AbsAcc1 Example

a1 = abs a0 ;
a1 = abs a1 ;

Conversion Operations

8–40 ADSP-BF7xx Blackfin+ Processor

Accumulator Absolute Value (AbsAccDual)

General Form

ALU Operations (Dsp32Alu)

a1 = abs a1, a0 = abs a0

Abstract

This instruction calculates the absolute value of the A0 (accumulator 0) register and A1 (accumulator 1) register.

See Also (Accumulator0 Absolute Value (AbsAcc0), Accumulator Absolute Value (AbsAcc1))

AbsAccDual Description

This instruction performs the ABS operation on both accumulators by a single instruction, taking the absolute value
of 40-bit input values in two registers and producing two 40-bit results. Calculation is done according to the follow-
ing rules.

• If the input value is positive or zero, copy it unmodified to the destination.

• If the input value is negative, subtract it from zero and store the result in the destination. Saturation is auto-
matically performed with the instruction, so taking the absolute value of the largest- magnitude negative num-
ber returns the largest-magnitude positive number.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AbsAccDual Example

a1 = abs a1, a0=abs a0 ;

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–41

Vectored 16-bit Negate (Neg16Vec)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = -DREG Register Type (v)

Abstract

This instruction negates the input operands. The maximum negative inputs (0x8000) saturates to maximum posi-
tive.

Neg16Vec Description

The vector negate instruction returns the same magnitude with the opposite arithmetic sign, saturated for each 16-
bit half-word in the source. The instruction calculates by subtracting the source from zero.

For more information, see the Saturation section in the Introduction chapter.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Neg16Vec Example

r5 =–r3 (v) ;
/* R5.H becomes the negative of R3.H and R5.L becomes the negative of R3.L. */
/* If r3 = 0x0004 7FFF the result is r5 = 0xFFFC 8001 */

32-Bit Negate (Neg32)

General Form

ALU Binary Operations (ALU2op)

Conversion Operations

8–42 ADSP-BF7xx Blackfin+ Processor

DREG Register Type = -DREG Register Type

ALU Operations (Dsp32Alu)

DREG Register Type = -DREG Register Type NSAT

Abstract

This instruction negates the input operands. If saturation is specified, the special case of negate (MAX_NEG_32) re-
turns MAX_POS_32. If not, it returns MAX_NEG_32.

Neg32 Description

The negate (two’s-complement) instruction returns the same magnitude with the opposite arithmetic sign. The in-
struction calculates by subtracting from zero.

The Dreg version of the negate (two’s-complement) instruction is offered with or without saturation. The only case
where the nonsaturating negate would overflow is when the input value is 0x8000 0000. The saturating version re-
turns 0x7FFF FFFF; the nonsaturating version returns 0x8000 0000.

In the syntax, where NSAT appears, substitute a saturation option (s or ns). See the Saturation topic in the Introduc-
tion chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Neg32 Example

r5 =-r0 ; /* default is no saturation */
r5 =-r0 (s) ; /* saturation */
r5 =-r0 (ns) ; /* no saturation */

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–43

Accumulator0 Negate (NegAcc0)

General Form

ALU Operations (Dsp32Alu)

a0 = -a0

a0 = -a1

Abstract

This instruction negates the input operands.

See Also (Accumulator1 Negate (NegAcc1), Dual Accumulator Negate (NegAccDual))

NegAcc0 Description

The negate (two’s-complement) instruction returns the same magnitude with the opposite arithmetic sign. The ac-
cumulator versions saturate the result at 40 bits. The instruction calculates by subtracting from zero.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NegAcc0 Example

a0 =-a0 ;
a0 =-a1 ;

Accumulator1 Negate (NegAcc1)

General Form

ALU Operations (Dsp32Alu)

a1 = -a0

Conversion Operations

8–44 ADSP-BF7xx Blackfin+ Processor

a1 = -a1

Abstract

This instruction negates the input operands.

See Also (Accumulator0 Negate (NegAcc0), Dual Accumulator Negate (NegAccDual))

NegAcc1 Description

The negate (two’s-complement) instruction returns the same magnitude with the opposite arithmetic sign. The ac-
cumulator versions saturate the result at 40 bits. The instruction calculates by subtracting from zero.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NegAcc1 Example

a1 =-a0 ;
a1 =-a1 ;

Dual Accumulator Negate (NegAccDual)

General Form

ALU Operations (Dsp32Alu)

a1 = -a1, a0 = -a0

Abstract

This instruction negates the input operands.

See Also (Accumulator0 Negate (NegAcc0), Accumulator1 Negate (NegAcc1))

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–45

NegAccDual Description

The dual negate (two’s-complement) instruction returns the same magnitude with the opposite arithmetic sign for
each accumulator. The accumulator versions saturate the result at 40 bits. The instruction calculates by subtracting
from zero.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NegAccDual Example

a1 =-a1, a0=-a0 ;

Fractional 32-bit to 16-Bit Conversion (Pass32Rnd16)

General Form

ALU Operations (Dsp32Alu)

DDST0_HL = DREG Register Type (rnd)

Abstract

This instruction converts a 32-bit, normalized-fraction number into a 16-Bit normalized-fraction number by adding
a round bit at bit 15, then saturating and extracting bits 31-16, then discarding bits 15-0. The instruction supports
only biased rounding, which adds a half LSB (bit 15) before truncating bits 15-0. The RND_MOD bit in the ASTAT
register has no bearing on the rounding behavior of this instruction.

Pass32Rnd16 Description

The round to half-word instruction rounds a 32-bit, normalized-fraction number into a 16-bit, normalized-fraction
number by extracting and saturating bits 31–16, then discarding bits 15–0. The instruction supports only biased
rounding, which adds a half LSB (in this case, bit 15) before truncating bits 15–0. The ALU performs the rounding.
The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this instruction.

Conversion Operations

8–46 ADSP-BF7xx Blackfin+ Processor

Fractional data types such as the operands used in this instruction are always signed.

For more information, see the Saturation section and the Rounding and Truncation section in the Introduction
chapter.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pass32Rnd16 Example

 /* If r6 = 0xFFFC FFFF, then rounding to 16-bits with . . . */
r1.l = r6 (rnd) ;
 /* . . . produces r1.l = 0xFFFD */
 /* If r7 = 0x0001 8000, then rounding . . . */
r1.h = r7 (rnd) ;
 /* . . . produces r1.h = 0x0002 */

Accumulator0 32-Bit Saturate (ALU_SatAcc0)

General Form

ALU Operations (Dsp32Alu)

a0 = a0 (s)

Abstract

This instruciton saturates the accumulator at 32-bits (a0.w). The resulting saturated value is sign extended into the
accumulator extension bits (a0.x).

See Also (Accumulator1 32-Bit Saturate (ALU_SatAcc1), Dual Accumulator 32-Bit Saturate (ALU_SatAccDual))

ALU_SatAcc0 Description

The saturate instruction saturates the 40-bit Accumulators at 32 bits. The resulting saturated value is sign extended
into the Accumulator extension bits.

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–47

For more information, see the Saturation section in the Introduction chapter.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU_SatAcc0 Example

a0 = a0 (s) ;

Accumulator1 32-Bit Saturate (ALU_SatAcc1)

General Form

ALU Operations (Dsp32Alu)

a1 = a1 (s)

Abstract

This instruction saturates the accumulator at 32-bits (a1.w). The resulting saturated value is sign extended into the
accumulator extension bits (a1.x).

See Also (Accumulator0 32-Bit Saturate (ALU_SatAcc0), Dual Accumulator 32-Bit Saturate (ALU_SatAccDual))

ALU_SatAcc1 Description

The saturate instruction saturates the 40-bit Accumulators at 32 bits. The resulting saturated value is sign extended
into the Accumulator extension bits.

For more information, see the Saturation section in the Introduction chapter.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Conversion Operations

8–48 ADSP-BF7xx Blackfin+ Processor

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU_SatAcc1 Example

a1 = a1 (s) ;

Dual Accumulator 32-Bit Saturate (ALU_SatAccDual)

General Form

ALU Operations (Dsp32Alu)

a1 = a1 (s), a0 = a0 (s)

Abstract

This instruction saturates the accumulator at 32-bits (a1.w). The resulting saturated value is sign extended into the
accumulator extension bits (a1.x).

See Also (Accumulator0 32-Bit Saturate (ALU_SatAcc0), Accumulator1 32-Bit Saturate (ALU_SatAcc1))

ALU_SatAccDual Description

The dual saturate instruction saturates the 40-bit Accumulators at 32 bits. The resulting saturated values are sign
extended into the Accumulators extension bits.

For more information, see the Saturation section in the Introduction chapter.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Conversion Operations

ADSP-BF7xx Blackfin+ Processor 8–49

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU_SatAccDual Example

a1 = a1 (s), a0 = a0 (s) ;

Logic Operations

These operations provide one's complement and other logic operations on register operands:

• 32-Bit One's Complement (Not32)

• 32-Bit Logic Operations (Logic32)

32-Bit Logic Operations (Logic32)

General Form

Compute with 3 operands (Comp3op)

DREG Register Type = DREG Register Type & DREG Register Type

DREG Register Type = DREG Register Type | DREG Register Type

DREG Register Type = DREG Register Type ^ DREG Register Type

Abstract

This instruction performs logic operations on two 32-bit values. It does either an AND, OR, or XOR.

See Also (32-Bit One's Complement (Not32))

Logic32 Description

The AND instruction performs a 32-bit, bit-wise logical AND operation on the two source registers and stores the
results into the dest_reg. The instruction does not implicitly modify the source registers. The dest_reg and one
src_reg can be the same D-register; this operation explicitly modifies the src_reg.

The OR instruction performs a 32-bit, bit-wise logical OR operation on the two source registers and stores the re-
sults into the dest_reg. The instruction does not implicitly modify the source registers. The dest_reg and one
src_reg can be the same D-register; this operation explicitly modifies the src_reg.

The Exclusive-OR (XOR) instruction performs a 32-bit, bit-wise logical exclusive OR operation on the two source
registers and loads the results into the dest_reg.

The XOR instruction does not implicitly modify source registers. The dest_reg and one src_reg can be the
same D-register; this operation explicitly modifies the src_reg.

This 16-bit instruction may not be issued in parallel with other instructions.

Arithmetic Instructions

8–50 ADSP-BF7xx Blackfin+ Processor

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Logic32 Example

r4 = r4 & r3 ; /* AND */
r4 = r4 | r3 ; /* OR */
r4 = r4 ^ r3 ; /* XOR */

32-Bit One's Complement (Not32)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type = ~DREG Register Type

Abstract

This instruction (NOT one's complement) toggles every bit in the 32-bit register.

See Also (32-Bit Logic Operations (Logic32))

Not32 Description

The NOT one’s-complement instruction toggles every bit in the 32-bit register. The instruction does not implicitly
modify the src_reg. The dest_reg and src_reg can be the same D-register. Using the same D-register as the
dest_reg and src_reg would explicitly modify the src_reg.

This 16-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Logic Operations

ADSP-BF7xx Blackfin+ Processor 8–51

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not32 Example

r3 = ~ r4 ; /* NOT */

Move Operations

These operations provide register move operations on register, half register, and accumulator register operands:

• Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE)

• Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL)

• Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH)

• Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO)

• Move Register to Accumulator0 (MvAxToAx)

• Move Accumulator to Register (MvAxToDreg)

• Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL)

• Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg)

• Move Register Half to 16-Bit Accumulator Section (MvDregHLToAxHL)

• Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX)

• Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg)

• Move Register to Accumulator1 (MvDregToAx)

• Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual)

• Move Register to Register (MvRegToReg)

• Conditional Move Register to Register (MvRegToRegCond)

• Dual Move Accumulators to Half Registers (ParaMvA1ToDregHwithMvA0ToDregL)

• Dual Move Accumulators to Register (ParaMvA1ToDregOwithMvA0ToDregE)

Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE)

General Form

Multiply Accumulate (Dsp32Mac)

Arithmetic Instructions

8–52 ADSP-BF7xx Blackfin+ Processor

DREG_E Register Type = a0 MMODE

Abstract

This instruction moves an 32-bit section of an accumulator to an even register.

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to
High Half Register (MvA1ToDregH), Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move
Accumulator to Register (MvAxToDreg), Move Register to Accumulator0 (MvAxToAx))

MvA0ToDregE Description

The move accumulator register to even data register instruction copies the contents of the source accumulator regis-
ter into the destination even data register. The operation does not affect the source register contents.

In the syntax, where MMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), (iu), or (s2rnd). See the Saturation topic in the Introduction chapter for a de-
scription of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvA0ToDregE Example

r2 = a0 ; /* 32-bit move with saturation */
r0 = a0 (iss2) ; /* 32-bit move with scaling, truncation and saturation */

Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL)

General Form

Multiply Accumulate (Dsp32Mac)

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–53

DREG_L Register Type = a0 MMOD1

Abstract

This instruction moves an 16-bit section of an accumulator to a low half register (16-bit section of a data register).

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE), Move 16-Bit Accumulator Section to High
Half Register (MvA1ToDregH), Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move Accu-
mulator to Register (MvAxToDreg), Move Register to Accumulator0 (MvAxToAx))

MvA0ToDregL Description

The move accumulator register to low half data register instruction copies the contents of the source accumulator
register into the destination low half data register. The operation does not affect the source register contents.

In the syntax, where MMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (s2rnd), (t), or (tfu). See the Saturation topic in the Introduction
chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvA0ToDregL Example

r3.l = a0 ;
r7.l = a0 (fu) ; /* fractional unsigned format */
r2.l = a0 (s2rnd) ; /* signed fraction, scaled */

Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH)

General Form

Move Operations

8–54 ADSP-BF7xx Blackfin+ Processor

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = a1 MMLMMOD1

Abstract

This instruction moves an 16-bit section of an accumulator to a high half register (16-bit section of a data register).

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE), Move 16-Bit Accumulator Section to Low
Half Register (MvA0ToDregL), Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move Accu-
mulator to Register (MvAxToDreg), Move Register to Accumulator0 (MvAxToAx))

MvA1ToDregH Description

The move accumulator register to low half data register instruction copies the contents of the source accumulator
register into the destination low half data register. The operation does not affect the source register contents.

In the syntax, where MMLMMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (m), (m,fu), (m,ih), (m,is), (m,iss2), (m,iu), (m,s2rnd),
(m,t), (m,tfu), (s2rnd), (t), or (tfu) . See the Saturation topic in the Introduction chapter for a description
of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvA1ToDregH Example

r3.h = a1 ;
r7.h = a1 (fu) ; /* fractional unsigned format */
r2.h = a1 (s2rnd) ; /* signed fraction, scaled */

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–55

Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_O Register Type = a1 MMLMMODE

Abstract

This instruction moves an 32-bit section of an accumulator to an odd register.

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE), Move 16-Bit Accumulator Section to Low
Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH), Move
Accumulator to Register (MvAxToDreg), Move Register to Accumulator0 (MvAxToAx))

MvA1ToDregO Description

The move accumulator register to low half data register instruction copies the contents of the source accumulator
register into the destination low half data register. The operation does not affect the source register contents.

In the syntax, where MMLMMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), (iu), (m), (m,fu), (m,is), (m,iss2), (m,iu), (m,s2rnd), (s2rnd) . See
the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvA1ToDregO Example

r3 = a1 ;
r7 = a1 (fu);
r1 = a1 (s2rnd);

Move Operations

8–56 ADSP-BF7xx Blackfin+ Processor

Move Register to Accumulator0 (MvAxToAx)

General Form

ALU Operations (Dsp32Alu)

a0 = a1

a1 = a0

Abstract

This instruction moves the contents of one accumulator register to the other accumulator register.

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE), Move 16-Bit Accumulator Section to Low
Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH), Move
32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move Accumulator to Register (MvAxToDreg))

MvAxToAx Description

The move accumulator register to accumulator register instruction copies the contents of the source accumulator
register into the destination accumulator register. The operation does not affect the source register contents.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvAxToAx Example

a0 = a1 ;
a1 = a0 ;

Move Accumulator to Register (MvAxToDreg)

General Form

Multiply with 3 operands (Dsp32Mult)

DREG_O Register Type = MUL1 MML, DREG_E Register Type = MUL0 MMODE

DREG Register Type = a1:0 M32MMOD2

DREG_PAIR Register Type = a1:0 M32MMOD

Abstract

This instruction moves the value in the accumulator register to the selected data register.

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–57

See Also (Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL), Move 16-Bit Accumulator Section
to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH),
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE), Move 16-Bit Accumulator Section to Low
Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH), Move
32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move Register to Accumulator0 (MvAxToAx))

MvAxToDreg Description

The move accumulator register to low half data register instruction copies the contents of the source accumulator
register into the destination low half data register. The operation does not affect the source register contents.

In the syntax, where M32MMOD appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m), (m,is), (m,is,ns), (m,t), (t), or (tfu) . See the
Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvAxToDreg Example

r3 = a0 (iu,ns); /* integer unsigned no saturate */
r4 = a1 (fu); /* fractional unsigned */
r2 = a0 (m); /* mixed mode */
r5 = a1 (tfu); /* fractional unsigned truncated */

Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL)

General Form

ALU Operations (Dsp32Alu)

DREG_L Register Type = a0.x

DREG_L Register Type = a1.x

Move Operations

8–58 ADSP-BF7xx Blackfin+ Processor

Abstract

This instruction moves an 8-bit section of an accumulator to a low half register (16-bit section of a data register).

See Also (Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Sec-
tion to High Half Register (MvA1ToDregH), Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE),
Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL), Move 16-Bit Accumulator Section to
High Half Register (MvA1ToDregH), Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO), Move
Accumulator to Register (MvAxToDreg), Move Register to Accumulator0 (MvAxToAx))

MvAxXToDregL Description

The move accumulator register extension copies 8 bits from an accumulator extension source register into a low half
data register. The instruction does not affect the unspecified half of the destination register. It supports only data
registers and the accumulator.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvAxXToDregL Example

r7.l = a0.x ;
r0.l = a1.x ;

Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type = DREG_B Register Type (x)

DREG Register Type = DREG_B Register Type (z)

Abstract

This instruction copies the least significant 8-bits from the source register into the least significant 8-bits of the des-
tination and either sign or zero extends it the upper bits.

See Also (Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX), Move Register Half to 16-Bit
Accumulator Section (MvDregHLToAxHL), Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg), Move
Register to Accumulator1 (MvDregToAx), Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual))

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–59

MvDregBToDreg Description

The move data register byte to data register instruction converts a signed byte to a signed word (32 bits). It copies
the least significant 8 bits from a source register into the least significant 8 bits of a 32-bit register. The instruction
sign-extends or zero-extends the upper bits of the destination register. This instruction supports only data registers.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), and this instruction may be
issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvDregBToDreg Example

r7 = r2.b (x) ; /* sign extended */
r7 = r2.b (z) ; /* zero extended */

Move Register Half to 16-Bit Accumulator Section (MvDregHLToAxHL)

General Form

ALU Operations (Dsp32Alu)

A0_HL = DSRC0_HL

A1_HL = DSRC0_HL

Abstract

This instruction moves a 16-bit section of a data register to a single 16-bit section of an accumulator.

See Also (Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX), Pass 16-Bit to 32-Bit Register
Expansion (MvDregLToDreg), Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg), Move Register to Accu-
mulator1 (MvDregToAx), Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual))

Move Operations

8–60 ADSP-BF7xx Blackfin+ Processor

MvDregHLToAxHL Description

The move high/low half register to high/low half accumulator instruction copies 16 bits from a source register into
half of an accumulator register. The instruction does not affect the unspecified half of the destination register. It
supports only data registers and the accumulator.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvDregHLToAxHL Example

a0.l = r0.l /* least significant 16 bits of Dreg into least significant 16 bits of A0.W */
a0.h = r1.l
a1.l = r2.l /* least significant 16 bits of Dreg into least significant 16 bits of A1.W */
a1.h = r3.l
a0.l = r4.h
a0.h = r5.h /* most significant 16 bits of Dreg into most significant 16 bits of A0.W */
a1.l = r6.h
a1.h = r7.h /* most significant 16 bits of Dreg into most significant 16 bits of A1.W */

Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX)

General Form

ALU Operations (Dsp32Alu)

a0.x = DREG_L Register Type

a1.x = DREG_L Register Type

Abstract

This instruction moves the 8 LSBs from a low half register (16-bit section of a data register) to an 8-bit section of an
accumulator.

See Also (Move Register Half to 16-Bit Accumulator Section (MvDregHLToAxHL), Pass 16-Bit to 32-Bit Register
Expansion (MvDregLToDreg), Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg), Move Register to Accu-
mulator1 (MvDregToAx), Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual))

MvDregLToAxX Description

The move low half data register to accumulator register extension instruction copies 8 bits from a low half data regis-
ter source into an accumulator extension register. The instruction does not affect the unspecified portion of the des-
tination register. It supports only data registers and the accumulator.

The accumulator extension registers A0.X and A1.X are defined only for the 8 low-order bits 7 through 0 of A0.X
and A1.X. This instruction truncates the upper byte of DDST0_L before moving the value into the accumulator
extension register (A0.X or A1.X).

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–61

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvDregLToAxX Example

a0.x = r1.l ;
a1.x = r4.l ;

Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type = DREG_L Register Type (x)

DREG Register Type = DREG_L Register Type (z)

Abstract

This instruction zero extends or sign extends a 16-Bit register half and deposits it into a 32-bit destination register.
The X option signifies sign extension signifies sign extension while the Z signifies zero extension.

See Also (Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX), Move Register Half to 16-Bit
Accumulator Section (MvDregHLToAxHL), Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg), Move
Register to Accumulator1 (MvDregToAx), Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual))

MvDregLToDreg Description

The move low half register to data register instruction converts an unsigned half word (16 bits) to an unsigned word
(32 bits). The instruction copies the least significant 16 bits from a source register into the lower half of a 32-bit
register and sign- or zero-extends the upper half of the destination register. The operation supports only data regis-
ters. Zero extension is appropriate for unsigned values. If used with signed values, a small negative 16-bit value will
become a large positive value.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), and this instruction may be
issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Move Operations

8–62 ADSP-BF7xx Blackfin+ Processor

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvDregLToDreg Example

/* If r0.l = 0xFFFF, before move with zero extend ... */
r4 = r0.l (z) ; /* zero-extends; equivalent operation to r4.l = r0.l and r4.h = 0 */
/* . . . then r4 = 0x0000FFFF, after move with zero extend */
r4 = r0.l (x) ; /* sign-extends */

Move Register to Accumulator1 (MvDregToAx)

General Form

ALU Operations (Dsp32Alu)

a0 = DREG Register Type XMODE

a1 = DREG Register Type XMODE

Abstract

This instruction moves the contents of a data register to an accumulator register.

See Also (Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX), Move Register Half to 16-Bit
Accumulator Section (MvDregHLToAxHL), Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg), Pass 8-
Bit to 32-Bit Register Expansion (MvDregBToDreg), Move Register to Accumulator0 & Accumulator1 (MvDreg-
ToAxDual))

MvDregToAx Description

The move data register to accumulator instruction copies 32 bits from a source register into Ax.W section of an
accumulator register with zero- or sign-extension. The instruction does not affect the unspecified portion of the des-
tination register. It supports only data registers and the accumulator.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvDregToAx Example

a0 = r7 (z) ; /* move R7 to 32-bit A0.W, zero extended */
a1 = r3 (x) ; /* move R3 to 32-bit A1.W, sign-exteneded */

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–63

Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual)

General Form

ALU Operations (Dsp32Alu)

a1 = DREG Register Type SMODE, a0 = DREG Register Type XMODE

Abstract

This instruction moves the contents of two data registers to the accumulator registers (A0, A1).

See Also (Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX), Move Register Half to 16-Bit
Accumulator Section (MvDregHLToAxHL), Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg), Pass 8-
Bit to 32-Bit Register Expansion (MvDregBToDreg), Move Register to Accumulator1 (MvDregToAx))

MvDregToAxDual Description

The dual move data register to accumulator instruction copies 32 bits from a source register into Ax.W section of an
accumulator register with zero- or sign-extension, and perform a second move in parallel as indicated. The instruc-
tion does not affect the unspecified portion of the destination register. It supports only data registers and the accu-
mulator.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

MvDregToAxDual Example

a1 = r3 (z), a0 = r7 (z) ; /* move R3 to 32-bit A1.W (zero extended), move R7 to 32-bit
A0.W (zero extended) */
a1 = r3 (z), a0 = r7 (x) ; /* move R3 to 32-bit A1.W (zero extended), move R7 to 32-bit
A0.W (sign-exteneded) */
a1 = r3 (x), a0 = r7 (z) ; /* move R3 to 32-bit A1.W (sign-exteneded), move R7 to 32-bit
A0.W (zero extended) */
a1 = r3 (x), a0 = r7 (x) ; /* move R3 to 32-bit A1.W (sign-exteneded), move R7 to 32-bit
A0.W (sign-exteneded) */

Move Register to Register (MvRegToReg)

General Form

Register to register transfer operation (RegMv)

GDST = GSRC

Move Operations

8–64 ADSP-BF7xx Blackfin+ Processor

Abstract

This instruction moves data from any register in the data arithmetic unit, address arithmetic unit, or control unit to
any other register in those units.

See Also (Conditional Move Register to Register (MvRegToRegCond))

MvRegToReg Description

The move any register to any register instruction copies from a source register into a destination register with zero-
or sign-extension. The instruction does not affect the unspecified portion of the destination register. It supports all
processor core registers. All moves from smaller to larger registers are sign extended.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), and this instruction may be
issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode, except for cases where register access restrictions
only permit Supervisor mode .

MvRegToReg Example

r3 = r0 ;
r7 = p2 ;
r2 = a0 ;
a0.w = r7 ; /* move R7 to 32-bit A0.W */
r3 = a1.x ; /* move 8-bit A1.X to R3 with sign extension*/
retn = p0 ; /* must be in Supervisor mode */
r7 = a0 ; /* move A0 to odd data register */
r2 = a1 ; /* move A1 to even data register */

Conditional Move Register to Register (MvRegToRegCond)

General Form

Conditional Move (CCMV)

if cc GDST = GSRC

if !cc GDST = GSRC

Abstract

This instruction conditionally moves registers.

See Also (Move Register to Register (MvRegToReg))

MvRegToRegCond Description

The Move Conditional instruction moves source register contents into a destination register, depending on the value
of CC.

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–65

• IF CC DPreg = DPreg, the move occurs only if CC = 1.

• IF ! CC DPreg = DPreg, the move occurs only if CC = 0.

The source and destination registers are any data register or pointer register.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

MvRegToRegCond Example

if cc r3 = r0 ; /* move if CC=1 */
if cc r2 = p4 ;
if cc p0 = r7 ;
if cc p2 = p5 ;
if ! cc r3 = r0 ; /* move if CC=0 */
if ! cc r2 = p4 ;
if ! cc p0 = r7 ;
if ! cc p2 = p5 ;

Dual Move Accumulators to Half Registers (ParaMvA1ToDregHwithMvA0To-
DregL)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = a1 MML, DREG_L Register Type = a0 MMOD1

Abstract

This dual move instruction moves the contents of the accumulator registers to half data registers.

See Also (Dual Move Accumulators to Register (ParaMvA1ToDregOwithMvA0ToDregE))

ParaMvA1ToDregHwithMvA0ToDregL Description

The dual move accumulator 1 to high half register with move accumulator 0 to low half register instruction provide
a the combination of operations in the Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL)
and Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH).

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Move Operations

8–66 ADSP-BF7xx Blackfin+ Processor

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMvA1ToDregHwithMvA0ToDregL Example

r3.h = a1 , r3.l = a0 ;
r2.h = a1 (s2rnd) , r7.l = a0 (fu) ; /* signed fraction, scaled, fractional unsigned format
*/
r7.h = a1 (fu) , r2.l = a0 (s2rnd) ; /* fractional unsigned format, signed fraction, scaled
*/

Dual Move Accumulators to Register (ParaMvA1ToDregOwithMvA0ToDregE)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_O Register Type = a1 MML, DREG_E Register Type = a0 MMODE

Abstract

This dual move instruction moves the contents of the accumulator registers to data registers.

See Also (Dual Move Accumulators to Half Registers (ParaMvA1ToDregHwithMvA0ToDregL))

ParaMvA1ToDregOwithMvA0ToDregE Description

The dual move accumulator 1 to high half register with move accumulator 0 to low half register instruction provide
a the combination of operations in the Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO) with
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE).

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Move Operations

ADSP-BF7xx Blackfin+ Processor 8–67

31

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMvA1ToDregOwithMvA0ToDregE Example

r3 = a1 , r0 = a0 (iss2) ;
r7 = a1 (fu) , r2 = a0 ;
r1 = a1 (s2rnd) , r2 = a0 ;

Multiplication Operations

These operations provide multiply and multiply-accumulate operations on register and immediate value operands:

• 16 x 16-Bit MAC (Mac16)

• 16 x 16-Bit MAC with Move to Register (Mac16WithMv)

• 32 x 32-Bit MAC (Mac32)

• 32 x 32-Bit MAC with Move to Register (Mac32WithMv)

• Complex Multiply to Accumulator (Mac32Cmplx)

• Complex Multiply to Register (Mac32CmplxWithMv)

• Complex Multiply to Register with Narrowing (Mac32CmplxWithMvN)

• 16 x 16-Bit Multiply (Mult16)

• 32 x 32-bit Multiply (Mult32)

• 32 x 32-Bit Multiply, Integer (MultInt)

• Dual 16 x 16-Bit MAC (ParaMac16AndMac16)

• Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMac16WithMv)

• Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAndMac16)

• Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMac16WithMv)

• Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMv)

• Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMv)

• Dual 16 x 16-Bit Multiply (ParaMult16AndMult16)

• Dual Move to Register and 16 x 16-Bit MAC (ParaMvAndMac16)

• Dual Move to Register and 16 x 16-Bit MAC with Move to Register (ParaMvAndMac16WithMv)

Arithmetic Instructions

8–68 ADSP-BF7xx Blackfin+ Processor

16 x 16-Bit MAC (Mac16)

General Form

Multiply Accumulate (Dsp32Mac)

MAC0 MMOD0

MAC0 MMOD0

MAC1 MMLMMOD0

MAC1 MMLMMOD0

Abstract

This multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores, adds,
or subtracts the product into a designated accumulator register with saturation. By default, the instruction treats all
operands as signed fractions with left-shift correction as required.

See Also (16 x 16-Bit MAC with Move to Register (Mac16WithMv))

Mac16 Description

The Multiply and Multiply-Accumulate to Accumulator instruction multiplies two 16-bit half-word operands. It
stores, adds or subtracts the product into a designated Accumulator with saturation.

The Multiply-and-Accumulate Unit 0 (MAC0) portion of the architecture performs operations that involve Accu-
mulator A0. MAC1 performs A1 operations.

By default, the instruction treats both operands of both MACs as signed fractions with left-shift correction as re-
quired.

In the syntax, where MMOD0 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), or (w32) .

In the syntax, where MMLMMOD0 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (m), (W32), (m,fu), (m,is), or (m,w32) .

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–69

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac16 Example

a0 = r3.h * r2.h ; /* MAC0, only. Both operands are signed fractions. Load the product into
A0. */
a0 += r6.h * r4.l (fu) ; /* MAC0, only. Both operands are unsigned fractions. Accumulate
into A0 */
a0 -= r3.h * r2.h ; /* MAC0, only. Both operands are signed fractions. Accumulate into A0.
*/
a1 = r6.h * r4.l (fu) ; /* MAC1, only. Both operands are unsigned fractions. Load the
product into A1 */
a1 += r3.h * r2.h ; /* MAC1, only. Both operands are signed fractions. Accumulate into A1.
*/
a1 -= r6.h * r4.l (fu) ; /* MAC1, only. Both operands are unsigned fractions. Accumulate
into A1 */

16 x 16-Bit MAC with Move to Register (Mac16WithMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_L Register Type = (MAC0) MMOD1

DREG_L Register Type = (MAC0) MMOD1

DREG_H Register Type = (MAC1) MMLMMOD1

DREG_H Register Type = (MAC1) MMLMMOD1

Abstract

This multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores, adds,
or subtracts the product into a designated accumulator register with saturation. By default, the instruction treats all
operands as signed fractions with left-shift correction as required.

See Also (16 x 16-Bit MAC (Mac16))

Mac16WithMv Description

The multiply and multiply-accumulate to half register (with move) instruction multiplies two 16-bit half-word oper-
ands. The instruction stores, adds or subtracts the product into a designated accumulator. Then, it copies 16 bits
(saturated at 16 bits) of the accumulator into a high or low half data register.

Multiplication Operations

8–70 ADSP-BF7xx Blackfin+ Processor

In the syntax, where MMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (s2rnd), (t), (tfu) .

In the syntax, where MMLMMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (m), (m,fu), (m,ih), (m,is), (m,iss2), (m,iu), (m,s2rnd),
(m,t), (m,tfu), (s2rnd), (t), (tfu) .

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

The fraction versions of this instruction (the default and (fu) options) transfer the Accumulator result to the desti-
nation register according to the Result to Destination Register ((IS) and (IU) Options) diagram.

The integer versions of this instruction (the (is) and (iu) options) transfer the Accumulator result to the destina-
tion register according to the Result to Destination Register ((IS) and (IU) Options) diagram.

The multiply-and-accumulate unit 0 (MAC0) portion of the architecture performs operations that involve accumu-
lator A0 and loads the results into the lower half of the destination data register. MAC1 performs A1 operations and
loads the results into the upper half of the destination data register.

All versions of this instruction that support rounding are affected by the RND_MOD bit in the ASTAT register when
they copy the results into the destination register. RND_MOD determines whether biased or unbiased rounding is
used.

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1.LA1.HA1.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Figure 8-4: Result to Destination Register (Default and (FU) Options)

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–71

A0 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A0.LA0.HA0.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1 0000 0000 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

A1.LA1.HA1.X

Destination Register XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Figure 8-5: Result to Destination Register ((IS) and (IU) Options)

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

This instruction has special applications. DSP filter applications often use the multiply and multiply-accumulate to
half-register instruction to calculate the dot product between two signal vectors.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac16WithMvExample

r3.l = (a0 = r3.h * r2.h) ;
/* MAC0, only. Both operands are signed fractions. Load the product into A0, then copy to
r3.l. */
r3.h = (a1 += r6.h * r4.l) (fu) ;
/* MAC1, only. Both operands are unsigned fractions. Add the product into A1, then copy to
r3.h */

32 x 32-Bit MAC (Mac32)

General Form

Multiply with 3 operands (Dsp32Mult)

Multiplication Operations

8–72 ADSP-BF7xx Blackfin+ Processor

a1:0 = DREG Register Type * DREG Register Type M32MMOD

a1:0 += DREG Register Type * DREG Register Type M32MMOD

a1:0 -= DREG Register Type * DREG Register Type M32MMOD

Abstract

This instruction executes a multiply accumulate operation on 32-bit registers.

See Also (32 x 32-Bit MAC with Move to Register (Mac32WithMv))

Mac32 Description

The multiply-accumulate to accumulator instruction multiplies two 32-bit half-word operands. It stores, adds or
subtracts the product into a designated accumulator with saturation.

The multiply-and-accumulate unit 0 (MAC0) portion of the architecture performs operations that involve Accumu-
lator A0. MAC1 performs A1 operations.

By default, the instruction treats both operands of both MACs as signed fractions with left-shift correction as re-
quired.

In the syntax, where M32MMOD0 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m), (m,is), or (m,is,ns) .

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac32 Example

a0 = r0 * r7 ; /* (default) fractional signed, place product in a0 */
a0 += r1 * r6 (fu) ; /* fractional unsigned, accumulate in a0 */
a0 -= r2 * r5 (is) ; /* integer signed, accumulate in a0 */
a1 = r3 * r4 (is,ns) ; /* integer signed (no saturation), place product in a1 */

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–73

a1 += r4 * r3 (iu) ; /* integer unsigned, accumulate in a1 */
a1 -= r5 * r2 (iu,ns) ; /* integer unsigned (no saturation), accumulate in a1 */
a0 = r6 * r1 (m) ; /* mixed mode and fractional signed, place product in a0 */
a0 += r7 * r0 (m,is) ; /* mixed mode and integer signed, accumulate in a0 */
a0 -= r0 * r7 (m,is,ns) ; /* mixed mode and integer signed (no saturation), accumulate in
a0 */
a1 = r1 * r6 ; /* (default) fractional signed, place product in a1 */
a1 += r2 * r5 (fu) ; /* fractional unsigned, accumulate in a1 */
a1 -= r3 * r4 (is) ; /* integer signed, accumulate in a1 */

32 x 32-Bit MAC with Move to Register (Mac32WithMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_E Register Type = (MAC0) MMODE

DREG_E Register Type = (MAC0) MMODE

DREG_O Register Type = (MAC1) MMLMMODE

DREG_O Register Type = (MAC1) MMLMMODE

Multiply with 3 operands (Dsp32Mult)

DREG Register Type = (a1:0 = DREG Register Type * DREG Register Type) M32MMOD1

DREG Register Type = (a1:0 += DREG Register Type * DREG Register Type) M32MMOD1

DREG Register Type = (a1:0 -= DREG Register Type * DREG Register Type) M32MMOD1

DREG_PAIR Register Type = (a1:0 = DREG Register Type * DREG Register Type) M32MMOD

DREG_PAIR Register Type = (a1:0 += DREG Register Type * DREG Register Type) M32MMOD

DREG_PAIR Register Type = (a1:0 -= DREG Register Type * DREG Register Type) M32MMOD

Abstract

This multiply-accumulate instruction multiplies two 32-bit half word operands. Then, the instruction stores, adds,
or subtracts the product into a designated accumulator register with saturation. By default, the instruction treats all
operands as signed fractions with left-shift correction as required.

See Also (32 x 32-Bit MAC (Mac32))

Mac32WithMv Description

The multiply-accumulate to accumulator instruction multiplies two 32-bit half-word operands. It stores, adds or
subtracts the product into a designated accumulator with saturation. Then, the instruction moves the result to the
selected register or register pair.

The multiply-and-accumulate unit 0 (MAC0) portion of the architecture performs operations that involve Accumu-
lator A0. MAC1 performs A1 operations.

Multiplication Operations

8–74 ADSP-BF7xx Blackfin+ Processor

By default, the instruction treats both operands of both MACs as signed fractions with left-shift correction as re-
quired.

In the syntax, where MMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), (iu), or (s2rnd).

In the syntax, where MMLMMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), (iu), (m), (m,fu), (m,is), (m,iss2), (m,iu), (m,s2rnd), or (s2rnd).

In the syntax, where M32MMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m,is), (m,is,ns), (m,t), (t), or (tfu).

In the syntax, where M32MMOD appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m), (m,is), or (m,is,ns).

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac32WithMv Example

r0 = (a0 = r0 * r3) (fu) ; /* MMODE options, place product in a0 and move it to EVEN data
register */
r2 = (a0 += r1 * r2) (is) ; /* MMODE options, accumulate in a0 and move it to EVEN data
register */
r4 = (a0 -= r2 * r1) (iss2) ; /* MMODE options, accumulate in a0 and move it to EVEN data
register */
r1 = (a1 = r3 * r0) (m,fu) ; /* MMLMMODE options, place product in a1 and move it to ODD
data register */
r3 = (a1 += r4 * r7) (m,is) ; /* MMLMMODE options, accumulate in a1 and move it to ODD data
register */
r5 = (a1 -= r5 * r6) (m,s2rnd) ; /* MMLMMODE options, accumulate in a1 and move it to ODD
data register */
r1 = (a0 = r6 * r5) (t) ; /* M32MMOD1 options, place product in a0 and move it to any data
register */

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–75

r2 = (a0 += r7 * r4) (tfu) ; /* M32MMOD1 options, accumulate in a0 and move it to any data
register*/
r3 = (a0 -= r0 * r3) (m,is,ns) ; /* M32MMOD1 options, accumulate in a0 and move it to any
data register*/
r4 = (a1 = r1 * r2) (iu,ns) ; /* M32MMOD1 options, place product in a1 and move it to any
data register*/
r5 = (a1 += r2 * r1) (fu) ; /* M32MMOD1 options, accumulate in a1 and move it to any data
register*/
r6 = (a1 -= r3 * r0) (m,is) ; /* M32MMOD1 options, accumulate in a1 and move it to any
data register*/
r1:0 = (a0 = r4 * r7) (fu) ; /* M32MMOD options, place product in a0 and move it to
register pair */
r3:2 = (a0 += r5 * r6) ; /* M32MMOD options, accumulate in a0 and move result to register
pair */
r5:4 = (a0 -= r6 * r5) (m) ; /* M32MMOD options, accumulate in a0 and move result to
register pair */
r7:6 = (a1 = r7 * r4) (is,ns) ; /* M32MMOD options, place product in a1 and move it to
register pair */
r5:4 = (a1 += r0 * r3) (iu,ns) ; /* M32MMOD options, accumulate in a1 and move result to
register pair */
r3:2 = (a1 -= r1 * r2) (is) ; /* M32MMOD options, accumulate in a1 and move result to
register pair */

Complex Multiply to Accumulator (Mac32Cmplx)

General Form

Multiply Accumulate (Dsp32Mac)

a1:0 = CMPLXOP CMODE

a1:0 += CMPLXOP CMODE

a1:0 -= CMPLXOP CMODE

Abstract

This instruction executes a complex multiply-accumulate operation, placing the results in an accumulator register.

See Also (Complex Multiply to Register (Mac32CmplxWithMv), Complex Multiply to Register with Narrowing
(Mac32CmplxWithMvN))

Mac32Cmplx Description

The multiply-accumulate complex values instruction performs a number of parallell multiply-accumulate operations
to produce complex results. To understand the operations, it is important to understand the placement of the imagi-
nary part and real part of the data. Let operand A = (Ar + j *Bi), operand B = (Br + j *Bi) and result C = (Cr + j *Ci),
where Ai (the imaginary part) is stored in the most significant 16 bits of a 32 bit register, and Ar (the real part) is
stored in the least significant 16 bits. Other notations (such as Bi, Ci, and others) are similarly defined regarding

Multiplication Operations

8–76 ADSP-BF7xx Blackfin+ Processor

data placement of imaginary and real parts. Complex multiplication and complex multiplication of conjugates is
defined as follows:

Table 8-7: Complex Multiplication and Complex Conjugates

Complex Multiplication Imaginary Conjugate Real Conjugate

C = cmul(A, B) Ci = Ar*Bi + Ai*Br Cr = Ar*Br - Ai*Bi

C = cmul(A, B*) Ci = Ai*Br - Ar*Bi Cr = Ar*Br + Ai*Bi

C = cmul(A*, B*) Ci = -(Ar*Bi + Ai*Br) Cr = Ar*Br - Ai*Bi

This complex multiply syntax for placing the product in the accumulator registers corresponds to the commented
operations:

a1:0 = cmul(r1,r0); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.l * r0.h) + (r1.h * r0.l), a0 = (r1.l * r0.l) - (r1.h * r0.h) */

a1:0 = cmul(r1,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.h * r0.l) - (r1.l * r0.h), a0 = (r1.l * r0.l) + (r1.h * r0.h) */

a1:0 = cmul(r1*,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = - [(r1.l * r0.h) + (r1.h * r0.l)], a0 = (r1.l * r0.l) - (r1.h * r0.h) */

In the syntax, where CMODE appears, substitute a complex multiply mode for the accumulator copy format option:
default (none) or (is).

Default operation is signed fraction multiplication. Multiply 1.15 * 1.15 to produce 1.31 results after left-shift cor-
rection for each of the four partial products. Add or subtract corresponding partial products for real and imaginary

part of result. Saturate results between minimum -1 and maximum 1-2-31. The resulting hexadecimal range is mini-
mum 0x8000 0000 through maximum 0x7FFF FFFF. This operation uses signed fraction rounding.

If the (is) option is used, the operation is signed integer multiplication. Multiply 16.0 * 16.0 to produce 32.0

results. No shift correction. Saturate integer results between minimum -231 and maximum 231-1.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–77

31

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac32Cmplx Example

a1:0 = (r1,r0) ; /* fractional signed complex multiply; place complex product in a1
(imaginary) and a0 (real) */
a1:0 = (r7,r3*) (is) ; /* integer signed complex multiply; place complex product in a1
(imaginary) and a0 (real) */
a1:0 = (r2*,r4*) ; /* fractional signed complex multiply; place complex product in a1
(imaginary) and a0 (real) */
a1:0 += (r3*,r1*) (is) ; /* integer signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */
a1:0 += (r5,r2*) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */
a1:0 += (r6,r1) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */
a1:0 -= (r2,1) (is) ; /* integer signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */
a1:0 -= (r3*,r7*) /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */
a1:0 -= (r4,r5*) (is) ; /* integer signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real) */

Complex Multiply to Register (Mac32CmplxWithMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_PAIR Register Type = CMPLXOP CMODE

DREG_PAIR Register Type = (a1:0 = CMPLXOP) CMODE

DREG_PAIR Register Type = (a1:0 += CMPLXOP) CMODE

DREG_PAIR Register Type = (a1:0 -= CMPLXOP) CMODE

Abstract

This instruction executes a complex multiply-accumulate operation, placing the results in a register or register pair.

See Also (Complex Multiply to Accumulator (Mac32Cmplx), Complex Multiply to Register with Narrowing
(Mac32CmplxWithMvN))

Multiplication Operations

8–78 ADSP-BF7xx Blackfin+ Processor

Mac32CmplxWithMv Description

The multiply-accumulate complex values instruction performs a number of parallell multiply-accumulate operations
to produce complex results with a move. The product of the multiplication is placed in a pair of data registers. Alter-
nately, the instruction may accumulate the result in the accumulator registers, then move the result to a pair of data
registers. To understand the operations, it is important to understand the placement of the imaginary part and real
part of the data. Let operand A = (Ar + j *Bi), operand B = (Br + j *Bi) and result C = (Cr + j *Ci), where Ai (the
imaginary part) is stored in the most significant 16 bits of a 32 bit register, and Ar (the real part) is stored in the least
significant 16 bits. Other notations (such as Bi, Ci, and others) are similarly defined regarding data placement of
imaginary and real parts. Complex multiplication and complex multiplication of conjugates is defined as follows:

Table 8-8: Complex Multiplication and Complex Conjugates

Complex Multiplication Imaginary Conjugate Real Conjugate

C = cmul(A, B) Ci = Ar*Bi + Ai*Br Cr = Ar*Br - Ai*Bi

C = cmul(A, B*) Ci = Ai*Br - Ar*Bi Cr = Ar*Br + Ai*Bi

C = cmul(A*, B*) Ci = -(Ar*Bi + Ai*Br) Cr = Ar*Br - Ai*Bi

This complex multiply syntax for placing the product in the accumulator registers corresponds to the commented
operations:

a1:0 = cmul(r1,r0); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.l * r0.h) + (r1.h * r0.l), a0 = (r1.l * r0.l) - (r1.h * r0.h) */

a1:0 = cmul(r1,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.h * r0.l) - (r1.l * r0.h), a0 = (r1.l * r0.l) + (r1.h * r0.h) */

a1:0 = cmul(r1*,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = - [(r1.l * r0.h) + (r1.h * r0.l)], a0 = (r1.l * r0.l) - (r1.h * r0.h) */

In the syntax, where CMODE appears, substitute a complex multiply mode for the accumulator copy format option:
default (none) or (is).

Default operation is signed fraction multiplication. Multiply 1.15 * 1.15 to produce 1.31 results after left-shift cor-
rection for each of the four partial products. Add or subtract corresponding partial products for real and imaginary

part of result. Saturate results between minimum -1 and maximum 1-2-31. The resulting hexadecimal range is mini-
mum 0x8000 0000 through maximum 0x7FFF FFFF.

If the (is) option is used, the operation is signed integer multiplication. Multiply 16.0 * 16.0 to produce 32.0

results. No shift correction. Saturate integer results between minimum -231 and maximum 231-1.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–79

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac32CmplxWithMv Example

r7:6 = (r1,r0) ; /* fractional signed complex multiply; place complex product in r7
(imaginary) and r6 (real) */
r5:4 = (r7,r3*) (is) ; /* integer signed complex multiply; place complex product in r5
(imaginary) and r4 (real) */
r1:0 = (r2*,r4*) ; /* fractional signed complex multiply; place complex product in r1
(imaginary) and r0 (real) */
r7:6 = a1:0 = (r1,r0) ; /* fractional signed complex multiply; place complex product in a1
(imaginary) and a0 (real); move to r7:6 */
r5:4 = a1:0 = (r7,r3*) (is) ; /* integer signed complex multiply; place complex product in
a1 (imaginary) and a0 (real); move to r5:4 */
r1:0 = a1:0 = (r2*,r4*) ; /* fractional signed complex multiply; place complex product in
a1 (imaginary) and a0 (real); move to r1:0 */
r5:4 = a1:0 += (r3*,r1*) (is) ; /* integer signed complex mac; accumulate complex result
in a1 (imaginary) and a0 (real); move to r5:4 */
r1:0 = a1:0 += (r5,r2*) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r1:0 */
r3:2 = a1:0 += (r6,r1) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r3:2 */
r7:6 = a1:0 -= (r2,1) (is) ; /* integer signed complex mac; accumulate complex result in
a1 (imaginary) and a0 (real); move to r7:6 */
r1:0 = a1:0 -= (r3*,r7*) /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r1:0 */
r3:2 = a1:0 -= (r4,r5*) (is) ; /* integer signed complex mac; accumulate complex result in
a1 (imaginary) and a0 (real); move to r3:2 */

Complex Multiply to Register with Narrowing (Mac32CmplxWithMvN)

General Form

Multiply Accumulate (Dsp32Mac)

Multiplication Operations

8–80 ADSP-BF7xx Blackfin+ Processor

DREG Register Type = CMPLXOP NARROWING_CMODE

DREG Register Type = (a1:0 = CMPLXOP) NARROWING_CMODE

DREG Register Type = (a1:0 += CMPLXOP) NARROWING_CMODE

DREG Register Type = (a1:0 -= CMPLXOP) NARROWING_CMODE

Abstract

This instruction executes a complex multiply-accumulate operation, placing the results in a register or register pair
with narrowing.

See Also (Complex Multiply to Accumulator (Mac32Cmplx), Complex Multiply to Register
(Mac32CmplxWithMv))

Mac32CmplxWithMvN Description

The multiply-accumulate complex values instruction performs a number of parallell multiply-accumulate operations
to produce complex results with a narrowing move. The product of the multiplication is placed in a data register.
Alternately, the instruction may accumulate the result in the accumulator registers, then move the result to a data
register. To understand the operations, it is important to understand the placement of the imaginary part and real
part of the data. Let operand A = (Ar + j *Bi), operand B = (Br + j *Bi) and result C = (Cr + j *Ci), where Ai (the
imaginary part) is stored in the most significant 16 bits of a 32 bit register, and Ar (the real part) is stored in the least
significant 16 bits. Other notations (such as Bi, Ci, and others) are similarly defined regarding data placement of
imaginary and real parts. Complex multiplication and complex multiplication of conjugates is defined as follows:

Table 8-9: Complex Multiplication and Complex Conjugates

Complex Multiplication Imaginary Conjugate Real Conjugate

C = cmul(A, B) Ci = Ar*Bi + Ai*Br Cr = Ar*Br - Ai*Bi

C = cmul(A, B*) Ci = Ai*Br - Ar*Bi Cr = Ar*Br + Ai*Bi

C = cmul(A*, B*) Ci = -(Ar*Bi + Ai*Br) Cr = Ar*Br - Ai*Bi

This complex multiply syntax for placing the product in the accumulator registers corresponds to the commented
operations:

a1:0 = cmul(r1,r0); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.l * r0.h) + (r1.h * r0.l), a0 = (r1.l * r0.l) - (r1.h * r0.h) */

a1:0 = cmul(r1,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = (r1.h * r0.l) - (r1.l * r0.h), a0 = (r1.l * r0.l) + (r1.h * r0.h) */

a1:0 = cmul(r1*,r0*); /* complex multiply of r1 and r0, place imaginary product in a1 and
real product in a0 */
/* a1 = - [(r1.l * r0.h) + (r1.h * r0.l)], a0 = (r1.l * r0.l) - (r1.h * r0.h) */

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–81

In the syntax, where NARROWING_CMODE appears, substitute a complex multiply mode for the accumulator copy
format option: default (none), (is), or (t).

Default operation is signed fraction multiplication. Multiply 1.15 * 1.15 to produce 1.31 results after left-shift cor-
rection for each of the four partial products. Add or subtract corresponding partial products for real and imaginary

part of result. Saturate results between minimum -1 and maximum 1-2-31. The resulting hexadecimal range is mini-
mum 0x8000 0000 through maximum 0x7FFF FFFF. This operation uses signed fraction rounding. Round 1.31
format value at bit 16, (RND_MOD bit in the ASTAT register controls the rounding) extract the high 16 bits to

produce a 1.15 result. Result is between minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF).

If the (is) option is used, the operation is signed integer multiplication. Multiply 16.0 * 16.0 to produce 32.0

results. No shift correction. Saturate integer results between minimum -231 and maximum 231-1. This operation
uses signed integer saturation. Saturate 32-bit integer values at bit 15 and extract the low 16 bits to produce a result

between minimum -215 and maximum 215-1.

If the (t) option is used, the operation is signed fraction multiplication with truncation. Multiply 1.15 * 1.15 to
produce 1.31 results after left-shift correction for each of the four partial products. Add or subtract corresponding

partial products for real and imaginary part of result. Saturate results between minimum -1 and maximum 1-2-31.
The resulting hexadecimal range is minimum 0x8000 0000 through maximum 0x7FFF FFFF. This operation uses
signed fraction truncation. Truncate 1.31 format values for real and imaginary parts of the result at bit 16, (Perform

no rounding) extract the high 16 bits to produce a 1.15 result. Result is between minimum -1 and maximum 1-2-15

(or, expressed in hex, between minimum 0x8000 and maximum 0x7FFF).

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mac32CmplxWithMvN Example

r6 = (r1,r0) ; /* fractional signed complex multiply; place complex product in r6.h
(imaginary) and r6.l (real) */

Multiplication Operations

8–82 ADSP-BF7xx Blackfin+ Processor

r4 = (r7,r3*) (is) ; /* integer signed complex multiply; place complex product in r4.h
(imaginary) and r4.l (real) */
r0 = (r2*,r4*) ; /* fractional signed complex multiply; place complex product in r0.h
(imaginary) and r0.l (real) */
r6 = a1:0 = (r1,r0) ; /* fractional signed complex multiply; place complex product in a1
(imaginary) and a0 (real); move to r6 */
r4 = a1:0 = (r7,r3*) (is) ; /* integer signed complex multiply; place complex product in a1
(imaginary) and a0 (real); move to r4 */
r0 = a1:0 = (r2*,r4*) ; /* fractional signed complex multiply; place complex product in a1
(imaginary) and a0 (real); move to r0 */
r4 = a1:0 += (r3*,r1*) (is) ; /* integer signed complex mac; accumulate complex result in
a1 (imaginary) and a0 (real); move to r4 */
r0 = a1:0 += (r5,r2*) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r0 */
r2 = a1:0 += (r6,r1) ; /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r2 */
r6 = a1:0 -= (r2,1) (is) ; /* integer signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r6 */
r0 = a1:0 -= (r3*,r7*) /* fractional signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r0 */
r2 = a1:0 -= (r4,r5*) (is) ; /* integer signed complex mac; accumulate complex result in a1
(imaginary) and a0 (real); move to r2 */

16 x 16-Bit Multiply (Mult16)

General Form

Multiply with 3 operands (Dsp32Mult)

DREG_L Register Type = MUL0 MMOD1

DREG_H Register Type = MUL1 MMLMMOD1

DREG_E Register Type = MUL0 MMODE

DREG_O Register Type = MUL1 MMLMMODE

Abstract

This instruction multiplies two 16-bit half word operands. It stores, adds, or subtracts the product into a designated
accumulator register with saturation.

See Also (32 x 32-Bit Multiply, Integer (MultInt), 32 x 32-bit Multiply (Mult32))

Mult16 Description

The multiply 16-bit operands instruction multiplies the two 16-bit operands and stores the result directly into the
destination register with saturation.

NOTE: This instruction is similar to the multiply-accumulate instructions, except that the multiply 16-bit oper-
ands does not affect the accumulators.

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–83

Operations performed by the multiply-and-accumulate unit 0 (MAC0) portion of the architecture load their 16-bit
results into the lower half of the destination data register; 32-bit results go into an even numbered data register.
Operations performed by MAC1 load their results into the upper half of the destination data register or an odd
numbered data register.

In 32-bit result syntax (result goes to a 32-bit data register), the MAC performing the operation is determined by
the destination data register. Instructions placing results in even-numbered data registers (R6, R4, R2, or R0) execute
on MAC0 and may use MMODE options. Instructions placing results in odd-numbered data registers (R7, R5, R3, or
R1) execute on MAC1 and may use MMLMMODE options. For example, 32-bit result operations with the (m) option
may only be performed using odd-numbered data register destinations.

In 16-bit result syntax (result goes to a 16-bit half data register), the MAC performing the operation is determined
by the destination data register half. Instructions placing results in low-half data registers (R7.L through R0.L) exe-
cute on MAC0 and may use MMOD1 options. Instructions placing results in high-half data registers (R7.H through
R0.H) execute on MAC1 and may use MMLMMOD1 options. For example, 16-bit result operations using the (m)
option may only be performed using high-half data register destinations.

The versions of this instruction that produce 16-bit results are affected by the RND_MOD bit in the ASTAT register
when they copy the results into the 16-bit destination register. RND_MOD determines whether biased or unbiased
rounding is used. RND_MOD controls rounding for all versions of this instruction that produce 16-bit results except
the (is), (iu) and (iss2) options.

In the syntax, where MMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (s2rnd), (t), or (tfu).

In the syntax, where MMLMMOD1 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (ih), (is), (iss2), (iu), (m), (m,fu), (m,ih), (m,is), (m,iss2), (m,iu), (m,s2rnd),
(m,t), (m,tfu), (s2rnd), (t), or (tfu).

In the syntax, where MMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), or (s2rnd).

In the syntax, where MMLMMODE appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (iss2), (m), (m,fu), (m,is), (m,iss2), (m,s2rnd), or (s2rnd).

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Multiplication Operations

8–84 ADSP-BF7xx Blackfin+ Processor

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mult16 Example

r3.l = r3.h * r2.h ; /* MAC0. Both operands are signed fractions. */
r3.h = r6.h * r4.l (fu) ; /* MAC1. Both operands are unsigned fractions. */
r6 = r3.h * r4.h ; /* MAC0. Signed fraction operands, results saved as 32 bits. */

32 x 32-bit Multiply (Mult32)

General Form

Multiply with 3 operands (Dsp32Mult)

DREG Register Type = DREG Register Type * DREG Register Type M32MMOD2

DREG_PAIR Register Type = DREG Register Type * DREG Register Type M32MMOD

Abstract

This instruction executes multiply operations on 32-bit registers and on register pairs.

See Also (32 x 32-Bit Multiply, Integer (MultInt), 16 x 16-Bit Multiply (Mult16))

Mult32 Description

The multiply 32-bit operands instruction multiplies two 32-bit half-word operands. It stores the product into a des-
ignated data register or data register pair with saturation.

In the syntax, where M32MMOD2 appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m), (m,is), (m,is,ns), (m,t), (t), or (tfu).

In the syntax, where MM32MMOD appears, substitute a MAC mode for the accumulator copy format option: default
(none), (fu), (is), (is,ns), (iu), (iu,ns), (m), (m,is), or (m,is,ns).

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–85

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mult32 Example

r0 = r0 * r3 (fu) ; /* fractional unsigned, place product in r0 */
r1:0 = r4 * r7 (fu) ; /* fractional unsigned, place product in r1:0 register pair */

32 x 32-Bit Multiply, Integer (MultInt)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type *= DREG Register Type

Abstract

This instruction does a //C style//, modulo 32-bit multiply with no saturation.

See Also (16 x 16-Bit Multiply (Mult16), 32 x 32-bit Multiply (Mult32))

MultInt Description

The multiply 32-Bit operands instruction multiplies two 32-bit data registers (dest_reg and multiplier_register) and
saves the product in dest_reg. The instruction mimics multiplication in the C language and effectively performs

Dreg1 = (Dreg1 * Dreg2) modulo 232. Since the integer multiply is modulo 232, the result always fits in a 32-bit
dest_reg, and overflows are possible but not detected. The overflow status bit in the ASTAT register is never set.

Users are required to limit input numbers to ensure that the resulting product does not exceed the 32-bit dest_reg
capacity. If overflow notification is required, users should write their own multiplication macro with that capability.

Accumulators A0 and A1 are unchanged by this instruction.

The multiply 32-bit operands instruction does not implicitly modify the number in multiplier_register.

This instruction might be used to implement the congruence method of random number generation according to:

X n a+[] a X n[]×()mod 2
32

=

Figure 8-6: Integer Multiply Equation

where:

• X[n] is the seed value,

Multiplication Operations

8–86 ADSP-BF7xx Blackfin+ Processor

• a is a large integer, and

• X[n+1] is the result that can be multiplied again to further the pseudo-random sequence.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

MultInt Example

r3 *= r0 ; /* equivalent to r3 = r3 * r0 */

Dual 16 x 16-Bit MAC (ParaMac16AndMac16)

General Form

Multiply Accumulate (Dsp32Mac)

MAC1 MML, MAC0 MMOD0

MAC1 MML, MAC0 MMOD0

MAC1 MML, MAC0 MMOD0

MAC1 MML, MAC0 MMOD0

Abstract

This dual multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores,
adds, or subtracts the product into a designated accumulator register with saturation. By default, the instruction
treats all operands as signed fractions with left-shift correction as required. A second MAC operation occurs in paral-
lel.

See Also (Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMac16WithMv), Dual 16 x 16-
Bit MAC with Move to Register (ParaMac16AndMac16WithMv), Dual 16 x 16-Bit MAC with Move to Register
(ParaMac16WithMvAndMac16))

ParaMac16AndMac16 Description

The dual multiply and multiply-accumulate to accumulator instruction is a dual (two instances issued in parallel) of
the 16 x 16-Bit MAC (Mac16) instruction. For more information about instruction operation, see that instruction's
reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–87

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16AndMac16 Example

a1 += r3.h * r2.h , a0 = r3.h * r2.h ;/
a1 -= r6.h * r4.l (fu) , a0 += r6.h * r4.l (fu) ;
a1 = r6.h * r4.l (fu) , a0 -= r3.h * r2.h ;

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMac16WithMv)

General Form

Multiply Accumulate (Dsp32Mac)

MAC1 MML, DREG_L Register Type = (MAC0) MMOD1

MAC1 MML, DREG_L Register Type = (MAC0) MMOD1

MAC1 MML, DREG_L Register Type = (MAC0) MMOD1

MAC1 MML, DREG_L Register Type = (MAC0) MMOD1

MAC1 MML, DREG_E Register Type = (MAC0) MMODE

MAC1 MML, DREG_E Register Type = (MAC0) MMODE

MAC1 MML, DREG_E Register Type = (MAC0) MMODE

MAC1 MML, DREG_E Register Type = (MAC0) MMODE

Abstract

This dual multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores,
adds, or subtracts the product into a designated accumulator register with saturation. By default, the instruction
treats all operands as signed fractions with left-shift correction as required. A second MAC operation occurs in paral-
lel.

See Also (Dual 16 x 16-Bit MAC (ParaMac16AndMac16), Dual 16 x 16-Bit MAC with Moves to Registers (Para-
Mac16WithMvAndMac16WithMv), Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAnd-
Mac16))

ParaMac16AndMac16WithMv Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with an instance of the the 16 x 16-Bit MAC (Mac16) instruction (using MAC1) and an instance of the 16 x 16-Bit

Multiplication Operations

8–88 ADSP-BF7xx Blackfin+ Processor

MAC with Move to Register (Mac16WithMv) instruction (using MAC0). For more information about instruction
operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16AndMac16WithMv Example

a1 += r6.h * r4.l (fu) , r3.l = (a0 = r3.h * r2.h) ;

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAndMac16)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = (MAC1) MML, MAC0 MMOD1

DREG_H Register Type = (MAC1) MML, MAC0 MMOD1

DREG_H Register Type = (MAC1) MML, MAC0 MMOD1

DREG_H Register Type = (MAC1) MML, MAC0 MMOD1

DREG_O Register Type = (MAC1) MML, MAC0 MMODE

DREG_O Register Type = (MAC1) MML, MAC0 MMODE

DREG_O Register Type = (MAC1) MML, MAC0 MMODE

DREG_O Register Type = (MAC1) MML, MAC0 MMODE

Abstract

This dual multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores,
adds, or subtracts the product into a designated accumulator register with saturation. By default, the instruction
treats all operands as signed fractions with left-shift correction as required. A second MAC operation occurs in paral-
lel.

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–89

See Also (Dual 16 x 16-Bit MAC (ParaMac16AndMac16), Dual 16 x 16-Bit MAC with Moves to Registers (Para-
Mac16WithMvAndMac16WithMv), Dual 16 x 16-Bit MAC with Move to Register
(ParaMac16AndMac16WithMv))

ParaMac16WithMvAndMac16 Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with an instance of the 16 x 16-Bit MAC with Move to Register (Mac16WithMv) instruction (using MAC1) and an
instance of the 16 x 16-Bit MAC (Mac16) (using MAC0). For more information about instruction operation, see
that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16WithMvAndMac16 Example

r3.h = (a1 += r6.h * r4.l) (fu) , a0 = r3.h * r2.h ;

Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAnd-
Mac16WithMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = (MAC0) MMOD1

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = (MAC0) MMOD1

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = (MAC0) MMOD1

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = (MAC0) MMOD1

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = (MAC0) MMODE

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = (MAC0) MMODE

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = (MAC0) MMODE

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = (MAC0) MMODE

Multiplication Operations

8–90 ADSP-BF7xx Blackfin+ Processor

Abstract

This dual multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruction stores,
adds, or subtracts the product into a designated accumulator register with saturation. By default, the instruction
treats all operands as signed fractions with left-shift correction as required. A second MAC operation occurs in paral-
lel.

See Also (Dual 16 x 16-Bit MAC (ParaMac16AndMac16), Dual 16 x 16-Bit MAC with Move to Register (Para-
Mac16AndMac16WithMv), Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAndMac16))

ParaMac16WithMvAndMac16WithMv Description

The dual multiply and multiply-accumulate to accumulator (with move) instruction is a dual (two instances issued
in parallel) of the 16 x 16-Bit MAC with Move to Register (Mac16WithMv) instruction. For more information
about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation input operands. The instructions must NOT use the same data registers for results.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16WithMvAndMac16WithMv Example

r1 = (a1 = r3 * r0) (m,fu) , r0 = (a0 = r0 * r3) (fu) ;
r3 = (a1 += r4 * r7) (m,is) , r2 = (a0 += r1 * r2) (is) ;
r1 = (a1 = r3 * r0) (m,fu) , r4 = (a0 -= r2 * r1) (iss2) ;

Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMv)

General Form

Multiply Accumulate (Dsp32Mac)

MAC1 MML, DREG_L Register Type = a0 MMOD1

MAC1 MML, DREG_L Register Type = a0 MMOD1

MAC1 MML, DREG_E Register Type = a0 MMODE

MAC1 MML, DREG_E Register Type = a0 MMODE

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–91

Abstract

This dual move and multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruc-
tion stores, adds, or subtracts the product into a designated accumulator register with saturation. By default, the
instruction treats all operands as signed fractions with left-shift correction as required. A second (independent) move
operation occurs in parallel with the MAC operation.

See Also (Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMv))

ParaMac16AndMv Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with an instance of the the 16 x 16-Bit MAC (Mac16) instruction (using MAC1) and either an instance of the Move
16-Bit Accumulator Section to Low Half Register (MvA0ToDregL) instruction (using MAC0) or an instance of the
Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE) instruction (using MAC0). For more informa-
tion about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16AndMv Example

a1 += r6.h * r4.l (fu) , r3.l = a0 ;
a1 += r6.h * r4.l (fu) , r2 = a0 ;

Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = a0 MMOD1

DREG_H Register Type = (MAC1) MML, DREG_L Register Type = a0 MMOD1

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = a0 MMODE

DREG_O Register Type = (MAC1) MML, DREG_E Register Type = a0 MMODE

Multiplication Operations

8–92 ADSP-BF7xx Blackfin+ Processor

Abstract

This dual move and multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruc-
tion stores, adds, or subtracts the product into a designated accumulator register with saturation. By default, the
instruction treats all operands as signed fractions with left-shift correction as required. A second (independent) move
operation occurs in parallel with the MAC operation.

See Also (Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMv))

ParaMac16WithMvAndMv Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with an instance of the 16 x 16-Bit MAC with Move to Register (Mac16WithMv) instruction (using MAC1) and
either an instance of the Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL) instruction (using
MAC0) or an instance of the Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE) instruction (us-
ing MAC0). For more information about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMac16WithMvAndMv Example

r1.h = (a1 += r6.h * r4.l) (fu) , r3.l = a0 ;
r1.h = (a1 += r6.h * r4.l) (fu) , r2 = a0 ;
r2 = (a1 += r6.h * r4.l) (fu) , r3.l = a0 ;
r0 = (a1 += r6.h * r4.l) (fu) , r2 = a0 ;

Dual 16 x 16-Bit Multiply (ParaMult16AndMult16)

General Form

Multiply with 3 operands (Dsp32Mult)

DREG_H Register Type = MUL1 MML, DREG_L Register Type = MUL0 MMOD1

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–93

Abstract

This instruction executes a two parallel multiply operations on 16-bit registers.

ParaMult16AndMult16 Description

The dual multiply 16-bit operands instruction is a dual (two instances issued in parallel) of the 16 x 16-Bit Multiply
(Mult16) instruction. One of the parallel issue instructions executes on MAC1 with its results placed in a high half
data register. The other parallel issue instruction executes on MAC0 with its results placed in a low half data register.
For more information about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMult16AndMult16 Example

r3.h = r6.h * r4.l (fu) , r3.l = r3.h * r2.h ;

Dual Move to Register and 16 x 16-Bit MAC (ParaMvAndMac16)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = a1 MML, MAC0 MMOD1

DREG_H Register Type = a1 MML, MAC0 MMOD1

DREG_O Register Type = a1 MML, MAC0 MMODE

DREG_O Register Type = a1 MML, MAC0 MMODE

Abstract

This dual move and multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruc-
tion stores, adds, or subtracts the product into a designated accumulator register with saturation. By default, the
instruction treats all operands as signed fractions with left-shift correction as required. A second (independent) move
operation occurs in parallel with the MAC operation.

Multiplication Operations

8–94 ADSP-BF7xx Blackfin+ Processor

See Also (Dual Move to Register and 16 x 16-Bit MAC with Move to Register (ParaMvAndMac16WithMv))

ParaMvAndMac16 Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with either an instance of the Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH) instruction
(using MAC1) or an instance of the Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO) instruc-
tion (using MAC1) and an instance of the 16 x 16-Bit MAC (Mac16) instruction (using MAC0). For more infor-
mation about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMvAndMac16 Example

r3.l = a1 , a0 += r6.h * r4.l (fu) ;
r2 = a1 , a0 += r6.h * r4.l (fu) ;

Dual Move to Register and 16 x 16-Bit MAC with Move to Register (Para-
MvAndMac16WithMv)

General Form

Multiply Accumulate (Dsp32Mac)

DREG_H Register Type = a1 MML, DREG_L Register Type = (MAC0) MMOD1

DREG_H Register Type = a1 MML, DREG_L Register Type = (MAC0) MMOD1

DREG_O Register Type = a1 MML, DREG_E Register Type = (MAC0) MMODE

DREG_O Register Type = a1 MML, DREG_E Register Type = (MAC0) MMODE

Abstract

This dual move and multiply-accumulate instruction multiplies two 16-bit half word operands. Then, the instruc-
tion stores, adds, or subtracts the product into a designated accumulator register with saturation. By default, the

Multiplication Operations

ADSP-BF7xx Blackfin+ Processor 8–95

instruction treats all operands as signed fractions with left-shift correction as required. A second (independent) move
operation occurs in parallel with the MAC operation.

See Also (Dual Move to Register and 16 x 16-Bit MAC (ParaMvAndMac16))

ParaMvAndMac16WithMv Description

The dual multiply and multiply-accumulate to half register (with move) instruction is a parallel issue instruction
with either an instance of the Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH) instruction
(using MAC1) or an instance of the Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO) instruc-
tion (using MAC1) and an instance of the 16 x 16-Bit MAC with Move to Register (Mac16WithMv) instruction
(using MAC0). For more information about instruction operation, see that instruction's reference page.

The parallel issue instructions operate independently and may use the same (or different) data registers for the com-
putation operands.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ParaMvAndMac16WithMv Example

r3.h = a1 , r1.h = (a0 += r6.h * r4.l) (fu) ;
r3 = a1 , r1.h = (a0 += r6.h * r4.l) (fu) ;
r3.h = a1 , r2 = (a0 += r6.h * r4.l) (fu) ;
r7 = a1 , r0 = (a0 += r6.h * r4.l) (fu) ;

Pointer Math Operations

These operations provide addition and/or subtract operations on pointer register and immediate value operands:

• 32-bit Add or Subtract (DagAdd32)

• 32-bit Add then Shift (DagAddSubShift)

• 32-bit Add or Subtract Constant (DagAddImm)

• 32-bit Add Shifted Pointer (PtrOp)

• Pointer Logical Shift (LShiftPtr)

Arithmetic Instructions

8–96 ADSP-BF7xx Blackfin+ Processor

32-bit Add or Subtract (DagAdd32)

General Form

Pointer Arithmetic Operations (Ptr2op)

PREG Register Type -= PREG Register Type

PREG Register Type += PREG Register Type (brev)

Compute with 3 operands (Comp3op)

PREG Register Type = PREG Register Type + PREG Register Type

DAG Arithmetic (DAGModIm)

IREG Register Type += MREG Register Type

IREG Register Type += MREG Register Type (brev)

IREG Register Type -= MREG Register Type

Abstract

This instruction adds or subtracts two pointer registers.

See Also (32-bit Add then Shift (DagAddSubShift), 32-bit Add or Subtract Constant (DagAddImm), 32-bit Add
Shifted Pointer (PtrOp))

DagAdd32 Description

The DAG AddSub32 instruction adds or subtracts source pointer registers and places the result in a destination
pointer register.

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. For
more information, see Addressing Circular Buffers in the Address Arithmetic Unit (AAU) chapter. Unless circular
buffering is desired, disable this feature prior to issuing this instruction by clearing the length register (Lreg) corre-
sponding to the Ireg used in this instruction. For example, if using the i2 to increment your address pointer, first
clear l2 to disable circular buffering. Failure to explicitly clear the corresponding Lreg beforehand can result in
unexpected Ireg values.

The circular address buffer registers (index, length, and base) are not initialized automatically by processor reset. The
recommended operation is that user software clears all the circular address buffer registers during boot-up to disable
circular buffering, then initializes these registers later, if needed.

When the bit reverse carry adder (BREV) is specified in the instruction syntax, the carry bit is propagated from left-
to-right, as shown in the Bit Addition Flow for the Bit Reverse (BREV) Case figure, instead of being propagated from
right-to-left (default operation). When bit reversal is used on the index register version of this instruction, circular
buffering is disabled to support operand addressing for FFT, DCT, and DFT algorithms. The pointer register ver-
sion of this instruction does not support circular buffering.

Pointer Math Operations

ADSP-BF7xx Blackfin+ Processor 8–97

+ + + +

an

bn

a0

b0

a1

b1

a2

b2

cn c2 c1

c0

Figure 8-7: Bit Addition Flow for the Bit Reverse (BREV) Case

This instruction has a special application, regarding load or store operations. Typically, programs use the index regis-
ter and pointer register versions of this instruction to increment or decrement indirect address pointers for load or
store operations.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

DagAdd32 Example

p5 = p3 + p0 ; /* dest_Preg = src1_Preg + src0_Preg */
p3 -= p0 ; /* dest_Preg_new = dest_Preg_old - src_Preg */
i1 -= m2 ; /* dest_Ireg_new = dest_Ireg_old - src_Mreg */
p3 += p0 (brev) ; /* dest_Preg_new = dest_Preg_old + src_Preg (bit reversed carry, only) */
i1 += m1 ; /* dest_Ireg_new = dest_Ireg_old + src_Mreg */
i0 += m0 (brev) ; /* optional bit reverse carry, only */

32-bit Add or Subtract Constant (DagAddImm)

General Form

Destructive Binary Operations, preg with 7bit immediate (CompI2opP)

PREG Register Type += imm7 Register Type

DAG Arithmetic (DAGModIk)

IREG Register Type += 2

IREG Register Type -= 2

IREG Register Type += 4

IREG Register Type -= 4

Abstract

This instruction allows the user to add a constant to a register.

See Also (32-bit Add or Subtract (DagAdd32), 32-bit Add then Shift (DagAddSubShift), 32-bit Add Shifted Pointer
(PtrOp))

Pointer Math Operations

8–98 ADSP-BF7xx Blackfin+ Processor

DagAddImm Description

The DAG AddImm instruction adds or subtracts a source pointer registers and a constant value, then places the
result in a destination pointer register.

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. For
more information, see Addressing Circular Buffers in the Address Arithmetic Unit (AAU) chapter. Unless circular
buffering is desired, disable this feature prior to issuing this instruction by clearing the length register (Lreg) corre-
sponding to the Ireg used in this instruction. For example, if using the i2 to increment your address pointer, first
clear l2 to disable circular buffering. Failure to explicitly clear the corresponding Lreg beforehand can result in
unexpected Ireg values.

The circular address buffer registers (index, length, and base) are not initialized automatically by processor reset. The
recommended operation is that user software clears all the circular address buffer registers during boot-up to disable
circular buffering, then initializes these registers later, if needed

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

DagAddImm Example

p5 += -8 ; /* Preg = Preg + constant */
i0 += 2 ; /* Ireg = Ireg + 2 */
i1 += 4 ; /* Ireg = Ireg + 4 */
i2 -= 2 ; /* Ireg = Ireg - 2 */
i0 -= 4 ; /* Ireg = Ireg - 4 */

32-bit Add then Shift (DagAddSubShift)

General Form

Pointer Arithmetic Operations (Ptr2op)

PREG Register Type = (PREG Register Type + PREG Register Type) << 1

PREG Register Type = (PREG Register Type + PREG Register Type) << 2

Abstract

This instruction adds then shift left one or two places. Saturation is not supported.

See Also (32-bit Add or Subtract (DagAdd32), 32-bit Add or Subtract Constant (DagAddImm), 32-bit Add Shifted
Pointer (PtrOp))

DagAddSubShift Description

The add with shift instruction adds two source pointer register, then applies a one- or two-bit logical shift left. The
left shift accomplishes a x2 or x4 multiplication on sign-extended numbers.

Pointer Math Operations

ADSP-BF7xx Blackfin+ Processor 8–99

The add with shift instruction does not intrinsically modify values that are strictly input. However, the dest_reg
serves as an input as well as the result, so the dest_reg is intrinsically modified.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

DagAddSubShift Example

p3 = (p3 + p2) << 1 ;
/* dest_reg = (dest_reg + src_reg) x 2 */
/* p3 = (p3 + p2) * 2 */

p3 = (p3 + p2) << 2 ;
/* dest_reg = (dest_reg + src_reg) x 4 (a) */
/* p3 = (p3 + p2) * 4 */

32-bit Add Shifted Pointer (PtrOp)

General Form

Compute with 3 operands (Comp3op)

PREG Register Type = PREG Register Type + (PREG Register Type << 1)

PREG Register Type = PREG Register Type + (PREG Register Type << 2)

Abstract

This instruction adds or subtracts pointer and DAG registers.

See Also (32-bit Add or Subtract (DagAdd32), 32-bit Add then Shift (DagAddSubShift), 32-bit Add or Subtract
Constant (DagAddImm))

PtrOp Description

The shift with add instruction combines a one- or two-bit logical shift left with an addition operation.

The instruction provides a shift-then-add method that supports a rudimentary multiplier sequence useful for array
pointer manipulation.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

PtrOp Example

p3 = p0 + (p3 << 1) ;
/* p3 = (p3 * 2) + p0 */

Pointer Math Operations

8–100 ADSP-BF7xx Blackfin+ Processor

/* adder_pntr + (src_pntr * 2) */

p3 = p0 + (p3 << 2) ;
/* p3 = (p3 * 4) + p0 */
/* adder_pntr + (src_pntr * 4) */

Pointer Logical Shift (LShiftPtr)

General Form

Pointer Arithmetic Operations (Ptr2op)

PREG Register Type = PREG Register Type << 2

PREG Register Type = PREG Register Type << 1

PREG Register Type = PREG Register Type >> 2

PREG Register Type = PREG Register Type >> 1

Abstract

This instruction shifts a pointer register by the specified number of bits.

LShiftPtr Description

The logical shift pointer instruction logically shifts a pointer register by a specified distance and direction.

Logical shifts discard any bits shifted out of the register and backfill vacated bits with zeros.

The logical shift pointer instruction does not implicitly modify the input src_pntr value. However, the dest_pntr
can be the same pointer register as src_pntr. Doing so explicitly modifies the source register.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LShiftPtr Example

p3 = p2 >> 1 ; /* pointer right shift by 1 */
p3 = p3 >> 2 ; /* pointer right shift by 2 */
p4 = p5 << 1 ; /* pointer left shift by 1 */
p0 = p1 << 2 ; /* pointer left shift by 2 */

Rotate Operations

These operations provide bitwise rotate operations on register and immediate value operands:

• 32-Bit Rotate (Shift_Rot32)

Pointer Math Operations

ADSP-BF7xx Blackfin+ Processor 8–101

• Accumulator Rotate (Shift_RotAcc)

32-Bit Rotate (Shift_Rot32)

General Form

Shift (Dsp32Shf)

DREG Register Type = rot DREG Register Type by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

DREG Register Type = rot DREG Register Type by imm6 Register Type

Abstract

This instruction rotates the a register through the CC bit a specified distance and direction. The CC bit is in the
rotate chain.

Shift_Rot32 Description

The rotate data register instruction rotates a data register through the CC bit a specified distance and direction. The
CC bit is in the rotate chain. Consequently, the first value rotated into the register is the initial value of the CC bit.

Rotation shifts all the bits either right or left. Each bit that rotates out of the register (the LSB for rotate right or the
MSB for rotate left) is stored in the CC bit, and the CC bit is stored into the bit vacated by the rotate on the opposite
end of the register.

If 31 0
D-register: 1010 1111 0000 0000 0000 0000 0001 1010
CC bit: N (“1” or “0”)

Rotate left 1 bit 31 0
D-register: 0101 1110 0000 0000 0000 0000 0011 010N
CC bit: 1

Rotate left 1 bit again 31 0
D-register: 1011 1100 0000 0000 0000 0000 0110 10N1
CC bit: 0

If 31 0
D-register: 1010 1111 0000 0000 0000 0000 0001 1010
CC bit: N (“1” or “0”)

Rotate right 1 bit 31 0
D-register: N101 0111 1000 0000 0000 0000 0000 1101
CC bit: 0

Rotate right 1 bit again 31 0
D-register: 0N10 1011 1100 0000 0000 0000 0000 0110
CC bit: 1

Figure 8-8: Left-versus-Right Bit Rotation Example

Rotate Operations

8–102 ADSP-BF7xx Blackfin+ Processor

The sign of the rotate magnitude determines the direction of the rotation.

• Positive rotate magnitudes produce Left rotations.

• Negative rotate magnitudes produce Right rotations.

Valid rotate magnitudes are –32 through +31, zero included. The rotate instruction masks and ignores bits that are
more significant than those allowed. The distance is determined by the lower 6 bits (sign extended) of the
shift_magnitude.

Unlike shift operations, the rotate instruction loses no bits of the source register data. Instead, it rearranges them in a
circular fashion. However, the last bit rotated out of the register remains in the CC bit, and is not returned to the
register. Because rotates are performed all at once and not one bit at a time, rotating one direction or another regard-
less of the rotate magnitude produces no advantage. For instance, a rotate right by two bits is no more efficient than
a rotate left by 30 bits. Both methods produce identical results in identical execution time.

This instruction rotates all 32 bits of the data register.

The instruction does not implicitly modify the src_reg values. Optionally, dest_reg can be the same data regis-
ter as src_reg. Doing this explicitly modifies the source register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift_Rot32 Example

r4 = rot r1 by 8 ; /* rotate left (Dreg = ROT Dreg BY imm6) */
r4 = rot r1 by -5 ; /* rotate right */

Accumulator Rotate (Shift_RotAcc)

General Form

Shift (Dsp32Shf)

a0 = rot a0 by DREG_L Register Type

Rotate Operations

ADSP-BF7xx Blackfin+ Processor 8–103

a1 = rot a1 by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

a0 = rot a0 by imm6 Register Type

a1 = rot a1 by imm6 Register Type

Abstract

This instruction rotates the accumulator through the CC bit a specified distance and direction. The CC bit is in the
rotate chain.

Shift_RotAcc Description

This instruction rotates the accumulator through the CC bit a specified distance and direction. The CC bit is in the
rotate chain. Consequently, the first value rotated into the register is the initial value of the CC bit and the last bit
rotated out ends up in CC. The sign of the rotate magnitude determines the direction of the rotation.

• Positive rotates left

• Negative rotates right

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift Operations

These operations provide arithmetic or logical shift operations on register and immediate value operands:

• 16-Bit Arithmetic Shift (AShift16)

• Vectored 16-Bit Arithmetic (AShift16Vec)

• Accumulator Arithmetic Shift (AShiftAcc)

• 32-Bit Arithmetic Shift (AShift32)

• 16-Bit Logical Shift (LShift16)

• Vectored 16-Bit Logical Shift (LShift16Vec)

• 32-Bit Logical Shift (LShift)

Arithmetic Instructions

8–104 ADSP-BF7xx Blackfin+ Processor

• Accumulator Logical Shift (LShiftA)

16-Bit Arithmetic Shift (AShift16)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = ashift DREG_L Register Type by DREG_L Register Type

DREG_L Register Type = ashift DREG_H Register Type by DREG_L Register Type

DREG_H Register Type = ashift DREG_L Register Type by DREG_L Register Type

DREG_H Register Type = ashift DREG_H Register Type by DREG_L Register Type

DREG_L Register Type = ashift DREG_L Register Type by DREG_L Register Type (s)

DREG_L Register Type = ashift DREG_H Register Type by DREG_L Register Type (s)

DREG_H Register Type = ashift DREG_L Register Type by DREG_L Register Type (s)

DREG_H Register Type = ashift DREG_H Register Type by DREG_L Register Type (s)

Shift Immediate (Dsp32ShfImm)

DREG_L Register Type = DREG_L Register Type AHSH4

DREG_L Register Type = DREG_H Register Type AHSH4

DREG_H Register Type = DREG_L Register Type AHSH4

DREG_H Register Type = DREG_H Register Type AHSH4

DREG_L Register Type = DREG_L Register Type AHSH4S

DREG_L Register Type = DREG_H Register Type AHSH4S

DREG_H Register Type = DREG_L Register Type AHSH4S

DREG_H Register Type = DREG_H Register Type AHSH4S

Abstract

This instruction shifts left or right and preserves the sign bit. For right shifts, the sign bit back-fills the left-most bit
vacated by the shift. For left shifts, if the shift causes the sign bit to be lost, the result will saturate to the maximum
positive or negative value depending on the lost sign bit.

See Also (Vectored 16-Bit Arithmetic (AShift16Vec))

AShift16 Description

The arithmetic shift low/high half data register destination instruction shifts a register contents a specified distance
(shift_magnitude) and direction (based on syntax and/or shift_magnitude sign) while preserving the sign
bit of the original number. This instruction provides arithmetic shift right, logical shift left, and arithmetic shift left
(with saturation) operations.

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–105

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using ashift syntax support the following shift operations:

• For a positive shift_magnitude, ashift produces an arithmetic shift right with sign bit preservation. The
sign bit value back-fills the left-most bit positions vacated by the arithmetic shift right.

• For a negative shift_magnitude, ashift produces a logical shift left, but does not guarantee sign bit pres-
ervation. If the negative shift_magnitude is too large, the ashift operation saturates the destination regis-
ter. A logical shift left that would otherwise lose non-sign bits off the left-hand side saturates to the maximum
positive or negative value instead.

NOTE: One may view the ashift operation as a multiplication or division operation. Viewed this way, the
shift_magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes cause

multiplication (N x 2n), and negative magnitudes produce division (N x 2-n or N / 2n).

The versions of this instruction using >>> syntax only support arithmetic right shift operations using positive
shift_magnitude values.

The versions of this instruction using <<< syntax only support logical left shift operations using positive
shift_magnitude values.

The versions of this instruction using << with (s) syntax only support arithmetic shift left operations (with satura-
tion) using positive shift_magnitude values.

The Arithmetic Shift (16 Bit Destination Register) Operations table provide more detailed information about arith-
metic shift operations.

Table 8-10: Arithmetic Shift (16 Bit Destination Register) Operations

Syntax Description

“>>>”, << (with saturation), and
ashift

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg. The ashift ver-
sions can shift 16-bit Dreg_lo_hi registers by up to –16 through +15 places.

The dest_reg and src_reg may be a 16-bit half data register.

For 16-bit src_reg, valid shift magnitudes are –16 through +15, zero included.

The data register versions of this instruction shift 16 bits for half-word registers.

The half data register versions of this instruction do not implicitly modify the src_reg values. Optionally,
dest_reg may be the same data register as src_reg. Doing this explicitly modifies the source register.

Where permitted (optional) or required the saturation (s) option applies saturation of the result. For shift operations
without saturation enabled, values may be left-shifted so far that all the sign bits overflow and are lost. For shift oper-
ations with saturation enabled, a left shift that would otherwise shift nonsign bits off the left-hand side saturates to

Shift Operations

8–106 ADSP-BF7xx Blackfin+ Processor

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

the maximum positive or negative value instead. The result always keeps the same sign as the pre-shifted value when
saturation is enabled.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instructions can sometimes save execution time over a 16-bit encoded instruction, because it can be is-
sued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AShift16 Example

/* AShift16 syntax summary */
/* Dreg_lo_hi = ashift Dreg_lo_hi BY Dreg_lo (optional_sat) ; arithmetic or logical shift
with optional saturation*/
/* Dreg_lo_hi = Dreg_lo_hi >>> uimm4 (optional_sat) ; arithmetic shift right with optional
saturation*/
/* Dreg_lo_hi = Dreg_lo_hi <<< uimm4 ; logical shift left*/
/* Dreg_lo_hi = Dreg_lo_hi <<< 0 ; logical shift left*/
/* Dreg_lo_hi = Dreg_lo_hi << uimm4 (s) ; arithmetic shift left with saturation*/
/* Dreg_lo_hi = Dreg_lo_hi << 0 (s) ; arithmetic shift left with saturation*/
/* AShift16 syntax examples */
r3.l = r0.h >>> 7 ; /* arithmetic right shift, half-word */
r3.h = r0.h >>> 5 ; /* same as above; any combination of upper and lower half-words is
supported */
r3.l = r0.h >>> 7(s) ; /* arithmetic right shift, half-word, saturated */
r3.l = r0.h << 12 (s) ; /* arithmetic left shift */
r3.l = ashift r0.h by r7.l ; /* shift, half-word */
r3.h = ashift r0.l by r7.l ;
r3.h = ashift r0.h by r7.l ;
r3.l = ashift r0.l by r7.l ;
r3.l = ashift r0.h by r7.l(s) ; /* shift, half-word, saturated */
r3.h = ashift r0.l by r7.l(s) ; /* shift, half-word, saturated */
r3.h = ashift r0.h by r7.l(s) ;
r3.l = ashift r0.l by r7.l (s) ;
/* If r0.h = -64, then performing . . . */
r3.h = r0.h >>> 4 ;
/* . . . produces r3.h = -4, preserving the sign */

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–107

Vectored 16-Bit Arithmetic (AShift16Vec)

General Form

Shift (Dsp32Shf)

DREG Register Type = ashift DREG Register Type by DREG_L Register Type (v)

DREG Register Type = ashift DREG Register Type by DREG_L Register Type (v,s)

Shift Immediate (Dsp32ShfImm)

DREG Register Type = DREG Register Type AHSH4 (v)

DREG Register Type = DREG Register Type AHSH4VS

Abstract

This instruction shifts a 16-bit vector left or right by the value in the XOP register. When shifting right, the sign bit
will be replicated. If saturation is specified, ASHIFT lefts will saturate if any of the bits shifted off do not match the
original sign bit.

See Also (16-Bit Arithmetic Shift (AShift16))

AShift16Vec Description

The arithmetic shift data register destination (vector) instruction performs two independent shifts, shifting a con-
tents of a register's low half and high half a specified distance (shift_magnitude) and direction (based on syntax
and/or shift_magnitude sign) while preserving the sign bits of the original numbers. Although the two half-
word registers are shifted at the same time, the two numbers are kept separate. This instruction provides arithmetic
shift right and logical shift left operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using ashift syntax support the following shift operations:

• For a positive shift_magnitude, ashift produces an arithmetic shift right with sign bit preservation. The
sign bit value back-fills the left-most bit positions vacated by the arithmetic shift right.

• For a negative shift_magnitude, ashift produces a logical shift left, but does not guarantee sign bit pres-
ervation. If the negative shift_magnitude is too large, the ashift operation saturates the destination regis-
ter. A logical shift left that would otherwise lose non-sign bits off the left-hand side saturates to the maximum
positive or negative value instead.

NOTE: One may view the ashift operation as a multiplication or division operation. Viewed this way, the
shift_magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes cause

multiplication (N x 2n), and negative magnitudes produce division (N x 2-n or N / 2n).

Shift Operations

8–108 ADSP-BF7xx Blackfin+ Processor

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

The versions of this instruction using >>> syntax only support arithmetic right shift operations using positive
shift_magnitude values.

The versions of this instruction using <<< syntax only support logical left shift operations using positive
shift_magnitude values.

The versions of this instruction using << with (v,s) syntax only support logical shift left operations (with satura-
tion) using positive shift_magnitude values.

The Arithmetic Shift (16 Bit Destination Register) Operations table provide more detailed information about arith-
metic shift operations.

Table 8-11: Arithmetic Shift (16 Bit Destination Register) Operations

Syntax Description

“>>>”, << (with saturation), and
ashift

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg. The ashift ver-
sions can shift the two 16-bit halves of a Dreg (independently) by up to –16
through +15 places.

The dest_reg and src_reg may be a 132-bit register.

For each 16-bit half of the src_reg, valid shift magnitudes are –16 through +15, zero included.

The data register versions of this instruction shift 16 bits for the two half-word sections of the word registers, inde-
pendently.

The data register versions of this instruction always modify the src_reg values.

Where permitted (optional) or required the saturation (s) option applies saturation of the result. For shift operations
without saturation enabled, values may be left-shifted so far that all the sign bits overflow and are lost. For shift oper-
ations with saturation enabled, a left shift that would otherwise shift nonsign bits off the left-hand side saturates to
the maximum positive or negative value instead. The result always keeps the same sign as the pre-shifted value when
saturation is enabled.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

This 32-bit instruction can sometimes save execution time over a 16-bit encoded instruction, because it can be is-
sued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–109

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AShift16Vec Example

/* AShift16Vec syntax summary */
Dreg1 = ashift Dreg1 by Dreg0_lo (v) /* arithmetic/logical shift, vector (dual) */
Dreg1 = ashift Dreg1 by Dreg0_lo (v,s) /* arithmetic/logical shift, vector (dual) */
Dreg = Dreg <<< 0 (v) /* logical shift left, vector (dual) */
Dreg = Dreg <<< UImm4 (v) /* logical shift left, vector (dual) */
Dreg = Dreg >>> UImm4N (v) /* arithmetic shift right, vector (dual) */
Dreg = Dreg << 0 (v,s) /* logical shift left with saturation, vector (dual) */
Dreg = Dreg << UImm4 (v,s) /* logical shift left with saturation, vector (dual) */
Dreg = Dreg >>> UImm4N (v,s) /* arithmetic shift right with saturation, vector (dual) */
/* AShift16Vec syntax examples */
r4=r5>>3 (v) ; /* logical right shift immediate R5.H and R5.L by 3 bits */
r4=r5<<3 (v) ; /* logical left shift immediate R5.H and R5.L by 3 bits */
r2=lshift r7 by r5.l (v) ;
/* logically shift (right or left, depending on sign of r5.l) R7.H and R7.L by magnitude of
R5.L */

32-Bit Arithmetic Shift (AShift32)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type >>>= DREG Register Type

Logic Binary Operations (Logi2Op)

DREG Register Type >>>= uimm5 Register Type

Shift (Dsp32Shf)

DREG Register Type = ashift DREG Register Type by DREG_L Register Type

DREG Register Type = ashift DREG Register Type by DREG_L Register Type (s)

Shift Immediate (Dsp32ShfImm)

DREG Register Type = DREG Register Type ASH5

DREG Register Type = DREG Register Type ASH5S

Abstract

This instruction shifts left or right and preserves the sign bit. For right shifts, the sign bit back-fills the left-most bit
vacated by the shift. For left shifts, if the shift causes the sign bit to be lost, the result will saturate to the maximum
positive or negative value depending on the lost sign bit.

See Also (Accumulator Arithmetic Shift (AShiftAcc))

Shift Operations

8–110 ADSP-BF7xx Blackfin+ Processor

AShift32 Description

The arithmetic shift data register destination instruction shifts a register contents a specified distance
(shift_magnitude) and direction (based on syntax and/or shift_magnitude sign) while preserving the sign
bit of the original number. This instruction provides arithmetic shift right, logical shift left, and arithmetic shift left
(with saturation) operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using ashift syntax support the following shift operations:

• For a positive shift_magnitude, ashift produces an arithmetic shift right with sign bit preservation. The
sign bit value back-fills the left-most bit positions vacated by the arithmetic shift right.

• For a negative shift_magnitude, ashift produces a logical shift left, but does not guarantee sign bit pres-
ervation. If the negative shift_magnitude is too large, the ashift operation saturates the destination regis-
ter. A logical shift left that would otherwise lose non-sign bits off the left-hand side saturates to the maximum
positive or negative value instead.

NOTE: One may view the ashift operation as a multiplication or division operation. Viewed this way, the
shift_magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes cause

multiplication (N x 2n), and negative magnitudes produce division (N x 2-n or N / 2n).

The versions of this instruction using >>>= and >>> syntax only support arithmetic right shift operations using
positive shift_magnitude values.

The versions of this instruction using <<< syntax only support logical left shift operations using positive
shift_magnitude values.

The versions of this instruction using << with (s) syntax only support arithmetic shift left operations (with satura-
tion) using positive shift_magnitude values.

The Arithmetic Shift (32 Bit Destination Register) Operations table provide more detailed information about arith-
metic shift operations.

Table 8-12: Arithmetic Shift (32 Bit Destination Register) Operations

Syntax Description

>>>= The value in dest_reg is right-shifted by the number of places specified by
shift_magnitude. The data size is always 32 bits long. The entire 32 bits of
the shift_magnitude determine the shift value. Shift magnitudes larger than
0x1F result in either 0x00000000 (when the input value is positive) or
0xFFFFFFFF (when the input value is negative).

“>>>”, << (with saturation), and
ashift

The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg. The ashift ver-
sions can shift 32-bit Dreg registers by up to –32 through +31 places.

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–111

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

The dest_reg and src_reg may be a 32-bit register.

For 32-bit src_reg, valid shift magnitudes are –32 through +31, zero included.

The data register versions of this instruction shift 32 bits for word registers.

The data register versions of this instruction do not implicitly modify the src_reg values. Optionally, dest_reg
can be the same data register as src_reg. Doing this explicitly modifies the source register.

Where permitted (optional) or required the saturation (s) option applies saturation of the result. For shift operations
without saturation enabled, values may be left-shifted so far that all the sign bits overflow and are lost. For shift oper-
ations with saturation enabled, a left shift that would otherwise shift nonsign bits off the left-hand side saturates to
the maximum positive or negative value instead. The result always keeps the same sign as the pre-shifted value when
saturation is enabled.

See the Saturation topic in the Introduction chapter for a description of saturation behavior.

The versions of this instruction using >>>, <<<, <<, and ashift syntax are 32-bit instructions, which can some-
times save execution time (over a 16-bit encoded instruction) because they can be issued in parallel with certain
other instructions.

The versions of this instruction using >>>= syntax are 16-bit instructions (which takes up less memory space over a
32-bit encoded instruction), but may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AShift32 Example

/* AShift32 syntax summary */
/* Dreg >>>= Dreg ; arithmetic shift right */
/* Dreg >>>= UImm5 ; arithmetic shift right */
/* Dreg = ashift Dreg by Dreg_lo (optional_sat) ; arithmetic/logical shift with optional
saturation */
/* Dreg = Dreg <<< 0 ; logical shift left */
/* Dreg = Dreg <<< UImm5 ; logical shift left */
/* Dreg = Dreg >>> UImm5N ; arithmetic shift right */
/* Dreg = Dreg << 0 (s) ; arithmetic shift left with saturation */
/* Dreg = Dreg << UImm5 (s) ; arithmetic shift left with saturation */
/* Dreg = Dreg >>> UImm5 ; arithmetic shift right */

Shift Operations

8–112 ADSP-BF7xx Blackfin+ Processor

/* AShift32 syntax examples */
r0 >>>= 19 ; /* 16-bit instruction length arithmetic right shift */
r0 >>>= r2 ; /* 16-bit instruction length arithmetic right shift */
r5 = r2 << 24 (s) ; /* arithmetic left shift */
r4 = ashift r2 by r7.l ; /* shift, word */
r4 = ashift r2 by r7.l (s) ; /* shift, word, saturated */

Accumulator Arithmetic Shift (AShiftAcc)

General Form

Shift (Dsp32Shf)

a0 = ashift a0 by DREG_L Register Type

a1 = ashift a1 by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

a0 = a0 ASH5

a1 = a1 ASH5

Abstract

This instruction shifts left or right and preserves the sign bit. For right shifts, the sign bit back-fills the left-most bit
vacated by the shift.

See Also (32-Bit Arithmetic Shift (AShift32))

AShiftAcc Description

The arithmetic shift accumulator register destination instruction shifts a register contents a specified distance
(shift_magnitude) and direction (based on syntax and/or shift_magnitude sign) while preserving the sign
bit of the original number. This instruction provides arithmetic shift right and logical shift left operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using ashift syntax support the following shift operations:

• For a positive shift_magnitude, ashift produces an arithmetic shift right with sign bit preservation. The
sign bit value back-fills the left-most bit positions vacated by the arithmetic shift right.

• For a negative shift_magnitude, ashift produces a logical shift left, but does not guarantee sign bit pres-
ervation. If the negative shift_magnitude is too large, the ashift operation saturates the destination regis-
ter. A logical shift left that would otherwise lose non-sign bits off the left-hand side saturates to the maximum
positive or negative value instead.

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–113

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

NOTE: One may view the ashift operation as a multiplication or division operation. Viewed this way, the
shift_magnitude is the power of 2 multiplied by the src_reg number. Positive magnitudes cause

multiplication (N x 2n), and negative magnitudes produce division (N x 2-n or N / 2n).

The versions of this instruction using >>> syntax only support arithmetic right shift operations using positive
shift_magnitude values.

The versions of this instruction using <<< syntax only support logical left shift operations using positive
shift_magnitude values.

The Arithmetic Shift (Accumulator Destination Register) Operations table provide more detailed information about
arithmetic shift operations.

Table 8-13: Arithmetic Shift (Accumulator Destination Register) Operations

Syntax Description

“>>>”, <<<, and ashift The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg. The ashift ver-
sions can shift 40-bit accumulator registers by up to –32 through +31 places.

The dest_reg and src_reg may be a 40-bit register.

For 40-bit src_reg, valid shift magnitudes are –32 through +31, zero included.

The accumulator versions shift all 40 bits of those registers.

The accumulator versions of this instruction always implicitly modify the src_reg values.

This is a 32-bit instruction and can sometimes save execution time over a 16-bit encoded instruction, because it can
be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AShiftAcc Example

/* AShiftAcc syntax summary */
/* a0 = ashift a0 by Dreg_lo ; arithmetic/logical shift */
/* a1 = ashift a1 by Dreg_lo ; arithmetic/logical shift */
/* a0 = a0 <<< 0 ; logical shift left */

Shift Operations

8–114 ADSP-BF7xx Blackfin+ Processor

/* a0 = a0 <<< UImm5 ; logical shift left */
/* a0 = a0 >>> UImm5N ; arithmetic shift right */
/* a1 = a1 <<< 0 ; logical shift left */
/* a1 = a1 <<< UImm5 ; logical shift left */
/* a1 = a1 >>> UImm5N ; arithmetic shift right */
/ * AShiftAcc syntax examples */
a0 = a0 >>> 1 ; /* arithmetic right shift, accumulator */
a0 = ashift a0 by r7.l ; /* shift, accumulator */
a1 = ashift a1 by r7.l ; /* shift, accumulator */

16-Bit Logical Shift (LShift16)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = lshift DREG_L Register Type by DREG_L Register Type

DREG_L Register Type = lshift DREG_H Register Type by DREG_L Register Type

DREG_H Register Type = lshift DREG_L Register Type by DREG_L Register Type

DREG_H Register Type = lshift DREG_H Register Type by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

DREG_L Register Type = DREG_L Register Type LHSH4

DREG_L Register Type = DREG_H Register Type LHSH4

DREG_H Register Type = DREG_L Register Type LHSH4

DREG_H Register Type = DREG_H Register Type LHSH4

Abstract

This instruction shifts a register half by the specified number of bits and returns the shifted value.

See Also (Vectored 16-Bit Logical Shift (LShift16Vec))

LShift16 Description

The logical shift low/high half data register destination instruction shifts a register contents a specified distance
(shift_magnitude) and direction (based on syntax and/or shift_magnitude sign), discarding any bits shifted
out of the register and backfilling vacated bits with zeros. This instruction provides logical shift right and logical
shift left operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using lshift syntax support the following shift operations:

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–115

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

• For a positive shift_magnitude, lshift produces an logical shift right, discarding any bits shifted out of
the register and backfilling vacated bits with zeros.

• For a negative shift_magnitude, lshift produces a logical shift left, discarding any bits shifted out of the
register and backfilling vacated bits with zeros.

NOTE: Shift magnitudes that exceed the size of the destination register produce all zeros in the result. For exam-
ple, shifting a 16-bit register value by 20 bit places (a valid operation) produces 0x0000.

The versions of this instruction using >> syntax only support logical shift right operations using positive
shift_magnitude values.

The versions of this instruction using << syntax only support logical shift left operations using positive
shift_magnitude values.

The Logical Shift (16 Bit Destination Register) Operations table provide more detailed information about logical
shift operations.

Table 8-14: Logical Shift (16 Bit Destination Register) Operations

Syntax Description

>>, <<, and lshift The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.

The lshift versions can shift 16-bit half data registers by up to –16 through
+15 places.

The dest_reg and src_reg may be a 16-bit half data register.

For 16-bit src_reg, valid shift magnitudes are –16 through +15, zero included.

The data register versions of this instruction shift 16 bits for half-word registers.

The half data register versions of this instruction do not implicitly modify the src_reg values. Optionally,
dest_reg may be the same data register as src_reg. Doing this explicitly modifies the source register.

This 32-bit instructions can sometimes save execution time over a 16-bit encoded instruction, because it can be is-
sued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

Shift Operations

8–116 ADSP-BF7xx Blackfin+ Processor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LShift16 Example

/* LShift16 syntax summary */
/* DDST_Lo_Hi = lshift DSRC1_Lo_Hi by DSRC0_Lo ; logical shift */
/* DDST_Lo_Hi = DSRC_Lo_Hi << 0 ; logical shift left */
/* DDST_Lo_Hi = DSRC_Lo_Hi << UImm4 ; logical shift lef */
/* DDST_Lo_Hi = DSRC_Lo_Hi >> UImm4N ; logical shift right */
/* LShift16 syntax examples */
r3.l = r0.l >> 4 ; /* logical shift right, half-word register */
r3.l = r0.h >> 4 ; /* logical shift right; half-word register combinations are arbitrary */
r3.h = r0.l << 12 ; /* logical shift left, half-word register */
r3.h = r0.h << 14 ; /* logical shift left; half-word register combinations are arbitrary */
r3.l = lshift r0.l by r2.l ; /* logical shift, direction controlled by sign of R2.L */
r3.h = lshift r0.l by r2.l ;
/* If r0.h = -64 (or 0xFFC0), then performing . . . */
r3.h = r0.h >> 4 ;
/* . . . produces r3.h = 0x0FFC (or 4092), losing the sign */

Vectored 16-Bit Logical Shift (LShift16Vec)

General Form

Shift (Dsp32Shf)

DREG Register Type = lshift DREG Register Type by DREG_L Register Type (v)

Shift Immediate (Dsp32ShfImm)

DREG Register Type = DREG Register Type LHSH4 (v)

Abstract

This instruction shifts a 16-bit vector left or right by the value in the XOP register.

See Also (16-Bit Logical Shift (LShift16))

LShift16Vec Description

The logical shift data register destination (vector) instruction performs two independent shifts, shifting a contents of
a register's low half and high half a specified distance (shift_magnitude) and direction (based on syntax and/or
shift_magnitude sign), discarding any bits shifted out of the two half registers and backfilling vacated bits with
zeros. This instruction provides logical shift right and logical shift left operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using lshift syntax support the following shift operations:

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–117

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

• For a positive shift_magnitude, lshift produces an logical shift right, discarding any bits shifted out of
the register and backfilling vacated bits with zeros.

• For a negative shift_magnitude, lshift produces a logical shift left, discarding any bits shifted out of the
register and backfilling vacated bits with zeros.

NOTE: Shift magnitudes that exceed the size of the destination register produce all zeros in the result. For exam-
ple, shifting a 16-bit register value by 20 bit places (a valid operation) produces 0x0000.

The versions of this instruction using >> syntax only support logical shift right operations using positive
shift_magnitude values.

The versions of this instruction using << syntax only support logical shift left operations using positive
shift_magnitude values.

The Logical Shift (16 Bit Destination Register) Operations table provide more detailed information about logical
shift operations.

Table 8-15: Logical Shift (16 Bit Destination Register) Operations

Syntax Description

>>, <<, and lshift The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.

The lshift versions can shift 16-bit half data reg isters by up to –16 through
+15 places.

The dest_reg and src_reg may be a 32-bit half data register. The shift operations are applied to the 16-bit half
registers within the src_reg.

For 16-bit src_reg, valid shift magnitudes are –16 through +15, zero included.

The data register versions of this instruction shift 16 bits for half-word registers.

The half data register versions of this instruction do not implicitly modify the src_reg values. Optionally,
dest_reg may be the same data register as src_reg. Doing this explicitly modifies the source register.

This 32-bit instructions can sometimes save execution time over a 16-bit encoded instruction, because it can be is-
sued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Shift Operations

8–118 ADSP-BF7xx Blackfin+ Processor

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LShift16Vec Example

/* LShift16Vec syntax summary */
/* DDST = lshift DSRC1 by DSRC0_L (v) ; logical shift, vector (dual) */
/* DDST = DSRC << 0 (v) ; logical shift left, vector (dual) */
/* DDST = DSRC << UImm4 (v) ; logical shift left, vector (dual) */
/* DDST = DSRC >> UImm4N (v) ; logical shift right, vector (dual) */
/* LShiftVec syntax examples */
r4=r5>>3 (v) ; /* logical right shift immediate R5.H and R5.L by 3 bits */
r4=r5<<3 (v) ; /* logical left shift immediate R5.H and R5.L by 3 bits */
r2=lshift r7 by r5.l (v) ;
/* logically shift (right or left, depending on sign of r5.l) R7.H and R7.L by magnitude of
R5.L */

32-Bit Logical Shift (LShift)

General Form

ALU Binary Operations (ALU2op)

DREG Register Type >>= DREG Register Type

DREG Register Type <<= DREG Register Type

Logic Binary Operations (Logi2Op)

DREG Register Type >>= uimm5 Register Type

DREG Register Type <<= uimm5 Register Type

Shift (Dsp32Shf)

DREG Register Type = lshift DREG Register Type by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

DREG Register Type = DREG Register Type LSH5

Abstract

This instruction shifts a register by the specified number of bits and returns the shifted value.

LShift Description

The logical shift data register destination instruction shifts a register contents a specified distance (shift_magni-
tude) and direction (based on syntax and/or shift_magnitude sign), discarding any bits shifted out of the regis-
ter and backfilling vacated bits with zeros. This instruction provides logical shift right and logical shift left opera-
tions.

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–119

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using lshift syntax support the following shift operations:

• For a positive shift_magnitude, lshift produces an logical shift right, discarding any bits shifted out of
the register and backfilling vacated bits with zeros.

• For a negative shift_magnitude, lshift produces a logical shift left, discarding any bits shifted out of the
register and backfilling vacated bits with zeros.

NOTE: Shift magnitudes that exceed the size of the destination register produce all zeros in the result. For exam-
ple, shifting a 16-bit register value by 20 bit places (a valid operation) produces 0x0000.

The versions of this instruction using >>= and >> syntax only support logical shift right operations using positive
shift_magnitude values.

The versions of this instruction using <<= and << syntax only support logical shift left operations using positive
shift_magnitude values.

The Logical Shift (16 Bit Destination Register) Operations table provide more detailed information about logical
shift operations.

Table 8-16: Logical Shift (16 Bit Destination Register) Operations

Syntax Description

>>=
and <<=

The value in dest_reg is shifted by the number of places specified by
shift_magnitude. The data size is always 32 bits long. The entire 32 bits of
the shift_magnitude determine the shift value. Shift magnitudes larger than
0x1F produce a 0x00000000 result.

>>, <<, and lshift The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.

The lshift versions can shift 32-bit data reg isters by up to –32 through +31
places.

The dest_reg and src_reg may be a 32-bit data register.

For 32-bit src_reg, valid shift magnitudes are –32 through +31, zero included.

The data register versions of this instruction shift 32 bits for word registers.

The data register versions of this instruction do not implicitly modify the src_reg values. Optionally, dest_reg
may be the same data register as src_reg. Doing this explicitly modifies the source register.

The versions of this instruction using >>, <<, and lshift syntax are 32-bit instructions, which can sometimes save
execution time (over a 16-bit encoded instruction) because they can be issued in parallel with certain other instruc-
tions.

Shift Operations

8–120 ADSP-BF7xx Blackfin+ Processor

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

The versions of this instruction using >>= and <<= syntax are 16-bit instructions (which takes up less memory space
over a 32-bit encoded instruction), but may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LShift Example

/* LShift syntax summary */
/* DDST >>= DSRC ; logical shift right */
/* DDST <<= DSRC ; logical shift left */
/* DDST >>= SRCI ; logical shift right */
/* DDST <<= SRCI ; logical shift left */
/* DDST = lshift DSRC1 by DSRC0_L ; logical shift */
/* DDST = DSRC << 0 ; logical shift left */
/* DDST = DSRC << UImm5 ; logical shift left */
/* DDST = DSRC >> UImm5N ; logical shift right */
/* LShift syntax examples */
r3 >>= 17 ; /* logical shift right */
r3 <<= 17 ; /* logical shift left */
r3 = r6 >> 4 ; /* logical shift right, 32-bit word */
r3 = r6 << 4 ; /* logical shift left, 32-bit word */
r3 >>= r0 ; /* logical shift right */
r3 <<= r1 ; /* logical shift left */

Accumulator Logical Shift (LShiftA)

General Form

Shift (Dsp32Shf)

a0 = lshift a0 by DREG_L Register Type

a1 = lshift a1 by DREG_L Register Type

Shift Immediate (Dsp32ShfImm)

a0 = a0 LSH5

a1 = a1 LSH5

Shift Operations

ADSP-BF7xx Blackfin+ Processor 8–121

Abstract

This instruction shifts an accumulator left by the specified number of bits and returns the shifted value.

LShiftA Description

The logical shift accumulator register destination instruction shifts a register contents a specified distance
(shift_magnitude) and direction (based on syntax and/or shift_magnitude sign), discarding any bits shifted
out of the register and backfilling vacated bits with zeros. This instruction provides logical shift right and logical
shift left operations.

NOTE: For information about the difference between arithmetic and logical shift operations, the definitions for
Arithmetic Shift and Logical Shift on The Science Dictionary site are helpful.

The versions of this instruction using lshift syntax support the following shift operations:

• For a positive shift_magnitude, lshift produces an logical shift right, discarding any bits shifted out of
the register and backfilling vacated bits with zeros.

• For a negative shift_magnitude, lshift produces a logical shift left, discarding any bits shifted out of the
register and backfilling vacated bits with zeros.

NOTE: Shift magnitudes that exceed the size of the destination register produce all zeros in the result. For exam-
ple, shifting a 16-bit register value by 20 bit places (a valid operation) produces 0x0000.

The versions of this instruction using >> syntax only support logical shift right operations using positive
shift_magnitude values.

The versions of this instruction using << syntax only support logical shift left operations using positive
shift_magnitude values.

The Logical Shift (Accumulator Destination Register) Operations table provide more detailed information about
logical shift operations.

Table 8-17: Logical Shift (Accumulator Destination Register) Operations

Syntax Description

>>, <<, and lshift The value in src_reg is shifted by the number of places specified in
shift_magnitude, and the result is stored into dest_reg.

The lshift versions can shift 40-bit accumulator reg isters by up to –32 through
+31 places.

The dest_reg and src_reg must be the same 40-bit accumulator register.

For 32-bit src_reg, valid shift magnitudes are –32 through +31, zero included.

The accumulator versions shift all 40 bits of those registers.

The accumulator versions of this instruction always implicitly modify the src_reg values.

Shift Operations

8–122 ADSP-BF7xx Blackfin+ Processor

http://thesciencedictionary.org/arithmetic-shift/
http://thesciencedictionary.org/logical-shift/

This 32-bit instructions can sometimes save execution time over a 16-bit encoded instruction, because it can be is-
sued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LShiftA Example

/* LShiftA syntax summary */
/* a0_1 = lshift a0_1 by DSRC0_L ; logical shift */
/* a0_1 = a0_1 << 0 ; logical shift left */
/* a0_1 = a0_1 << UImm5 ; logical shift left */
/* a0_1 = a0_1 >> UImm5N ; logical shift right */
/* LShiftA syntax examples */
a0 = a0 >> 7 ; /* Accumulator right shift */
a1 = a1 >> 25 ; /* Accumulator right shift */
a0 = a0 << 7 ; /* Accumulator left shift */
a1 = a1 << 14 ; /* Accumulator left shift */
a0 = lshift a0 by r7.l ;
a1 = lshift a1 by r7.l ;

Sequencer Instructions
The sequencer instructions provide program flow control operations, which execute on the control unit in the pro-
cessor core. Users can take advantage of these instructions to force new values into the program counter and change
program flow, branch conditionally, set up loops, and call and return from subroutines.

Sequencer Instructions

ADSP-BF7xx Blackfin+ Processor 8–123

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 8-9: Blackfin+ Core Block Diagram

The operation types of sequencer instructions include:

• Branch Operations

• Control Code Bit Management Operations

• Event Management Operations

• Stack Operations

• Synchronization Operations

Branch Operations

These operations provide branching of program flow operations, unconditionally or with conditional operands:

• Conditional Jump Immediate (BrCC)

• Jump (Jump)

• Jump Immediate (JumpAbs)

• Call (Call)

• Return from Branch (Return)

• Hardware Loop Set Up (LoopSetup)

Sequencer Instructions

8–124 ADSP-BF7xx Blackfin+ Processor

Conditional Jump Immediate (BrCC)

General Form

Conditional Branch PC relative on CC (BrCC)

if !cc jump imm10s2 Register Type

if !cc jump imm10s2 Register Type (bp)

if cc jump imm10s2 Register Type

if cc jump imm10s2 Register Type (bp)

Abstract

The Jump instruction forces a new value into the Program Counter (PC) to change program flow. This branches
based on the value of the CC0 status bit. The BP option helps the processor improve branch instruction perform-
ance. The default is branch predicted-not-taken.

See Also (Jump (Jump), Jump Immediate (JumpAbs))

BrCC Description

The branch CC (conditional jump) instruction forces a new value into the Program Counter (PC) to change the
program flow, based on the value of the CC bit.

• For if CC, a CC bit = 1 causes a branch to an address, computed by adding the signed, even offset to the
current PC value.

• For if !cc, a cc bit = 0 causes a branch to an address, computed by adding the signed, even relative offset to
the current PC value.

The range of valid offset values for the jump is –1024 through 1022.

The branch prediction option, (bp), helps the processor improve branch instruction performance. The default is
branch predicted-not-taken. By appending (bp) to the instruction, the branch becomes predicted-taken.

Typically, code analysis shows that a good default condition is to predict branch-taken for branches to a prior ad-
dress (backwards branches), and to predict branch-not-taken for branches to subsequent addresses (forward branch-
es).

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

BrCC Example

if cc jump 0xFFFFFE08 (bp) ;
/* offset is negative in 11 bits, so target address is a backwards branch, branch predicted
*/

Branch Operations

ADSP-BF7xx Blackfin+ Processor 8–125

if cc jump 0x0B4 ;
/* offset is positive, so target offset address is a forwards branch, branch not predicted
*/
if !cc jump 0xFFFFFC22 (bp) ;
/* negative offset in 11 bits, so target address is a backwards branch, branch predicted */
if !cc jump 0x120 ;
/* positive offset, so target address is a forwards branch, branch not predicted */
if cc jump dest_label ;
/* assembler resolved target, abstract offsets */

Jump (Jump)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

jump (PREG Register Type)

jump (pc+PREG Register Type)

Abstract

The Jump instruction forces a new value into the Program Counter (PC) to change program flow.

See Also (Conditional Jump Immediate (BrCC), Jump Immediate (JumpAbs))

Jump Description

The jump pointer instruction forces a new value into the Program Counter (PC) to change program flow.

The new address may be indirect (provided by a pointer register) or may be indexed (PC plus an offset provided by a
pointer register). In the indirect and indexed versions of the instruction, the value in the pointer register (Preg) must
be an even number (bit 0 of the register =0) to maintain 16-bit address alignment. Otherwise, an odd offset in the
pointer register causes the processor to generate an address alignment exception.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Jump Example

jump (p5) ;
/* P5 contains the absolute address of the target */
jump (pc + p2) ;
/* P2 relative absolute address of the target and then a presentation of the absolute
values for target */

Branch Operations

8–126 ADSP-BF7xx Blackfin+ Processor

Jump Immediate (JumpAbs)

General Form

Unconditional Branch PC relative with 12bit offset (UJump)

jump.s imm12nxs2 Register Type

Call function with pcrel address (CallA)

jump.l imm24s2 Register Type

Jump/Call to 32-bit Immediate (Jump32)

jump.a buimm32 Register Type

jump bimm32 Register Type

Abstract

The Jump instruction forces a new value into the Program Counter (PC) to change program flow.

See Also (Conditional Jump Immediate (BrCC), Jump (Jump))

JumpAbs Description

The jump absolute instruction forces a new value into the Program Counter (PC) to change program flow.

The new address may be a label (a program label that provides a signed, even, PC-relative offset) or may be an
immediate value (provides a signed, even, PC-relative offset). In the jump label versions of the instruction, the
instruction may be mapped to the smallest of jump.s, jump.l, or jump.a. In the jump immediate versions of
the instruction, the instruction should not be mapped to jump.a due to potential ambiguity of the offset (relative
versus absolute).

This instruction encodes as a 16-bit instruction or 32-bit instruction, depending on the size of the offset value. This
instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

JumpAbs Example

jump get_new_sample ;
/* assembler resolved target, abstract offsets */
jump 0x224 ;
/* offset is positive in 13 bits, so target address is PC + 0x224, a forward jump */
jump.s 0x224 ;
/* same as above with jump “short” syntax */
jump.l 0xFFFACE86 ;
/* offset is negative in 25 bits, so target address is PC + 0x1FA CE86, a backwards jump */

Branch Operations

ADSP-BF7xx Blackfin+ Processor 8–127

Call (Call)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

call (PREG Register Type)

call (pc+PREG Register Type)

Call function with pcrel address (CallA)

call imm24nxs2 Register Type

Jump/Call to 32-bit Immediate (Jump32)

call.a buimm32 Register Type

call bimm32 Register Type

Abstract

The Call instruction branches to the address specified and then updates the RETS register with the address of the
instruction directly following the Call instruction.

See Also (Return from Branch (Return))

Call Description

The CALL instruction calls a subroutine from an address that may be indirect (provided by a pointer register), may
be indexed (PC plus an offset provided by a pointer register), may be a label (a program label that provides a sign-
ed, even, PC-relative offset), or may be an immediate value (provides a signed, even, PC-relative offset). In the indi-
rect and indexed versions of the instruction, the value in the pointer register (Preg) must be an even number (bit 0 of
the register =0) to maintain 16-bit address alignment. Otherwise, an odd offset in the pointer register causes the
processor to generate an address alignment exception.

After the CALL instruction executes and execution of the subroutine is completed, the program sequencer resumes
program execution at the instruction address pointed to by the RETS register. The address write to the RETS register
occurs when the CALL instruction is committed. Even when used as the last instruction of a loop, the CALL instruc-
tion functions correctly. If the CALL were placed at a loop end, the RETS register contains the loop top address.

This instruction encodes as a 16-bit instruction or 32-bit instruction, depending on the size of the offset value. This
instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Call Example

call (p5) ;
call (pc + p2) ;
call 0x123456 ;
call get_next_sample ;

Branch Operations

8–128 ADSP-BF7xx Blackfin+ Processor

Return from Branch (Return)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

rts

rti

rtx

rtn

rte

Abstract

Each of these instructions branch to the address specified in their return registers. The interrupt return instructions
will also clear their interrupts corresponding bit in the IPEND register.

See Also (Call (Call))

Return Description

The return instruction forces a return from a subroutine, maskable interrupt or NMI routine, exception routine, or
emulation routine. The Types of Return Instructions table provides a description of the operations provided by each
type of return. Note that the interrupt return instructions also clear their interrupt's corresponding bit in the IPEND
register.

Table 8-18: Types of Return Instructions

Mnemonic Description

RTS Forces a return from a subroutine by loading the value of the RETS register into the Program Coun-
ter (PC), causing the processor to fetch the next instruction from the address contained in RETS. For
nested subroutines, you must save the value of the RETS Register. Otherwise, the next subroutine
CALL instruction overwrites it.

RTI Forces a return from an interrupt routine by loading the value of the RETI register into the PC.
When an interrupt is generated, the processor enters a non-interruptible state. Saving RETI to the
stack re-enables interrupt detection so that subsequent, higher priority interrupts can be serviced (or
nested) during the current interrupt service routine. If RETI is not saved to the stack, higher priority
interrupts are recognized but not serviced until the current interrupt service routine concludes. Re-
storing RETI back off the stack at the conclusion of the interrupt service routine masks subsequent
interrupts until the RTI instruction executes. In any case, RETI is protected against inadvertent cor-
ruption by higher priority interrupts.

RTX Forces a return from an exception routine by loading the value of the RETX register into the PC.

RTN Forces a return from a non-maskable interrupt (NMI) routine by load- ing the value of the RETN
register into the PC.

Branch Operations

ADSP-BF7xx Blackfin+ Processor 8–129

Table 8-18: Types of Return Instructions (Continued)

Mnemonic Description

RTE Forces a return from an emulation routine and emulation mode by load- ing the value of the RETE
register into the PC. Because only one emulation routine can run at a time, nesting is not an issue,
and saving the value of the RETE register is unnecessary.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

The Required Modes for Return Instructions table identifies the modes required for each return instruction.

Table 8-19: Required Modes for Return Instructions

Mnemonic Required Mode

RTS User and Supervisor

RTI, RTX, and RTN Supervisor only. Any attempt to execute in User mode produces a protection violation ex-
ception.

RTE Emulation only. Any attempt to execute in User mode or Supervi- sor mode produces an
exception.

Return Example

rts ;
rti ;
rtx ;
rtn ;
rte ;

Hardware Loop Set Up (LoopSetup)

General Form

Virtually Zero Overhead Loop Mechanism (LoopSetup)

lsetup (uimm4s2o4 Register Type, uimm10s2o4 Register Type) LC *1

lsetup (uimm4s2o4 Register Type, uimm10s2o4 Register Type) LC = PREG Register Type *2

lsetup (uimm4s2o4 Register Type, uimm10s2o4 Register Type) LC = PREG Register Type >>1 *3

Virtually Zero Overhead Loop Mechanism (LoopSetup)

lsetup (uimm10s2o4 Register Type) LC = uimm10 Register Type

lsetupz (uimm10s2o4 Register Type) LC = PREG Register Type

lsetupz (uimm10s2o4 Register Type) LC = PREG Register Type >> 1

lsetuplez (uimm10s2o4 Register Type) LC = PREG Register Type

lsetuplez (uimm10s2o4 Register Type) LC = PREG Register Type >> 1

Branch Operations

8–130 ADSP-BF7xx Blackfin+ Processor

*1 Provides encoding for: LOOP loop_name LC0 ; LOOP_BEGIN loop_name ; LOOP_END loop_name ;
*2 Provides encoding for: LOOP loop_name LC0 = Preg ; LOOP_BEGIN loop_name ; LOOP_END loop_name ;
*3 Provides encoding for: LOOP loop_name LC0 = Preg >> 1 ; LOOP_BEGIN loop_name ; LOOP_END loop_name ;

Abstract

The zero-overhead loop set up instruction provides a flexible, count-based, hardware loop mechanism, implement-
ing efficient, zero-overhead software loops. The term "zero-overhead" means the software does not incur a perform-
ance or code size penalty by decrementing the loop counter, evaluating a loop condition, calculating the target ad-
dress, and branching to the address.

See Also (none)

LoopSetup Description

The zero-overhead loop setup instruction provides a flexible, counter- based, hardware loop mechanism that pro-
vides efficient, zero-overhead software loops. In this context, zero-overhead means that the software in the loops does
not incur a performance or code size penalty by decrementing a counter, evaluating a loop condition, then calculat-
ing and branching to a new target address.

NOTE: When the Begin_Loop address is the next sequential address after the LSETUP instruction, the loop has
zero overhead. If the Begin_Loop address is not the next sequential address after the LSETUP instruc-
tion, there is some overhead that is incurred on loop entry only.

The architecture includes two sets of three registers each to support two independent, nestable loops. The registers
are Loop_Top (LTx), Loop_Bottom (LBx) and Loop_Count (LCx). The LT0, LB0, and LC0 registers describe
Loop0, and the LT1, LB1, and LC1 registers describe Loop1.

The LOOP and LSETUP instructions permit initializing all three registers using a single instruction. The size of the
LOOP and LSETUP instructions only supports a finite number of bits, so the loop range is limited. However, LT0
and LT1, LB0 and LB1 and LC0 and LC1 can be initialized manually using move instructions if loop length and
repetition count need to be beyond the limits supported by the LOOP and LSETUP syntax. A single loop (initialized
using this method) can span the entire 4G bytes of memory space.

NOTE: When initializing LT0 and LT1, LB0 and LB1, and LC0 and LC1 manually, make sure that Loop_Top
(LTx) and Loop_Bottom (LBx) are configured before setting Loop_Count (LCx) to the desired loop
count value.

The instruction syntax supports an optional initialization value from a pointer register (Preg) or pointer register div-
ided by 2.

NOTE: The LOOP, LOOP_BEGIN, LOOP_END legacy syntax from previous Blackfin processors is supported by the
Blackfin+ processor assembler. The legacy syntax is encoded as LSETUP syntax, which contains the same
information in a more compact form.

Branch Operations

ADSP-BF7xx Blackfin+ Processor 8–131

If LCx is nonzero when the fetch address equals LBx, the processor decrements LCx and places the address in LTx
into the PC. The loop always executes once through because Loop_Count is evaluated at the end of the loop.

There are two special cases for small loop count values. A value of 0 in Loop_Count causes the hardware loop mech-
anism to neither decrement or loopback, causing the instructions enclosed by the loop pointers to be executed as
straight-line code. A value of 1 in Loop_Count causes the hardware loop mechanism to decrement only (not loop-
back), also causing the instructions enclosed by the loop pointers to be executed as straight-line code.

In the instruction syntax, the designation of the loop counter–LC0 or LC1– determines which loop level is initial-
ized. Consequently, to initialize Loop0, code LC0; to initialize Loop1, code LC1.

In the case of nested loops that end on the same instruction, the processor requires Loop0 to describe the outer loop
and Loop1 to describe the inner loop. The user is responsible for meeting this requirement.

For example, if LB0=LB1, then the processor assumes loop 1 is the inner loop and loop 0 the outer loop.

Just like entries in any other register, loop register entries can be saved and restored. If nesting beyond two loop
levels is required, the user can explicitly save the outermost loop register values, re-use the registers for an inner loop,
and then restore the outermost loop values before terminating the inner loop. In such a case, remember that loop 0
must always be outside of loop 1. Alternately, the user can implement the outermost loop in software with the Con-
ditional Jump structure.

Begin_Loop, the value loaded into LTx, is a 5-bit, PC-relative, even offset from the current instruction to the first
instruction in the loop. The user is required to preserve half-word alignment by maintaining even values in this reg-
ister. The offset is interpreted as a one’s-complement, unsigned number, eliminating backwards loops.

End_Loop, the value loaded into LBx, is an 11-bit, unsigned, even, PC-relative offset from the current instruction
to the last instruction of the loop. When using the LSETUP instruction, Begin_Loop and End_Loop are typically
address labels. The linker replaces the labels with offset values.

A loop counter register (LC0 or LC1) counts the trips through the loop. The register contains a 32-bit unsigned
value, supporting as many as 4,294,967,294 trips through the loop. The loop is disabled (subsequent executions of
the loop code pass through without reiterating) when the loop counter equals 0.

If no LoopStartLabel is specified then the loop start is implied to be the instruction following the LSETUP
instruction.

The Z suffix (LSETUPZ), means that the entire loop will be skipped if the count starts at zero. The LEZ suffix
(LSETUPLEZ) means that entire loop will be skipped if the starting count is Less than or Equal to Zero. When a
LSETUPZ instruction with a loop count of zero commits the LSBit of it's associated LT register will be set. This is
used to mark this as an lsetupz should we interrupt the loop. The end of the loop will clear the bit.

It is important to understand the following LSETUP operations and how these affect loop operations:

• If a start address is specified in the LSETUP instruction, the address is a 5-bit, PC-relative, unsigned, even offset
(4 to 30) address. If a start address is not specified in the LSETUP instruction, the address used is the address of
the instruction following the LSETUP instruction. The absolute start address is computed and stored in LT0 or
LT1 register on LSETUP instruction commit.

Branch Operations

8–132 ADSP-BF7xx Blackfin+ Processor

• The end address is an 11-bit, PC-relative, unsigned, even offset (4 through 2046) address. The absolute end
address is computed and stored in the LB0 or LB1 register on LSETUP instruction commit.

• The values in the loop counter 0 (LC0) and loop counter 1 (LC1) registers are treated as 32-bit unsigned values,
except in the LSETUPLEZ version of the instruction. For LSETUPLEZ, the loop count value is treated as a sign-
ed value. The value in the LC0 or LC1 register decrements each time a loop bottom instruction is executed,
until the count reaches 0. When executing a loop end instruction, when the value in LC0 or LC1 is not 0 or 1,
a loop back operation occurs.

• A loop is disabled when the its loop count (LC0 or LC1) equals 0.

• The sequencer treats a constant loop count of -1 as special and loads the counter with the value 0xffffffff.

LoopSetup Example

/* examples for three-part loop setup ... */
/* LOOP loop_name loop_counter */
/* LOOP_BEGIN loop_name */
/* LOOP_END loop_name */

loop MyRepeatedOperations LC0 ; /* define loop ‘MyRepeatedOperations’ with Loop Counter 0 */
loop_begin MyRepeatedOperations ; /* place before the first instruction in the loop */
 nop;
loop_end MyRepeatedOperations ; /* place after the last instruction in the loop */

loop MyOtherRepeatedOperations LC1 ; /* define loop ‘MyOtherRepeatedOperations’ with Loop
Counter 1 */
loop_begin MyOtherRepeatedOperations ; /* place before the first instruction in the loop */
 nop;
loop_end MyOtherRepeatedOperations ; /* place after the last instruction in the loop */

/* a loop with a specified beginning offset */
loop loop_2 lc0 = p0;
loop_begin loop_2;
 nop;
loop_end loop_2;

/* a loop without a specified beginning offset */
loop lc0 = 45;
 nop;
loop_end;

/* note that loopz and looplez opcodes to lsetupz and lsetuplez */

/* examples for single line loop setup ... */
/* LSETUP (Begin_Loop, End_Loop) Loop_Counter */

lsetup (4, 4) lc0 ;
lsetup (poll_bit, end_poll_bit) lc0 ;

Branch Operations

ADSP-BF7xx Blackfin+ Processor 8–133

lsetup (4, 6) lc1 ;
lsetup (FIR_filter, bottom_of_FIR_filter) lc1 ;
lsetup (4, 8) lc0 = p1 ;
lsetup (4, 8) lc0 = p1>>1 ;

Control Code Bit Management Operations

These operations provide control code bit operations needed to support condtional operations:

• Compute Move CC to a D Register (CCToDreg)

• Move CC To/From ASTAT (CCToStat16)

• Move Status to CC (MvToCC)

• Move Status to CC (MvToCC_STAT)

• 32-Bit Register Compare and Set CC (CompRegisters)

• Accumulator Compare and Set CC (CompAccumulators)

• 32-Bit Pointer Register Compare and Set CC (CCFlagP)

Compute Move CC to a D Register (CCToDreg)

General Form

Move CC conditional bit, to and from dreg (CC2Dreg)

DREG Register Type = cc

DREG Register Type = !cc

Abstract

This instruction moves CC to a 32-bit D Register. The register will either be 1 on 0.

CCToDreg Description

The move CC to data register instruction moves either the the status of the control code (CC) bit or moves the
negated status of the CC bit to a data register.

When copying the CC bit into a 32-bit register, the operation moves the CC bit into the least significant bit of the
register, zero-extended to 32 bits. The two cases are as follows.

• If CC = 0, the data register becomes 0x00000000.

• If CC = 1, the data register becomes 0x00000001.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

Sequencer Instructions

8–134 ADSP-BF7xx Blackfin+ Processor

This instruction may be used in either User or Supervisor mode.

CCToDreg Example

r0 = cc ;
r1 =! cc ;

Move CC To/From ASTAT (CCToStat16)

General Form

Copy CC conditional bit, from status (CC2Stat)

CBIT = cc

CBIT |= cc

CBIT &= cc

CBIT ^= cc

Abstract

This instruction moves CC to another ASTAT bit. It is illegal to use the CC bit as source and destination in the
same instruction, i.e., CC=CC or CC&=CC.

See Also (Move Status to CC (MvToCC), Move Status to CC (MvToCC_STAT))

CCToStat16 Description

The move CC to arithmetic status register instruction sets or clears status bits based on the logic operations and the
status of the control code (CC) bit.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control Code Bit Management Operations

ADSP-BF7xx Blackfin+ Processor 8–135

CCToStat16 Example

az = cc ; /* status bit equals cc */
an |= cc ; /* status bit equals status bit OR cc */
ac0 &= cc ; /* status bit equals status bit AND cc */
av0 ^= cc ; /* status bit equals status bit XOR cc */

Move Status to CC (MvToCC)

General Form

Move CC conditional bit, to and from dreg (CC2Dreg)

cc = DREG Register Type

cc = !cc

Abstract

This instruction moves a status bit or LSB of a register to CC. It is illegal to use the CC bit as source and destination
in the same instruction (for example, CC=CC or CC&=CC are illegal).

See Also (Move CC To/From ASTAT (CCToStat16), Move Status to CC (MvToCC_STAT))

MvToCC Description

The move data register to CC instruction either moves an OR of all bits in the data register or moves the negated
state of the control code (CC) bit to the CC bit. When copying a data register to the CC bit, the operation sets the
CC bit to 1 if any bit in the source data register is set; that is, if the register is nonzero. Otherwise, the operation
clears the CC bit.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvToCC Example

cc = r4 ;

Control Code Bit Management Operations

8–136 ADSP-BF7xx Blackfin+ Processor

cc = !cc ;

Move Status to CC (MvToCC_STAT)

General Form

Copy CC conditional bit, from status (CC2Stat)

cc = CBIT

cc |= CBIT

cc &= CBIT

cc ^= CBIT

Abstract

This instruction moves a status bit or LSB of a register to CC. It is illegal to use the CC bit as source and destination
in the same instruction (for example, CC=CC or CC&=CC are illegal).

See Also (Move CC To/From ASTAT (CCToStat16), Move Status to CC (MvToCC))

MvToCC_STAT Description

The move status bit to CC instruction sets or clears the control code (CC) bit based on the logic operations and the
status of the status bits.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MvToCC_STAT Example

cc = av1 ; /* cc equals status bit */
cc |= aq ; /* cc equals cc OR status bit */
cc &= an ; /* cc equals cc AND status bit */
cc ^= ac1 ; /* cc equals cc XOR status bit */

Control Code Bit Management Operations

ADSP-BF7xx Blackfin+ Processor 8–137

32-Bit Pointer Register Compare and Set CC (CCFlagP)

General Form

Set CC conditional bit (CCFlag)

cc = PREG Register Type == PREG Register Type

cc = PREG Register Type == imm3 Register Type

cc = PREG Register Type < PREG Register Type

cc = PREG Register Type < imm3 Register Type

cc = PREG Register Type <= PREG Register Type

cc = PREG Register Type <= imm3 Register Type

cc = PREG Register Type < PREG Register Type (iu)

cc = PREG Register Type < uimm3 Register Type (iu)

cc = PREG Register Type <= PREG Register Type (iu)

cc = PREG Register Type <= uimm3 Register Type (iu)

Abstract

This instruction compares two pointer registers.

See Also (32-Bit Register Compare and Set CC (CompRegisters), Accumulator Compare and Set CC (CompAccu-
mulators))

CCFlagP Description

The compare pointer and move CC instruction sets or clears the control code (CC) bit based on a comparison of
two values. The input operands are pointer registers (Preg).

The compare operations are nondestructive on the input operands and affect only the CC bit and the status bits.
The value of the CC bit determines all subsequent conditional branching.

The various forms of the compare pointer instruction perform 32-bit signed compare operations on the input oper-
ands or an unsigned compare operation (if the (IU) optional mode is appended). The compare operations perform
a subtraction and discard the result of the subtraction without affecting user registers. The compare operation that
you specify determines the value of the CC bit.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

Control Code Bit Management Operations

8–138 ADSP-BF7xx Blackfin+ Processor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCFlagP Example

cc = p3 == p2 ; /* equal, register, signed */
cc = p0 == 1 ; /* equal, immediate, signed */
cc = p0 < p3 ; /* less than, register, signed */
cc = p2 < -4 ; /* less than, immediate, signed */
cc = p1 <= p0 ; /* less than or equal, register, signed */
cc = p4 <= 3 ; /* less than or equal, immediate, signed */
cc = p5 < p3 (iu) ; /* less than, register, unsigned */
cc = p1 < 0x7 (iu) ; /* less than, immediate, unsigned */
cc = p2 <= p0 (iu) ; /* less than or equal, register, unsigned */
cc = p3 <= 2 (iu) ; /* less than or equal, immediate unsigned */

Accumulator Compare and Set CC (CompAccumulators)

General Form

Set CC conditional bit (CCFlag)

cc = a0 == a1

cc = a0 < a1

cc = a0 <= a1

Abstract

This instruction compares the two accumulators ands sets CC.

See Also (32-Bit Register Compare and Set CC (CompRegisters), 32-Bit Pointer Register Compare and Set CC
(CCFlagP))

CompAccumulators Description

The Compare Accumulator instruction sets the Control Code (CC) bit based on a comparison of two values. The
input operands are Accumulators.

These instructions perform 40-bit signed compare operations on the Accumulators. The compare operations per-
form the subtraction A0–A1 and discard the result of the subtraction without affecting user registers. The compare
operation that you specify determines the value of the CC bit.

Control Code Bit Management Operations

ADSP-BF7xx Blackfin+ Processor 8–139

No unsigned compare operations or immediate compare operations are performed for the Accumulators. The com-
pare operations are nondestructive on the input operands, and affect only the CC bit and the status bits. All
subsequent conditional branching is based on the value of the CC bit.

The Compare Accumulator instruction uses the values shown in the Compare Accumulator Instruction Values table
in compare operations after the A0–A1 subtraction is performed.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Table 8-20: Compare Accumulator Instruction Values

Comparison Signed

Equal AZ =1

Less than AN =1

Less than or equal AN or AZ =1

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompAccumulators Example

cc = a0 == a1 ; /* equal, signed */
cc = a0 < a1 ; /* less than, accumulator, signed */
cc = a0 <= a1 ; /* less than or equal, accumulator, signed */

32-Bit Register Compare and Set CC (CompRegisters)

General Form

Set CC conditional bit (CCFlag)

cc = DREG Register Type == DREG Register Type

cc = DREG Register Type == imm3 Register Type

cc = DREG Register Type < DREG Register Type

cc = DREG Register Type < imm3 Register Type

Control Code Bit Management Operations

8–140 ADSP-BF7xx Blackfin+ Processor

cc = DREG Register Type <= DREG Register Type

cc = DREG Register Type <= imm3 Register Type

cc = DREG Register Type < DREG Register Type (iu)

cc = DREG Register Type < uimm3 Register Type (iu)

cc = DREG Register Type <= DREG Register Type (iu)

cc = DREG Register Type <= uimm3 Register Type (iu)

Abstract

This instruction compares two 32-bit registers and sets CC or sets CC if a register is non-zero.

See Also (Accumulator Compare and Set CC (CompAccumulators), 32-Bit Pointer Register Compare and Set CC
(CCFlagP))

CompRegisters Description

The Compare Data Register instruction sets the Control Code (CC) bit based on a comparison of two values. The
input operands are D-registers.

The compare operations are nondestructive on the input operands and affect only the CC bit and the status bits.
The value of the CC bit determines all subsequent conditional branching.

The various forms of the Compare Data Register instruction perform 32-bit signed compare operations on the input
operands or an unsigned compare operation, if the (IU) optional mode is appended. The compare operations per-
form a subtraction and discard the result of the subtraction without affecting user registers. The compare operation
that you specify determines the value of the CC bit.

The Compare Data Register instruction uses the values shown in the Compare Data Register Values table in signed
and unsigned compare operations.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Table 8-21: Compare Data Register Values

Comparison Signed Unsigned

Equal AZ=1 n/a

Less than AN=1 AC0=0

Less than or equal AN or AZ=1 AC0=0 or AZ=1

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

Control Code Bit Management Operations

ADSP-BF7xx Blackfin+ Processor 8–141

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CompRegisters Example

cc = r3 == r2 ; /* equal, register, signed */
cc = r7 == 1 ; /* equal, immediate, signed */
/* If r0 = 0x8FFF FFFF and r3 = 0x0000 0001, then the signed operation . . . */
cc = r0 < r3 ; /* less than, register, signed */
/* . . . produces cc = 1, because r0 is treated as a negative value */
cc = r2 < -4 ; /* less than, immediate, signed */
cc = r6 <= r1 ; /* less than or equal, register, signed */
cc = r4 <= 3 ; /* less than or equal, immediate, signed */
/* If r0 = 0x8FFF FFFF and r3 = 0x0000 0001,then the unsigned operation . . . */
cc = r0 < r3 (iu) ; /* less than, register, unsigned */
/* . . . produces CC = 0, because r0 is treated as a large unsigned value */
cc = r1 < 0x7 (iu) ; /* less than, immediate, unsigned */
cc = r2 <= r0 (iu) ; /* less than or equal, register, unsigned (a) */
cc = r3 <= 2 (iu) ; /* less than or equal, immediate unsigned (a) */

Event Management Operations

These operations provide interrupt and exception related operations:

• Interrupt Control (IMaskMv)

• Sequencer Mode (Mode)

• Raise Interrupt (Raise)

Interrupt Control (IMaskMv)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

cli DREG Register Type

sti DREG Register Type

Abstract

The CLI instruction disables or clears general interrupts, and the STI instruction enables interrupts.

Sequencer Instructions

8–142 ADSP-BF7xx Blackfin+ Processor

IMaskMv Description

The enable interrupts instruction (sti) globally enables interrupts by restoring the previous state of the interrupt
system from a data register into the IMASK register.

The disable interrupts instruction (cli) globally disables general interrupts by clearing the IMASK register to all ze-
ros. In addition, the instruction copies the previous contents of IMASK into a user-specified register in order to save
the state of the interrupt system. The disable interrupts instruction does not mask NMI, reset, exceptions, and emu-
lation.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

The enable interrupts and disable interrupts instructions executes only in Supervisor mode. If execution is attempted
in User mode, the instruction produces an Illegal Use of Protected Resource exception.

These instructions have some special applications. The clear interrupts instruction is often issued immediately before
an idle instruction, so it stores the interrupt state before entering the idle state. The enable interrupts instruction is
often located after an idle instruction, so it executes after a wake-up event from the idle state.

IMaskMv Example

sti r3 ; /* previous state of IMASK restored from Dreg */
cli r3 ; /* previous state of IMASK moved to Dreg (a) */

Sequencer Mode (Mode)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

emuexcpt

Abstract

The SEI instruction vectors to a fixed location in security firmware. The TRAP instruction raises interrupt 15 to
notify the operating system that the user code needs a system service. The EMUEXCPT instruction allows processor
to enter emulation mode.

Mode Description

The force emulation instruction forces an emulation exception, allowing the processor to enter emulation mode.
When emulation is enabled, the processor immediately takes an exception into emulation mode. When emulation is
disabled, EMUEXCPT behaves the same as a NOP instruction. The emulation exception is the highest priority event in
processor.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

Event Management Operations

ADSP-BF7xx Blackfin+ Processor 8–143

This instruction may be used in either User or Supervisor mode

Mode Example

emuexcpt ;

Raise Interrupt (Raise)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

raise uimm4 Register Type

excpt uimm4 Register Type

Abstract

The EXCPT instruction forces the specified exception (range 0 through 15).

Raise Description

The force interrupt / reset / exception instruction forces a specified interrupt or reset or exception to occur. Typical-
ly, it is a software method of invoking a hardware event for debug purposes.

When the RAISE instruction is issued, the processor sets a bit in the ILAT register corresponding to the interrupt
vector specified by the uimm4 constant in the instruction. The interrupt executes when its priority is high enough to
be recognized by the processor. The RAISE instruction causes these events to occur given the uimm4 arguments
shown in the uimm4 Arguments and Events table.

When the EXCPT instruction is issued, the sequencer vectors to the exception handler that the user provides. Appli-
cation-level code uses the force exception instruction for operating system calls. The instruction does not set the
EVSW bit (bit 3) of the ILAT register.

Table 8-22: uimm4 Arguments and Events

uimm4 Event

0 reserved

1 RST

2 NMI

3 reserved

4 reserved

5 IVHW

6 IVTMR

7 IVG7

Event Management Operations

8–144 ADSP-BF7xx Blackfin+ Processor

Table 8-22: uimm4 Arguments and Events (Continued)

uimm4 Event

8 IVG8

9 IVG9

10 IVG10

11 IVG11

12 IVG12

13 IVG13

14 IVG14

15 IVG15

The RAISE instruction cannot invoke exception (EXC) or emulation (EMU) events. Use the EXCPT and
EMUEXCPT instructions, respectively, for those events.

The RAISE instruction does not take effect before the write-back stage in the pipeline.

This 16-bit instruction takes up less memory space (over a 32-bit encoded instruction), but may not be issued in
parallel with other instructions.

The force interrupt / reset / exception instruction executes only in Supervisor mode. If execution is attempted in User
mode, the force interrupt / reset instruction produces an Illegal Use of Protected Resource exception.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Raise Example

raise 1 ; /* Invoke RST */
raise 6 ; /* Invoke IVTMR timer interrupt */
excpt 4 ;

Stack Operations

These operations provide memory stack management operations:

• Linkage (Linkage)

Sequencer Instructions

ADSP-BF7xx Blackfin+ Processor 8–145

• Stack Pop (Pop)

• Stack Push (Push)

• Stack Push/Pop Multiple Registers (PushPopMul16)

Linkage (Linkage)

General Form

Save/restore registers and link/unlink frame, multiple cycles (Linkage)

link uimm16s4 Register Type

unlink

Abstract

The linkage instruction controls the stack frame space on the stack and the Frame Pointer (FP) for that space. LINK
allocates the space and UNLINK de-allocates the space.

Linkage Description

The linkage instruction controls the stack frame space on the stack and the frame pointer (FP) for that space. LINK
allocates the space and UNLINK de-allocates the space.

LINK saves the current RETS and FP registers to the stack, loads the FP register with the new frame address, then
decrements the stack pointer (SP) by the user-supplied frame size value.

Typical applications follow the LINK instruction with a push multiple instruction to save pointer and data registers
to the stack.

The user-supplied argument for LINK determines the size of the allocated stack frame. LINK always saves RETS and
FP on the stack, so the minimum frame size is 2 words when the argument is zero. The maximum stack frame size is
218 + 8 = 262152 bytes in 4-byte increments.

UNLINK performs the reciprocal of LINK, de-allocating the frame space by moving the current value of FP into SP
and restoring previous values into FP and RETS from the stack.

The UNLINK instruction typically follows a pop multiple instruction that restores pointer and data registers previ-
ously saved to the stack.

The frame values remain on the stack until a subsequent push, push multiple or LINK operation overwrites them.

To preserve stack integrity, the FP must not be modified by user code between LINK and UNLINK execution.

Neither LINK nor UNLINK may be interrupted. Exceptions that occur while either of these instructions are execut-
ing cause the instruction to abort. For example, a load operation or a store operation might cause a protection viola-
tion while LINK is executing. In that case, SP and FP are reset to their original values prior to the execution of this
instruction. This measure ensures that the instruction can be restarted after the exception.

Stack Operations

8–146 ADSP-BF7xx Blackfin+ Processor

Note that when a LINK operation aborts due to an exception, the stack memory may already be changed due to
stores that have already completed before the exception. Similarly, an aborted UNLINK operation may leave the FP
and RETS registers changed because of a load that has already completed before the interruption.

The series of illustrations show how the stack contents change. After executing a LINK instruction, the stack con-
tains (for example) the contents shown in the Stack After Link Executes figure.

higher memory
. . .
. . . AFTER LINK EXECUTES
Saved RETS
Prior FP <- FP
Allocated
words for local
subroutine
variables <- SP = FP +– frame_size
. . .

lower memory

Figure 8-10: Stack After Link Executes

Following the LINK and a push multiple instruction, the stack contains (for example) the contents shown in the
Stack After Push Multiple Executes figure.

higher memory
. . .
. . .
Saved RETS AFTER A PUSH
 MULTIPLE EXECUTES
Prior FP <- FP
Allocated
words for local
subroutine
variables
R0
R1
...
R7
P0
...
P5 <- SP

lower memory

Figure 8-11: Stack After Push Multiple Executes

The stack pointer must already be 32-bit aligned to use this instruction. If an unaligned memory access occurs, an
exception is generated and the instruction aborts, as described above.

This 32-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Stack Operations

ADSP-BF7xx Blackfin+ Processor 8–147

Linkage Example

link 8 ; /* establish frame with 8 words allocated for local variables */
[-- sp] = (r7:0, p5:0) ; /* save D- and P-registers */
(r7:0, p5:0) = [sp ++] ; /* restore D- and P-registers */
unlink ; /* close the frame* /

Stack Pop (Pop)

General Form

Push or Pop register, to and from the stack pointed to by sp (PushPopReg)

POPREG = [sp++]

Abstract

Thisp instruction loads the contents of the stack indexed by the current stack pointer into a specified register.

See Also (Stack Push (Push), Stack Push/Pop Multiple Registers (PushPopMul16))

Pop Description

The pop instruction loads the contents of the stack—indexed by the current stack pointer (SP)—into a specified
register. The instruction post-increments the stack pointer to the next occupied location in the stack before conclud-
ing.

The stack grows down from high memory to low memory, therefore the decrement operation is used for pushing,
and the increment operation is used for popping values. The stack pointer always points to the last used location.
When a pop operation is issued, the value pointed to by the stack pointer is transferred and the SP is replaced by
SP + 4.

The following series of illustrations show what the stack would look like when a pop such as R3 = [SP ++]
occurs.

higher memory

Word0
Word1 BEGINNING STATE
Word2 <------- SP
...

lower memory

Figure 8-12: Stack Beginning State

Stack Operations

8–148 ADSP-BF7xx Blackfin+ Processor

higher memory

Word0
Word1 LOAD REGISTER R3 FROM STACK
Word2 <------ SP ========> R3 = Word2
...

lower memory

Figure 8-13: Load Register From Stack

higher memory

Word0 POST-INCREMENT STACK POINTER
Word1 <------ SP
Word2
...

lower memory

Figure 8-14: Post-Increment Stack Pointer

This 16-bit instruction may be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode for most cases, but explicit access to USP, SEQSTAT,
SYSCFG, RETI, RETX, RETN, RETE, and EMUDAT requires Supervisor mode. A protection violation exception results
if any of these registers are explicitly accessed from User mode.

The ASTAT = [SP++] version of this instruction explicitly affects arithmetic status bits. Status bits are not affected
by other versions of this instruction.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pop Example

r0 = [sp++] ; /* Load Data Register instruction */
p4 = [sp++] ; /* Load Pointer Register instruction */
i1 = [sp++] ; /* Pop instruction */
reti = [sp++] ; /* Pop instruction; supervisor mode required */

Stack Operations

ADSP-BF7xx Blackfin+ Processor 8–149

Stack Push (Push)

General Form

Push or Pop register, to and from the stack pointed to by sp (PushPopReg)

[--sp] = PUSHREG

Abstract

This instruction stores the contents of a specified register in the stack.

See Also (Stack Pop (Pop), Stack Push/Pop Multiple Registers (PushPopMul16))

Push Description

The push instruction stores the contents of a specified register in the stack. The instruction pre-decrements the stack
pointer (SP) to the next available location in the stack first. Push and push multiple are the only instructions that
perform pre-modify functions.

The stack grows down from high memory to low memory. Consequently, the decrement operation is used for push-
ing, and the increment operation is used for popping values. The stack pointer always points to the last used loca-
tion. Therefore, the effective address of the push is SP – 4.

The following illustration shows what the stack would look like when a series of pushes occur.

higher memory

P5 [--sp]=p5 ;
P1 [--sp]=p1 ;
R3 <-------- SP [--sp]=r3 ;
...

lower memory

Figure 8-15: Stack Following a Series of Pushes

The stack pointer must already be 32-bit aligned to use this instruction. If an unaligned memory access occurs, an
exception is generated and the instruction aborts.

Push/pop on RETS has no effect on the interrupt system.

Push/pop on RETI does affect the interrupt system.

Pushing RETI enables the interrupt system, whereas popping RETI disables the interrupt system.

Pushing the stack pointer is meaningless since it cannot be retrieved from the stack. Using the stack pointer as the
destination of a pop instruction (as in the fictional instruction SP = [SP++]) causes an undefined instruction ex-
ception.

This 16-bit instruction may not be issued in parallel with other instructions.

Stack Operations

8–150 ADSP-BF7xx Blackfin+ Processor

This instruction may be used in either User or Supervisor mode for most cases, but explicit access to USP, SEQSTAT,
SYSCFG, RETI, RETX, RETN, RETE, and EMUDAT requires Supervisor mode. A protection violation exception results
if any of these registers are explicitly accessed from User mode.

Push Example

[-- sp] = r0 ;
[-- sp] = r1 ;
[-- sp] = p0 ;
[-- sp] = i0 ;

Stack Push/Pop Multiple Registers (PushPopMul16)

General Form

Push or Pop Multiple contiguous registers (PushPopMult)

(PREG_RANGE Register Type) = [sp++]

(DREG_RANGE Register Type) = [sp++]

(DREG_RANGE Register Type, PREG_RANGE Register Type) = [sp++]

[--sp] = (PREG_RANGE Register Type)

[--sp] = (DREG_RANGE Register Type)

[--sp] = (DREG_RANGE Register Type, PREG_RANGE Register Type)

Abstract

This instruction pushes or pops the contents of multiple data and/or pointer registers to or from the stack.

See Also (Stack Pop (Pop), Stack Push (Push))

PushPopMul16 Description

The push multiple instruction saves the contents of multiple data and/or pointer registers to the stack, and the pop
multiple instruction restores the contents of multiple data and/or pointer registers from the stack. The range of reg-
isters to be pushed (saved) or popped (restored) always includes the highest index data register (R7) and/or highest
index pointer register (P5) plus any contiguous lower index registers specified by the user down to and including R0
and/or P0.

Push Multiple Instruction Operations

The push multiple instruction operations start by saving the register having the lowest index then advance to
the register with the highest index. The index of the first register saved in the stack is specified by the user in
the instruction syntax. Data registers are pushed before Pointer registers if both are specified in one instruc-
tion.

The push multiple instruction pre-decrements the stack pointer to the next available location in the stack first.

Stack Operations

ADSP-BF7xx Blackfin+ Processor 8–151

NOTE: Push and Push Multiple are the only instructions that perform pre-modify functions.

The stack grows down from high memory to low memory, therefore the decrement operation is the same used
for pushing, and the increment operation is used for popping values. The stack pointer always points to the
last used location, making the effective address of the push is SP – 4.

The Stack Following a Push Multiple illustration shows what the stack would look like when a push multiple
occurs.

higher memory

P3 [--sp]=(p5:3) ;
P4
P5 <-------- SP
...

lower memory

Figure 8-16: Stack Following a Push Multiple

Because the push multiple instruction always saves the lowest-indexed registers first, it is advisable that a run-
time system be defined to have its compiler scratch registers as the lowest- indexed registers. For instance, data
registers R0, P0 would be the return value registers for a simple calling convention.

Pop Multiple Instruction Operations

The pop multiple instruction operations start by restoring the register having the highest index then descend
to the register with the lowest index. The index of the last register restored from the stack is specified by the
user in the instruction syntax. Pointer registers are popped before data registers, if both are specified in the
same instruction.

The instruction post-increments the stack pointer to the next occupied location in the stack before conclud-
ing.

The stack grows down from high memory to low memory, therefore the decrement operation is used for push-
ing, and the increment operation is used for popping values. The Stack Pointer always points to the last used
location. When a pop operation is issued, the value pointed to by the Stack Pointer is transferred and the SP is
replaced by SP + 4.

The series of illustrations show how the stack appears when a pop multiple such as (R7:5) = [SP++] oc-
curs.

Stack Operations

8–152 ADSP-BF7xx Blackfin+ Processor

higher memory

Word0
Word1
Word2 BEGINNING STATE
Word3 <------ SP
...

lower memory

Figure 8-17: Stack Beginning State of Pop Multiple

higher memory

R3
R4
R6 LOAD REGISTER R7 FROM STACK
R7 <------ SP ========> R7 = Word3
...

lower memory

Figure 8-18: Load Register R7 From Stack during Pop Multiple

higher memory

R4
R5 LOAD REGISTER R6 FROM STACK
R6 <------ SP ========> R6 = Word2
R7
...

lower memory

Figure 8-19: Load Register R6 From Stack during Pop Multiple

higher memory
...

R5
 LOAD REGISTER R5 FROM STACK

R6
<------ SP ========> R5 = Word1

R7

...
lower memory

Figure 8-20: Load Register R5 From Stack during Pop Multiple

higher memory
...
... POST-INCREMENT STACK POINTER
Word0 <------ SP
Word1
Word2

lower memory

Figure 8-21: Post-Increment Stack Pointer after Pop Multiple

The value(s) just popped remain on the stack until another push instruction overwrites it.

Stack Operations

ADSP-BF7xx Blackfin+ Processor 8–153

The intended usage for the pop multiple instruction is to recover register values that were previously pushed
onto the stack. The user must exercise programming discipline to restore the stack values back to their intend-
ed registers from the first-in, last-out structure of the stack. Pop exactly the same registers that were pushed
onto the stack, but pop them in the opposite order.

Push Multiple and Pop Multiple Common Features

Although the PushPopMul16 instruction takes a variable amount of time to complete (depending on the
number of registers to be saved/restored), the instruction reduces compiled code size.

This instruction is not interruptible. Interrupts asserted after the first issued stack write operation (for push) or
stack read operation (for pop) are appended until all the writes or reads complete. However, exceptions that
occur while this instruction is executing cause it to abort gracefully. For example:

• While push multiple is executing, a load/store operation might cause a protection violation. In that case,
the SP is reset to its value before the execution of this instruction. Note that when a push multiple opera-
tion is aborted due to an exception, the memory state is changed by the stores that have already complet-
ed before the exception.

• While pop multiple is executing, a load/store operation might cause a protection violation In that case,
the SP is reset to its original value prior to the execution of this instruction. Note that when a pop multi-
ple operation aborts due to an exception, some of the destination registers are changed as a result of loads
that have already completed before the exception.

These measures ensures that the instruction can be restarted after the exception.

The stack pointer must already be 32-bit aligned to use this instruction. If an unaligned memory access oc-
curs, an exception is generated and the instruction aborts.

Only data register (R7–0) and pointer registers (P5–0) may be operands for this instruction. The SP and FP
registers may not be used as operands for this instruction.

This 16-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

PushPopMul16 Example

/* push multiple examples */
[-- sp] = (r7:5, p5:0) ; /* D-registers R4:0 excluded */
[-- sp] = (r7:5, p5:0) ; /* D-registers R4:0 excluded */
[-- sp] = (r7:2) ; /* R1:0 excluded */
[-- sp] = (p5:4) ; /* P3:0 excluded */

/* pop multiple examples */
(p5:4) = [sp ++] ; /* P3 through P0 excluded */
(r7:2) = [sp ++] ; /* R1 through R0 excluded */
(r7:5, p5:0) = [sp ++] ; /* D-registers R4 through R0 optionally excluded */

Stack Operations

8–154 ADSP-BF7xx Blackfin+ Processor

Synchronization Operations

These operations provide processor synchronization operations:

• Cache Control (CacheCtrl)

• Sync (Sync)

• SyncExcl (SyncExcl)

• NOP (NOP)

• 32-Bit No Operation (NOP32)

• TestSet (TestSet)

Cache Control (CacheCtrl)

General Form

Cache Control (CacheCtrl)

prefetch [PREGA]

flushinv [PREGA]

flush [PREGA]

iflush [PREGA]

Abstract

These instructions provide the ability to manipulate the caches. The prefetch causes the data cache to prefetch the
cache line associated with the effective address provided as the contents of the p-register.

See Also (Sync (Sync))

CacheCtrl Description

These instructions provide the ability to manipulate the cachesa;

• prefetch causes the data cache to prefetch the cache line associated with the effective address provided as the
contents of the p-register.

• flushinv causes the data cache to invalidate a particular line in the cache.

• flush causes the a line of data in the cache to be syncronized with higher levels of memory.

• iflush causes the instruction cache to invalidate a particular line in the cache.

prefetch Instruction Operations

The Data Cache Prefetch instruction causes the data cache to prefetch the cache line that is associated with the
effective address in the P-register. The operation causes the line to be fetched if it is not currently in the data

Sequencer Instructions

ADSP-BF7xx Blackfin+ Processor 8–155

cache and if the address is cacheable (that is, if bit CPLB_L1_CHBL = 1). If the line is already in the cache or
if the cache is already fetching a line, the prefetch instruction performs no action, like a NOP.

This instruction may generate CPLB exceptions. For example, exception 0x26 can be generated upon execu-
tion of the PREFETCH[P0] instruction if P0 points to an invalid memory location. However, external memo-
ry will not be accessed when any of these exceptions are generated.

The instruction can post-increment the line pointer by the cache line size.

flushinv Instruction Operations

The Data Cache Line Invalidate instruction causes the data cache to invalidate a specific line in the cache. The
contents of the P-register specify the line to invalidate. If the line is in the cache and dirty, the cache line is
written out to the next level of memory in the hierarchy. If the line is not in the cache, the instruction per-
forms no action, like a NOP.

This instruction may generate CPLB exceptions. For example, exception 0x26 can be generated upon execu-
tion of the FLUSHINV[P0] instruction if P0 points to an invalid memory location. However, external memo-
ry will not be accessed when any of these exceptions are generated. The instruction can post-increment the
line pointer by the cache line size.

flush Instruction Operations

The Data Cache Flush instruction causes the data cache to synchronize the specified cache line with higher
levels of memory. This instruction selects the cache line corresponding to the effective address contained in the
P-register. If the cached data line is dirty, the instruction writes the line out and marks the line clean in the
data cache. If the specified data cache line is already clean or the cache does not contain the address in the P-
register, this instruction performs no action, like a NOP.

This instruction may generate CPLB exceptions. For example, exception 0x26 can be generated upon execu-
tion of the FLUSH[P0] instruction if P0 points to an invalid memory location. However, external memory
will not be accessed when any of these exceptions are generated.

The instruction can post-increment the line pointer by the cache line size.

iflush Instruction Operations

The Instruction Cache Flush instruction causes the instruction cache to invalidate a specific line in the cache.
The contents of the P-register specify the line to invalidate. The instruction cache contains no dirty bit. Con-
sequently, the contents of the instruction cache are never flushed to higher levels.

This instruction does not cause address exception violations. If a protection violation associated with the ad-
dress occurs, the instruction acts as a NOP and does not cause a protection violation exception.

The instruction can post-increment the line pointer by the cache line size.

Synchronization Operations

8–156 ADSP-BF7xx Blackfin+ Processor

CacheCtrl Instruction Common Features

These instructions have post-modify versions, where the value in the pointer register (Preg) used as address for
the prefetch and flush is incremented by the cache-line size.

These instructions do not cause address exception violations. If the effective address is misaligned or outside
the allowed memory region, these instructions have no effect.

This 16-bit instruction may not be issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

CacheCtrl Example

prefetch [p2] ;
prefetch [p0 ++] ;
flushinv [p2] ;
flushinv [p0 ++] ;
flush [p2] ;
flush [p0 ++] ;
iflush [p2] ;
iflush [p0 ++] ;

Sync (Sync)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

idle

csync

ssync

sti idle DREG Register Type

Abstract

The instructions are DSYNC (Data Sync), SSYNC (System Sync), CSYNC (Core Sync), IDLE, and STI IDLE.

See Also (Cache Control (CacheCtrl))

Sync Description

The sync instructions (CSYNC, SSYNC, DSYNC, IDLE, and STI IDLE) provide the means to synchronize core, sys-
tem, and data operations across all clock domains of the processor.

Synchronization Operations

ADSP-BF7xx Blackfin+ Processor 8–157

idle Instruction Operations

Typically, the IDLE instruction is part of a sequence to place the Blackfin+ processor in a quiescent state so
that the external system can switch between core clock frequencies.

The first instruction following the IDLE is the first instruction to execute when the processor recovers from
idle mode.

NOTE: Blackfin+ processors (unlike previous on previous Blackfin processors) an IDLE instruction is
not required immediately following an SSYNC instruction.

csync Instruction Operations

The core synchronize (CSYNC) instruction ensures resolution of all pending core operations and the flushing
of the core store buffer before proceeding to the next instruction. Pending core operations include any specula-
tive states (for example, branch prediction) or exceptions. The core store buffer lies between the processor and
the L1 cache memory.

CCYNC is typically used after core memory-mapped register writes to prevent imprecise behavior, unless other-
wise specified in Blackfin+ Processor Programming Reference. For example, an SSYNC instruction is required
to follow some core memory-mapped register accesses, such as when IMEM_CONTROL is written to while ena-
bling cache.

Use CSYNC to enforce a strict execution sequence on loads and stores or to conclude all transitional core states
before reconfiguring the core modes. For example, issue CSYNC before configuring memory-mapped registers
(MMRs). CSYNC should also be issued after stores to memory-mapped registers to make sure the data reaches
the memory-mapped register before the next instruction is fetched.

Typically, the Blackfin+ processor executes all load instructions strictly in the order that they are issued and all
store instructions in the order that they are issued. However, for performance reasons, the architecture relaxes
ordering between load and store operations. It usually allows load operations to access memory out of order
with respect to store operations. Further, it usually allows loads to access memory speculatively. The core may
later cancel or restart speculative loads. By using the core synchronize or system synchronize instructions and
managing interrupts appropriately, you can restrict out-of-order and speculative behavior.

NOTE: Stores never access memory speculatively.

ssync Instruction Operations

The system synchronize (SSYNC) instruction forces all speculative, transient states in the core and system to
complete before processing continues. Until SSYNC completes, no further instructions can be issued to the
pipeline.

The SSYNC instruction performs the same function as core synchronize (CSYNC). In addition, SSYNC flushes
any write buffers (between the L1 memory and the system interface) and generates a sync request signal to the
external system. The operation requires an acknowledgement by the system before completing the instruction.

Synchronization Operations

8–158 ADSP-BF7xx Blackfin+ Processor

An SSYNC instruction should be used when ordering is required between a memory write and a memory read.
For more information about these operations, see the memory or pointer instructions.

When strict ordering of instruction execution is required, by design, the Blackfin+ processor architecture al-
lows reads to take priority over writes when there are no dependencies between the address that are accessed.
In general, this execution order allows for increased performance. However, when an asynchronous memory
device is mapped to a Blackfin+ processor, it is sometimes necessary to ensure the write occurs before the read.
But, the Blackfin+ processor re-orders loads over stores if there is not a data dependency. In this case, an
SSYNC between the write and read will ensure proper ordering is preserved.

NOTE: Blackfin+ processors (unlike previous on previous Blackfin processors) an IDLE instruction is
not required immediately following an SSYNC instruction.

dsync Instruction Operations

The DSYNC instruction (data sync) ensures that all writes have completed to final destinations before any other
writes commit.

sti idle Instruction Operations

The STI IDLE instruction (enable interrupts, then idle) performs an implicit SSYNC, then simultaneously
restores IMASK from the specifed data register and enters idle mode.

Sync Instruction Common Features

These 16-bit instructions may not be issued in parallel with certain other 16-bit instructions.

These instructions may be used in either User or Supervisor mode.

Sync Example

Example code sequence for IDLE
idle ;

Example code sequence for CSYNC---In this example, the CSYNC instruction ensures that the load instruction is not
executed speculatively. CSYNC ensures that the conditional branch is resolved and any entries in the processor store
buffer have been flushed. In addition, all speculative states or exceptions complete processing before CSYNC com-
pletes.

if cc jump away_from_here ;
/* produces speculative branch prediction */
csync ;
r0 = [p0] ; /* load */

Example code sequence for SSYNC---In this example, SSYNC ensures that the load instruction will not be executed
speculatively. The instruction ensures that the conditional branch is resolved and any entries in the processor store
buffer and write buffer have been flushed. In addition, all exceptions complete processing before SSYNC completes.

Synchronization Operations

ADSP-BF7xx Blackfin+ Processor 8–159

if cc jump away_from_here ;
/* produces speculative branch prediction */
ssync ;
r0 = [p0] ; /* load */

Example code sequence for DSYNC---In this example, DSYNC ensures that the load instruction will not be executed
speculatively. The instruction ensures that the conditional branch is resolved and any entries in the processor store
buffer and write buffer have been flushed. In addition, all exceptions complete processing before DSYNC completes.

if cc jump away_from_here ;
/* produces speculative branch prediction */
dsync ;
r0 = [p0] ; /* load */

Example code sequence for STI IDLE
sti idle r0 ;

SyncExcl (SyncExcl)

General Form

Long Load/Store with indexed addressing (LdStExcl)

syncexcl

Abstract

This instruction synchronizes the processor state with the exclusive state, capturing any pending write response and
releasing exclusive memory access to a memory location.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOP (NOP)

General Form

Synchronization Operations

8–160 ADSP-BF7xx Blackfin+ Processor

16-bit Slot Nop (NOP16)

nop

Abstract

This instruction increments the PC (and does nothing else).

See Also (32-Bit No Operation (NOP32))

NOP Description

The No Op instruction increments the PC and does nothing else.

Typically, the No Op instruction allows previous instructions time to complete before continuing with subsequent
instructions. Other uses are to produce specific delays in timing loops or to act as hardware event timers and rate
generators when no timers and rate generators are available.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

NOP Example

nop ;

32-Bit No Operation (NOP32)

General Form

32-bit Slot Nop (NOP32)

mnop

Abstract

This instruction increments the PC (and does nothing else).

See Also (NOP (NOP))

NOP32 Description

The No Op instruction increments the PC and does nothing else.

Typically, the No Op instruction allows previous instructions time to complete before continuing with subsequent
instructions. Other uses are to produce specific delays in timing loops or to act as hardware event timers and rate
generators when no timers and rate generators are available.

MNOP can be used to issue loads or store instructions in parallel without invoking a 32-bit MAC or ALU opera-
tion.

Synchronization Operations

ADSP-BF7xx Blackfin+ Processor 8–161

This 32-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

NOP32 Example

mnop ;
mnop || /* a 16-bit instr. */ || /* a 16-bit instr. */ ;

TestSet (TestSet)

General Form

Basic Program Sequencer Control Functions (ProgCtrl)

testset (PREGP Register Type)

Abstract

This instruction loads a byte, tests whether it is zero, then sets the most significant bit of the byte in memory. CC is
set if the byte is originally zero, and cleared if the byte is originally nonzero. The sequence of memory transactions
are atomic.

TestSet Description

The testset instruction is an atomic operation. (This sequence may be aborted by an interrupt, but will restart
from the beginning upon return from interrupt. A byte protected in this manner may be used as a semaphore.) This
instruction is primarily provided for backward compatability and it is recomended to use exclusive load and store
instructions which make more efficient use of system resources (if that is possible). The testset instruction reads
an indirectly addressed memory byte, tests whether it is zero, and then writes the byte back to memory with the
most significant bit (MSB) set, all as one indivisible operation. If the byte is originally zero, the instruction sets the
CC bit. If the byte is originally nonzero, the instruction clears the CC bit.

The TESTSET instruction is never executed speculatively. It is supported by bus-locked memory transactions on the
system bus, so no other user of the bus, such as another core, can access memory between the test and set portions of
this instruction. The TESTSET instruction can be interrupted by the core. If this happens the system bus is released
and the TESTSET instruction is executed again upon return from the interrupt.

TESTSET should not be used in L1 SRAM or cacheable memory as its behavior in these regions varies between
different derivatives. TESTSET must not be used with MMRs, I/O Device space or extended data access addresses.

This 16-bit instruction may not be issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

TestSet Example

testset (P3) ; /* test and set byte addressed by P3 */

Synchronization Operations

8–162 ADSP-BF7xx Blackfin+ Processor

Memory or Pointer Instructions
The memory and pointer instructions provide operations, which execute on the address arithmetic unit in the pro-
cessor core. Users can take advantage of these instructions to load registers with data from memory locations, to
store register data to memory locations, and to execute arithmetic operation using pointer registers.

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 8-22: Blackfin+ Core Block Diagram

The operation types of memory or pointer instructions include:

• Memory Load Operations

• Memory Store Operations

• Pointer Math Operations

Load from Immediate (Value) Operations

These operations provide register load operations on register and immediate value operands:

• 32-Bit Accumulator Register (.x) Initialization (LdImmToAxX)

• 32-Bit Accumulator Register (.w) Initialization (LdImmToAxW)

• Accumulator Register Initialization (LdImmToAx)

• 16-Bit Register Initialization (LdImmToDregHL)

• 32-Bit Register Initialization (LdImmToReg)

• Dual Accumulator 0 and 1 Registers Initialization (LdImmToAxDual)

Memory or Pointer Instructions

ADSP-BF7xx Blackfin+ Processor 8–163

Accumulator Register Initialization (LdImmToAx)

General Form

ALU Operations (Dsp32Alu)

a0 = 0

a1 = 0

Abstract

This instruction loads the accumulator register with the immediate value 0 (initializes the result register).

See Also (32-Bit Accumulator Register (.x) Initialization (LdImmToAxX), 32-Bit Accumulator Register (.w) Initiali-
zation (LdImmToAxW))

LdImmToAx Description

The load immediate to accumulator instruction loads an immediate value (0) into an accumulator register. This op-
eration initializes (or clears) the accumulator register.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

LdImmToAx Example

a0 = 0 ;
a1 = 0 ;

32-Bit Accumulator Register (.w) Initialization (LdImmToAxW)

General Form

Load Immediate Word (LdImm)

a0.w = imm32 Register Type

a1.w = imm32 Register Type

Abstract

This instruction initializes the lower 32-bits (.w) of the accumulator register from a 32-bit immediate value.

See Also (32-Bit Accumulator Register (.x) Initialization (LdImmToAxX), Accumulator Register Initialization
(LdImmToAx))

Load from Immediate (Value) Operations

8–164 ADSP-BF7xx Blackfin+ Processor

LdImmToAxW Description

The load immediate to accumulator 32-bit section instruction loads a immediate value, or explicit constant, into the
the A0.w or A1.w register.

The instruction loads the 32-bit accumulator section from a 32-bit quantity, depending on the size of the immediate
data.

The load operation uses the 32 bits of the input immediate value and leaves the unspecified portion of the accumu-
lator register intact.

This 64-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdImmToAxW Example

a0.w = 0x7FFFFFFF ;
a1.w = 0x80000000 ;
a0.w = MyResult ;
a1.w = MyOtherResult ;

32-Bit Accumulator Register (.x) Initialization (LdImmToAxX)

General Form

Load Immediate Word (LdImm)

a0.x = imm32 Register Type

a1.x = imm32 Register Type

Abstract

This instruction initializes the upper 8-bit (.x)of the accumulator register from a 32-bit immediate value.

See Also (32-Bit Accumulator Register (.w) Initialization (LdImmToAxW), Accumulator Register Initialization
(LdImmToAx))

LdImmToAxX Description

The load immediate to accumulator 8-bit section instruction loads a immediate value, or explicit constant, into the
the A0.x or A1.x register.

The instruction loads the 8-bit accumulator section from a 32-bit quantity, depending on the size of the immediate
data.

The load operation uses the least significant 8 bits of the input immediate value and leaves the unspecified portion
of the accumulator register intact.

This 64-bit instruction may not be issued in parallel with other instructions.

Load from Immediate (Value) Operations

ADSP-BF7xx Blackfin+ Processor 8–165

This instruction may be used in either User or Supervisor mode.

LdImmToAxX Example

a0.x = 0x7FFFFFFF ;
a1.x = 0x80000000 ;
a0.x = MyResult ;
a1.x = MyOtherResult ;

16-Bit Register Initialization (LdImmToDregHL)

General Form

Load Immediate Half Word (LdImmHalf)

DST_L = imm16 Register Type

DST_H = imm16 Register Type

Abstract

This instruction loads a low-half register or a high-half register with a 16-bit immediate value.

LdImmToDregHL Description

The load immediate to high/low half register instruction loads an immediate value, or explicit constant, into a high
or low half register. The instruction loads a 16-bit quantity, depending on the size of the immediate data.

The 16-bit half-words are be loaded into either the high half or low half of a register. The load operation leaves the
unspecified half of the register intact.

Loading a 32-bit value into a register using this load immediate instruction requires two separate instructions—one
for the high and one for the low half. For example, to load the address foo into register P3, write:

p3.h = foo ;
p3.l = foo ;

The assembler automatically selects the correct half-word portion of the 32-bit literal for inclusion in the instruction
word.

This 32-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdImmToDregHL Example

r7.h = 63 ;
p3.l = 12 ;
i0.l = 4 ;
m2.h = 8 ;

Load from Immediate (Value) Operations

8–166 ADSP-BF7xx Blackfin+ Processor

l3.h = 0xbcde ;

32-Bit Register Initialization (LdImmToReg)

General Form

Destructive Binary Operations, dreg with 7bit immediate (CompI2opD)

DREG Register Type = imm7 Register Type (x)

Destructive Binary Operations, preg with 7bit immediate (CompI2opP)

PREG Register Type = imm7 Register Type (x)

Load Immediate Half Word (LdImmHalf)

DST = imm16 Register Type (x)

DST = rimm16 Register Type (z)

Load Immediate Word (LdImm)

DREG Register Type = imm32 Register Type

PREG Register Type = imm32 Register Type

IREG Register Type = imm32 Register Type

MREG Register Type = imm32 Register Type

BREG Register Type = imm32 Register Type

LREG Register Type = imm32 Register Type

astat = imm32 Register Type

rets = imm32 Register Type

SYSREG2 Register Type = imm32 Register Type

SYSREG3 Register Type = imm32 Register Type

Abstract

This instruction initializes a 32-bit register to an immediate value. For the smaller instructions, where the immediate
is less than 32, you can specify if you want the immediate value sign or zero extended to fill the register.

LdImmToReg Description

The load immediate to register instruction loads an immediate value, or explicit constants, into a register.

The instruction loads a 7-, 16-, or 32-bit quantity, depending on the size of the immediate data.

The zero-extended (z) versions of this instruction fill the upper bits of the destination register with zeros. The sign-
extended (x) versions of this instruction fill the upper bits with the sign of the constant value.

The instruction opcode size varies with the immediate value size as follows:

Load from Immediate (Value) Operations

ADSP-BF7xx Blackfin+ Processor 8–167

• Load immediate to register of 7-bit data encodes as a 16-bit instruction.

• Load immediate to register of 16-bit data encodes as a 32-bit instruction.

• Load immediate to register of 7-bit data encodes as a 64-bit instruction.

These load immediate instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdImmToReg Example

r7 = 63 (z) ;
p3 = 12 (z) ;
r0 = -344 (x) ;
r7 = 436 (z) ;
m2 = 0x89ab (z) ;
p1 = 0x1234 (z) ;
m3 = 0x3456 (x) ;

Dual Accumulator 0 and 1 Registers Initialization (LdImmToAxDual)

General Form

ALU Operations (Dsp32Alu)

a1 = a0 = 0

Abstract

This instruction loads the accumulator 0 and 1 registers (A0, A1) with the immediate value 0 (initializes both result
registers).

LdImmToAxDual Description

The dual load immediate to accumulator instruction loads an immediate value (0) into both accumulator registers.
This operation initializes (or clears) both of the accumulator registers.

This 32-bit instruction can sometimes save execution time (over a 16-bit encoded instruction) because it can be
issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

LdImmToAxDual Example

a1 = a0 = 0 ;

Load from Immediate (Value) Operations

8–168 ADSP-BF7xx Blackfin+ Processor

Memory Load Operations

These operations provide memory load operations on register and immediate value operands:

• 8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg)

• 16-Bit Load from Memory (LdM16bitToDregH)

• 16-Bit Load from Memory (LdM16bitToDregL)

• 32-Bit Load from Memory (LdM32bitToDreg)

• 16-Bit Load from Memory to 32-Bit Register (LdM16bitToDreg)

• 32-Bit Register Initialization (LdImmToReg)

8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg)

General Form

Load/Store (LdSt)

DREG Register Type = b[PREG Register Type++] (z)

DREG Register Type = b[PREG Register Type--] (z)

DREG Register Type = b[PREG Register Type] (z)

DREG Register Type = b[PREG Register Type++] (x)

DREG Register Type = b[PREG Register Type--] (x)

DREG Register Type = b[PREG Register Type] (x)

Long Load/Store with indexed addressing (LdStIdxI)

DREG Register Type = b[PREG Register Type + imm16reloc Register Type] (z)

DREG Register Type = b[PREG Register Type + imm16reloc Register Type] (x)

Load/Store 32-bit Absolute Address (LdStAbs)

DREG Register Type = b[uimm32 Register Type] (z)

DREG Register Type = b[uimm32 Register Type] (x)

Abstract

This instruction loads a register with an 8-bit value from memory. The value is sign or zero extended in the register.

See Also (32-Bit Load from Memory (LdM32bitToDreg), 16-Bit Load from Memory (LdM16bitToDregH), 16-Bit
Load from Memory (LdM16bitToDregL), 16-Bit Load from Memory to 32-Bit Register (LdM16bitToDreg))

LdM08bitToDreg Description

The load byte to data register instruction loads an 8-bit byte value from a memory location into a 32-bit data regis-
ter. The address of the memory location is identified with a pointer register, a pointer plus an offset, or a 32-bit

Memory or Pointer Instructions

ADSP-BF7xx Blackfin+ Processor 8–169

absolute address. The byte value is sign-extended (x) or zero-extended (z) to 32 bits in the destination data regis-
ter. The address used in this instruction has no restrictions for memory address alignment. This instruction supports
the following options.

• Post-increment the source pointer by 1 byte [Preg ++]
• Post-decrement the source pointer by 1 byte [Preg --]
• Offset the source pointer with a 16-bit signed constant [Preg + Offset]

The instruction opcode size varies with the address type as follows:

• Load byte to register using a pointer register for the address encodes as a 16-bit instruction.

• Load byte to register using a pointer register with 16-bit offset for the address encodes as a 32-bit instruction.

• Load byte to register using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load byte instructions may be issued in parallel with certain other instructions. The 32- and 64-bit load
byte instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdM08bitToDreg Example

r3 = b [p0] (z) ;
r7 = b [p1 ++] (z) ;
r2 = b [sp --] (z) ;
r0 = b [p4 + 0xFFFF800F] (z) ;
r3 = b [p0] (x) ;
r7 = b [p1 ++](x) ;
r2 = b [sp --] (x) ;
r0 = b [p4 + 0xFFFF800F](x) ;

16-Bit Load from Memory to 32-Bit Register (LdM16bitToDreg)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

DREG Register Type = w[PREG Register Type ++ PREG Register Type] (z)

DREG Register Type = w[PREG Register Type ++ PREG Register Type] (x)

Load/Store (LdSt)

DREG Register Type = w[PREG Register Type++] (z)

DREG Register Type = w[PREG Register Type--] (z)

DREG Register Type = w[PREG Register Type] (z)

DREG Register Type = w[PREG Register Type++] (x)

Memory Load Operations

8–170 ADSP-BF7xx Blackfin+ Processor

DREG Register Type = w[PREG Register Type--] (x)

DREG Register Type = w[PREG Register Type] (x)

Load/Store indexed with small immediate offset (LdStII)

DREG Register Type = w[PREG Register Type + uimm4s2 Register Type] (z)

DREG Register Type = w[PREG Register Type + uimm4s2 Register Type] (x)

Long Load/Store with indexed addressing (LdStIdxI)

DREG Register Type = w[PREG Register Type + imm16s2 Register Type] (z)

DREG Register Type = w[PREG Register Type + imm16s2 Register Type] (x)

Load/Store 32-bit Absolute Address (LdStAbs)

DREG Register Type = w[uimm32 Register Type] (z)

DREG Register Type = w[uimm32 Register Type] (x)

Abstract

This instruction loads a register with a 16-bit value from memory. The value is sign or zero extended in the register.

See Also (8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg), 32-Bit Load from Memory (LdM32bit-
ToDreg), 16-Bit Load from Memory (LdM16bitToDregH), 16-Bit Load from Memory (LdM16bitToDregL))

LdM16bitToDreg Description

The load word to data register instruction loads a 16-bit value from a memory location into a 32-bit data register.
The address of the memory location is identified with a pointer register, a pointer plus an offset, or a 32-bit absolute
address. The word value is sign-extended (x) or zero-extended (z) to 32 bits in the destination data register. The
address used in this instruction is restricted to even memory address alignment (2-byte half-word address align-
ment). Failure to maintain proper alignment causes a misaligned memory access exception. This instruction sup-
ports the following options.

• Post-increment the source pointer by 2 bytes [Preg ++]
• Post-decrement the source pointer by 2 bytes [Preg --]
• Offset the source pointer with a 5-bit signed constant [Preg + SmallOffset]
• Offset the source pointer with a 16-bit signed constant [Preg + LargeOffset]
• Offset the source pointer with second pointer [Preg ++ Preg]

The syntax of the form:

Dest = w [Src_1 ++ Src_2] ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

Dest = w [Src_1] ; /* load the 32-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

Memory Load Operations

ADSP-BF7xx Blackfin+ Processor 8–171

where:

• Dest is the destination register. (Dreg in the syntax example).

• Src_1 is the first source register on the right-hand side of the equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

r0 = w [p2 ++ p2] (z) ;

functions as:

r0 = w [p2] (z) ;

The instruction opcode size varies with the address type as follows:

• Load word to register using a pointer register for the address or using a pointer register with small offset for the
address encodes as a 16-bit instruction.

• Load word to register using a pointer register with 16-bit offset for the address or using a pointer register offset
by a second pointer for the address encodes as a 32-bit instruction.

• Load word to register using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load word instructions may be issued in parallel with certain other instructions. The 32- and 64-bit load
word instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdM16bitToDreg Example

r3 = w [p0] (z) ;
r7 = w [p1 ++] (z) ;
r2 = w [sp --] (z) ;
r6 = w [p2 + 12] (z) ;
r0 = w [p4 + 0x8004] (z) ;
r1 = w [p0 ++ p1] (z) ;
r3 = w [p0] (x) ;
r7 = w [p1 ++] (x) ;
r2 = w [sp --] (x) ;
r6 = w [p2 + 12] (x) ;
r0 = w [p4 + 0x800E] (x) ;
r1 = w [p0 ++ p1] (x) ;

Memory Load Operations

8–172 ADSP-BF7xx Blackfin+ Processor

16-Bit Load from Memory (LdM16bitToDregH)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

DREG_H Register Type = w[PREG Register Type ++ PREG Register Type]

Load/Store (DspLdSt)

DREG_H Register Type = w[IREG Register Type++]

DREG_H Register Type = w[IREG Register Type--]

DREG_H Register Type = w[IREG Register Type]

Load/Store 32-bit Absolute Address (LdStAbs)

DREG_H Register Type = w[uimm32 Register Type]

Abstract

This instruction loads a high-half register with a 16-bit value from memory.

See Also (8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg), 32-Bit Load from Memory (LdM32bit-
ToDreg), 16-Bit Load from Memory (LdM16bitToDregL), 16-Bit Load from Memory to 32-Bit Register
(LdM16bitToDreg))

LdM16bitToDregH Description

The load word to high-half data register instruction loads a 16-bit value from a memory location into a 16-bit high-
half data register. The operation does not affect the related low-half register. The address of the memory location is
identified with an index register, a pointer register, a pointer plus an offset, or a 32-bit absolute address. The address
used in this instruction is restricted to even memory address alignment (2-byte half-word address alignment). Failure
to maintain proper alignment causes a misaligned memory access exception. This instruction supports the following
options.

• Post-increment the source index by 2 bytes [Ireg ++]
• Post-decrement the source index by 2 bytes [Ireg --]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

Memory Load Operations

ADSP-BF7xx Blackfin+ Processor 8–173

The syntax of the form:

Dest_hi = w [Src_1 ++ Src_2] ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

Dest_hi = w [Src_1] ; /* load the 16-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Dest_hi is the destination high-half register. (Dreg_hi in the syntax example).

• Src_1 is the first source register on the right-hand side of the equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

r0.h = w [p2 ++ p2] ;

functions as:

r0.h = w [p2] ;

The instruction opcode size varies with the address type as follows:

• Load word to high-half register using an index register or a pointer register for the address encodes as a 16-bit
instruction.

• Load word to high-half register using a pointer register offset by a second pointer for the address encodes as a
16-bit instruction.

• Load word to high-half register using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load word instructions may be issued in parallel with certain other instructions. The 64-bit load word
instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdM16bitToDregH Example

r3.h = w [i1] ;
r7.h = w [i3 ++] ;
r1.h = w [i0 --] ;
r2.h = w [p4] ;
r5.h = w [p2 ++ p0] ;

Memory Load Operations

8–174 ADSP-BF7xx Blackfin+ Processor

16-Bit Load from Memory (LdM16bitToDregL)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

DREG_L Register Type = w[PREG Register Type ++ PREG Register Type]

Load/Store (DspLdSt)

DREG_L Register Type = w[IREG Register Type++]

DREG_L Register Type = w[IREG Register Type--]

DREG_L Register Type = w[IREG Register Type]

Load/Store 32-bit Absolute Address (LdStAbs)

DREG_L Register Type = w[uimm32 Register Type]

Abstract

This instruction loads a low-half register with a 16-bit value from memory.

See Also (8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg), 32-Bit Load from Memory (LdM32bit-
ToDreg), 16-Bit Load from Memory (LdM16bitToDregH), 16-Bit Load from Memory to 32-Bit Register
(LdM16bitToDreg))

LdM16bitToDregL Description

The load word to low-half data register instruction loads a 16-bit value from a memory location into a 16-bit low-
half data register. The operation does not affect the related high-half register. The address of the memory location is
identified with an index register, a pointer register, a pointer plus an offset, or a 32-bit absolute address. The address
used in this instruction is restricted to even memory address alignment (2-byte half-word address alignment). Failure
to maintain proper alignment causes a misaligned memory access exception. This instruction supports the following
options.

• Post-increment the source index by 2 bytes [Ireg ++]
• Post-decrement the source index by 2 bytes [Ireg --]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

Memory Load Operations

ADSP-BF7xx Blackfin+ Processor 8–175

The syntax of the form:

Dest_lo = w [Src_1 ++ Src_2] ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

Dest_lo = w [Src_1] ; /* load the 16-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Dest_lo is the destination low-half register. (Dreg_lo in the syntax example).

• Src_1 is the first source register on the right-hand side of the equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

r0.l = w [p2 ++ p2] ;

functions as:

r0.l = w [p2] ;

The instruction opcode size varies with the address type as follows:

• Load word to low-half register using an index register or a pointer register for the address encodes as a 16-bit
instruction.

• Load word to low-half register using a pointer register offset by a second pointer for the address encodes as a
16-bit instruction.

• Load word to low-half register using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load word instructions may be issued in parallel with certain other instructions. The 64-bit load word
instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdM16bitToDregL Example

r3.l = w[i1] ;
r7.l = w[i3 ++] ;
r1.l = w[i0 --] ;
r2.l = w[p4] ;
r5.l = w[p2 ++ p0] ;

Memory Load Operations

8–176 ADSP-BF7xx Blackfin+ Processor

32-Bit Load from Memory (LdM32bitToDreg)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

DREG Register Type = [PREG Register Type ++ PREG Register Type]

Load/Store (DspLdSt)

DREG Register Type = [IREG Register Type++]

DREG Register Type = [IREG Register Type--]

DREG Register Type = [IREG Register Type]

DREG Register Type = [IREG Register Type ++ MREG Register Type]

Load/Store (LdSt)

DREG Register Type = [PREG Register Type++]

DREG Register Type = [PREG Register Type--]

DREG Register Type = [PREG Register Type]

Load/Store indexed with small immediate offset FP (LdStIIFP)

DREG Register Type = [fp - imm5nzs4negpos Register Type]

Load/Store indexed with small immediate offset FP (LdpIIFP)

PREG Register Type = [fp - imm5nzs4negpos Register Type]

Load/Store indexed with small immediate offset (LdStII)

DREG Register Type = [PREG Register Type + uimm4s4 Register Type]

Long Load/Store with indexed addressing (LdStIdxI)

DREG Register Type = [PREG Register Type + imm16s4 Register Type]

Load/Store 32-bit Absolute Address (LdStAbs)

DREG Register Type = [uimm32 Register Type]

PREG Register Type = [uimm32 Register Type]

Abstract

This instruction loads a register with a 32-bit value from memory.

See Also (8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg), 16-Bit Load from Memory (LdM16bit-
ToDregH), 16-Bit Load from Memory (LdM16bitToDregL), 16-Bit Load from Memory to 32-Bit Register
(LdM16bitToDreg))

LdM32bitToDreg Description

The load 32-bit data to data register instruction loads a 32-bit value from a memory location into a data register.
The address of the memory location is identified with an index register, an index register plus an offset, a pointer

Memory Load Operations

ADSP-BF7xx Blackfin+ Processor 8–177

register, a pointer plus an offset, or a 32-bit absolute address. The address used in this instruction is restricted to
even memory address alignment (4-byte word address alignment). Failure to maintain proper alignment causes a
misaligned memory access exception. This instruction supports the following options.

• Post-increment the source index by 4 bytes [Ireg ++]
• Post-decrement the source index by 4 bytes [Ireg --]
• Offset the source index with a modifier [Ireg ++ Mreg]
• Post-increment the source pointer by 4 bytes [Preg ++]
• Post-decrement the source pointer by 4 bytes [Preg --]
• Offset the source frame pointer with a 5-bit signed constant [FP - SmallOffset]
• Offset the source pointer with a 5-bit signed constant [Preg + SmallOffset]
• Offset the source pointer with a 16-bit signed constant [Preg + LargeOffset]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

The syntax of the form:

Dest = [Src_1 ++ Src_2] ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

Dest = [Src_1] ; /* load the 32-bit destination, indirect*/
Src_1 += Src_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Dest is the destination high-half register. (Dreg in the syntax example).

• Src_1 is the first source register on the right-hand side of the equation.

• Src_2 is the second source register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

Memory Load Operations

8–178 ADSP-BF7xx Blackfin+ Processor

r0 = [p2 ++ p2] ;

functions as:

r0 = [p2] ;

The instruction opcode size varies with the address type as follows:

• Load 32-bit data to register using an index register or a pointer register for the address encodes as a 16-bit
instruction.

• Load 32-bit data to register using an index register offset by a modifier register or a pointer register offset by a
second pointer for the address encodes as a 16-bit instruction.

• Load 32-bit data to register using a pointer or frame pointer register with a small offset for the address encodes
as a 16-bit instruction.

• Load 32-bit data to register using a pointer register with a large offset for the address encodes as a 32-bit in-
struction.

• Load 32-bit data to register using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load 32-bit data to register instructions may be issued in parallel with certain other instructions. The 32-
and 64-bit load 32-bit data to register instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

LdM32bitToDreg Example

r3 = [p0] ;
r7 = [p1 ++] ;
r2 = [sp --] ;
r6 = [p2 + 12] ;
r0 = [p4 + 0x800C] ;
r1 = [p0 ++ p1] ;
r5 = [fp -12] ;
r2 = [i2] ;
r0 = [i0 ++] ;
r0 = [i0 --] ;
/* Before indirect post-increment indexed addressing*/
r7 = 0 ;
i3 = 0x4000 ; /* Memory location contains 15, for example.*/
m0 = 4 ;
r7 = [i3 ++ m0] ;
 /* Afterwards . . .*/
 /* r7 = 15 from memory location 0x4000*/
 /* i3 = i3 + m0 = 0x4004*/
 /* m0 still equals 4*/

Memory Load Operations

ADSP-BF7xx Blackfin+ Processor 8–179

32-Bit Pointer Load from Memory (LdM32bitToPreg)

General Form

Load/Store (Ldp)

PREG Register Type = [PREG Register Type++]

PREG Register Type = [PREG Register Type--]

PREG Register Type = [PREG Register Type]

Load/Store indexed with small immediate offset (LdpII)

PREG Register Type = [PREG Register Type + uimm4s4 Register Type]

Long Load/Store with indexed addressing (LdStIdxI)

PREG Register Type = [PREG Register Type + imm16s4 Register Type]

Abstract

This instruction loads a pointer register with 7-bit immediate value.

LdM32bitToPreg Description

The load 32-bit data to pointer register instruction loads a 32-bit value from a memory location into a pointer regis-
ter. The address of the memory location is identified with a pointer register or a pointer plus an offset. The address
used in this instruction is restricted to even memory address alignment (4-byte word address alignment). Failure to
maintain proper alignment causes a misaligned memory access exception. This instruction supports the following
options.

• Post-increment the source pointer by 4 bytes [Preg ++]
• Post-decrement the source pointer by 4 bytes [Preg --]
• Offset the source pointer with a 5-bit signed constant [Preg + SmallOffset]
• Offset the source pointer with a 16-bit signed constant [Preg + LargeOffset]

The instruction opcode size varies with the address type as follows:

• Load 32-bit data to register using a pointer register for the address encodes as a 16-bit instruction.

• Load 32-bit data to register using a pointer register with a small offset for the address encodes as a 16-bit in-
struction.

• Load 32-bit data to register using a pointer register with a large offset for the address encodes as a 32-bit in-
struction.

The 16-bit load 32-bit data to pointer instructions may be issued in parallel with certain other instructions. The 32-
bit load 32-bit data to pointer instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Memory Load Operations

8–180 ADSP-BF7xx Blackfin+ Processor

LdM32bitToPreg Example

p3 = [p2] ;
p5 = [p0 ++] ;
p2 = [sp --] ;
p3 = [p2 + 8] ;
p0 = [p2 + 0x4008] ;
p1 = [fp - 16] ;

Memory Load (Exclusive) Operations

The memory load (exclusive) operations read data from memory (similar to a non-exclusive, "regular" memory load
operation) and establish exclusive access to the memory location. When the memory location is in non-shareable
memory, the memory load (exclusive) operation loads through the memory management unit in exactly the same
manner as a regular memory load from the same memory location. When the memory location is in shareable mem-
ory, the memory load (exclusive) performs an exclusive read on the memory bus. For more information about illegal,
non-shareable, and shareable memory regions, see the Exclusive Loads and Stores section of the Memory chapter.

The memory load (exclusive) operations include the following instructions:

• 8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg)

• 32-Bit Load from Memory (LdX32bitToDreg)

• 16-Bit Load from Memory (LdX16bitToDregH)

• 16-Bit Load from Memory (LdX16bitToDregL)

• 16-Bit Load from Memory to 32-Bit Register (LdX16bitToDreg)

When the memory management unit successfully completes an memory load (exclusive), the destination data regis-
ter is updated with the loaded value and the SEQSTAT.XMONITOR bit is set, as shown in the Exclusive Related Bits
in Status Register (SEQSTAT) table.

Table 8-23: Exclusive Related Bits in Status Register (SEQSTAT)

Name Description Condition

SEQSTAT.XMONITOR Excl. monitor (0=open, 1=exclusive) Always updated

=1 after completion of exclusive load

When the memory management unit cannot complete an memory load (exclusive) a number of exceptions and er-
rors may be issued, in addition to those that may be caused by a regular memory load. The Exceptions/Errors from
Unsuccessful Memory Load (Exclusive) Operations table lists these exceptions and errors.

Memory or Pointer Instructions

ADSP-BF7xx Blackfin+ Processor 8–181

Table 8-24: Exceptions/Errors from Unsuccessful Memory Load (Exclusive) Operations

Condition Exception or Hardware Error

Access to misaligned address The data access generated a misaligned address violation exception. The address
for the exclusive access must be aligned. This restriction holds even if misaligned
accesses are supported generally.

Access to core MMR The data access attempted an illegal use of a supervisor resource.

Access to I/O device space The data access generated a CPLB protection violation exception. This exception
occurs when the access is to memory marked as I/O device space in the CPLB.

Access to non-exclusive slave A load exclusive from a shareable memory region accessed a memory device with-
out hardware support for exclusive accesses. The program which recieves this ex-
ception should not execute the store exclusive to this address. The store exclusive
will be unsuccessful causing the exclusive instruction sequence to be retried and
the program to loop. This condition has to be treated as a programming error and
the program restructured to place the semaphore in another memory location, or
use the TESTSET instruction.

8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg)

General Form

Long Load/Store with indexed addressing (LdStExcl)

DREG Register Type = b[PREG Register Type] (z,excl)

DREG Register Type = b[PREG Register Type] (x,excl)

Abstract

This instruction loads a register with an 8-bit value from memory, using an exclusive memory read. The value is sign
or zero extended in the register.

See Also (32-Bit Load from Memory (LdX32bitToDreg), 16-Bit Load from Memory (LdX16bitToDregH), 16-Bit
Load from Memory (LdX16bitToDregL), 16-Bit Load from Memory to 32-Bit Register (LdX16bitToDreg))

LdX08bitToDreg Description

The load data register from memory (8-bit transfer) checks for exclusive access to a memory location and reads a
data value (loading it into the least significant byte of the register with zero- or sign-extension) from the location
only if exclusive access is still held.

For more information about memory load (exclusive) operations, see Memory Load (Exclusive) Operations.

LdX08bitToDreg Example

r1 = b[p4] (x,excl); /* load exclusive 8-bits sign sign to D-register */

Memory Load (Exclusive) Operations

8–182 ADSP-BF7xx Blackfin+ Processor

16-Bit Load from Memory to 32-Bit Register (LdX16bitToDreg)

General Form

Long Load/Store with indexed addressing (LdStExcl)

DREG Register Type = w[PREG Register Type] (z,excl)

DREG Register Type = w[PREG Register Type] (x,excl)

Abstract

This instruction loads a register with a 16-bit value from memory, using an exclusive memory read. The value is sign
or zero extended in the register.

See Also (8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg), 32-Bit Load from Memory (LdX32bitTo-
Dreg), 16-Bit Load from Memory (LdX16bitToDregH), 16-Bit Load from Memory (LdX16bitToDregL))

LdX16bitToDreg Description

The load data register from memory (16-bit transfer) checks for exclusive access to a memory location and reads a
data value (loading it into the least significant 16-bits of the register with zero- or sign-extension) from the location
only if exclusive access is still held.

For more information about memory load (exclusive) operations, see Memory Load (Exclusive) Operations.

LdX16bitToDreg Example

r2 = w[p4] (z,excl); /* load exclusive 16-bits zero extend to D-register */
r3 = w[p4] (x,exc;) /* load exclusive 16-bits sign extend to D-register */

16-Bit Load from Memory (LdX16bitToDregH)

General Form

Long Load/Store with indexed addressing (LdStExcl)

DREG_H Register Type = w[PREG Register Type] (excl)

Abstract

This instruction loads a high-half register with a 16-bit value from memory, using an exclusive memory read.

See Also (8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg), 32-Bit Load from Memory (LdX32bitTo-
Dreg), 16-Bit Load from Memory (LdX16bitToDregL), 16-Bit Load from Memory to 32-Bit Register (LdX16bit-
ToDreg))

Memory Load (Exclusive) Operations

ADSP-BF7xx Blackfin+ Processor 8–183

LdX16bitToDregH Description

The load high half data register from memory (16-bit transfer) checks for exclusive access to a memory location and
reads a data value (loading it into the half register) from the location only if exclusive access is still held.

For more information about memory load (exclusive) operations, see Memory Load (Exclusive) Operations.

LdX16bitToDregH Example

r1.h = w[p4] (excl); /* load exclusive 16-bits zero sign to high D-register half */

16-Bit Load from Memory (LdX16bitToDregL)

General Form

Long Load/Store with indexed addressing (LdStExcl)

DREG_L Register Type = w[PREG Register Type] (excl)

Abstract

This instruction loads a low-half register with a 16-bit value from memory, using an exclusive memory read.

See Also (8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg), 32-Bit Load from Memory (LdX32bitTo-
Dreg), 16-Bit Load from Memory (LdX16bitToDregH), 16-Bit Load from Memory to 32-Bit Register (LdX16bit-
ToDreg))

LdX16bitToDregL Description

The load low half data register from memory (16-bit transfer) checks for exclusive access to a memory location and
reads a data value (loading it into the half register) from the location only if exclusive access is still held.

For more information about memory load (exclusive) operations, see Memory Load (Exclusive) Operations.

LdX16bitToDregL Example

r1.l = w[p4] (excl); /* load exclusive 16-bits zero sign to low D-register half */

32-Bit Load from Memory (LdX32bitToDreg)

General Form

Long Load/Store with indexed addressing (LdStExcl)

DREG Register Type = [PREG Register Type] (excl)

Abstract

This instruction loads a register with a 32-bit value from memory, using an exclusive memory read.

Memory Load (Exclusive) Operations

8–184 ADSP-BF7xx Blackfin+ Processor

See Also (8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg), 16-Bit Load from Memory (LdX16bitTo-
DregH), 16-Bit Load from Memory (LdX16bitToDregL), 16-Bit Load from Memory to 32-Bit Register (LdX16bit-
ToDreg))

LdX32bitToDreg Description

The load data register from memory (32-bit transfer) checks for exclusive access to a memory location and reads a
data value (loading it into the register) from the location only if exclusive access is still held.

For more information about memory load (exclusive) operations, see Memory Load (Exclusive) Operations.

LdX32bitToDreg Example

r0 = [p4] (excl); /* load exclusive 32-bits to D-register */

Pack Operations

These operations provide byte packing and unpacking operations on register and register pair operands:

• Pack 8-Bit to 32-Bit (BytePack)

• Spread 8-Bit to 16-Bit (ByteUnPack)

• Pack 16-Bit to 32-Bit (Pack16Vec)

Pack 8-Bit to 32-Bit (BytePack)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = bytepack (DREG Register Type, DREG Register Type)

Abstract

This instruction takes the low bytes from each 16-bit register half of two registers and combines them to create a
single 32-bit register. Used to re-order data.

See Also (Spread 8-Bit to 16-Bit (ByteUnPack), Pack 16-Bit to 32-Bit (Pack16Vec))

BytePack Description

The Quad 8-Bit Pack instruction packs four 8-bit values, half-word aligned, contained in two source registers into
one register, byte aligned. The Source Registers Contain figure and Destination Register Receives figure show the
packing pattern.

Memory or Pointer Instructions

ADSP-BF7xx Blackfin+ Processor 8–185

0etyb1etyb:0_ger_crs

2etyb3etyb:1_ger_crs

31 23 15 08 71624

Figure 8-23: Source Registers Contain

dest_reg: byte3 byte2 byte1 byte0

31 23 15 08 71624

Figure 8-24: Destination Register Receives

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

This 16-bit instruction may be issued in parallel with other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

BytePack Example

r2 = bytepack (r4,r5) ;
/* Assume the following: ... */
/* R4 = 0xFEED FACE */
/* R5 = 0xBEEF BADD */
/* Then, this instruction returns: ... */
/* R2 = 0xEFDD EDCE */

Spread 8-Bit to 16-Bit (ByteUnPack)

General Form

ALU Operations (Dsp32Alu)

(DREG Register Type, DREG Register Type) = byteunpack PAIR0 RS

Abstract

This instruction spreads four bytes to four zero extended 16-Bit values. The lower two bits of I0 are used to [[extrac-
tBytes | extract four contiguous bytes]] from the input register pair.

See Also (Pack 8-Bit to 32-Bit (BytePack), Pack 16-Bit to 32-Bit (Pack16Vec))

ByteUnPack Description

The Quad 8-Bit Unpack instruction copies four contiguous bytes from a pair of source registers, adjusting for byte
alignment. The instruction loads the selected bytes into two arbitrary data registers on half-word alignment. The
two LSBs of the I0 register determine the source byte alignment, as shown in the I-register Bits and the Byte Align-
ment, no (r) option figure. This figure shows the default source order case---not the (r) syntax---and the data con-
tained in the source register pair. This instruction prevents exceptions that would otherwise be caused by misaligned
32-bit memory loads issued in parallel.

Pack Operations

8–186 ADSP-BF7xx Blackfin+ Processor

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 byte 5 byte 4 byte 3

Figure 8-25: I-register Bits and the Byte Alignment, no (r) option

The (r) syntax reverses the order of the source registers within the pair. Typical high performance applications can-
not afford the overhead of reloading both register pair operands to maintain byte order for every calculation. Instead,
they alternate and load only one register pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come from the low register in the register pair. The
(r) option causes the low order bytes to come from the high register. In the optional reverse source order case (for
example, using the (r) syntax), the only difference is the source registers swap places in their byte ordering. Assume
the source register pair contains the data shown in the I-register Bits and the Byte Alignment, with (r) option figure.

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 byte 5 byte 4 byte 3

Figure 8-26: I-register Bits and the Byte Alignment, with (r) option

The four bytes, now byte aligned, are copied into the destination registers on half-word alignment, as shown in the
Source Register Contains figure and the Destination Registers Receive figure.

Aligned bytes : by te_D by te_C by te_B b yte_A

31 23 15 08 71624

Figure 8-27: Source Register Contains

A_etybB_etyb:0_ger_tsed

C_etybD_etyb:1_ger_tsed

31 23 15 08 71624

Figure 8-28: Destination Registers Receive

Only register pairs R1:0 and R3:2 are valid sources for this instruction, and the destination registers must be
unique. Misaligned access exceptions are disabled during this instruction.

This 16-bit instruction may be issued in parallel with other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

ByteUnPack Example

(r6,r5) = byteunpack r1:0 ; /* non-reversing sources */

Pack Operations

ADSP-BF7xx Blackfin+ Processor 8–187

/* Assume the following: */
/* ... register I0’s two LSBs = 00b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00BE 00EF */
/* ... R5 = 0x00BA 00DD */
/* Assume the following: */
/* ... register I0’s two LSBs = 01b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00CE 00BE */
/* ... R5 = 0x00EF 00BA */
/* Assume the following: */
/* ... register I0’s two LSBs = 10b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00FA 00CE */
/* ... R5 = 0x00BE 00EF */
/* Assume the following: */
/* ... register I0’s two LSBs = 11b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00ED 00FA */
/* ... R5 = 0x00CE 00BE */

(r6,r5) = byteunpack r1:0 (R) ; /* reversing sources case */
/* Assume the following: */
/* ... register I0’s two LSBs = 00b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00FE 00ED */
/* ... R5 = 0x00FA 00CE */
/* Assume the following: */
/* ... register I0’s two LSBs = 01b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00DD 00FE */
/* ... R5 = 0x00ED 00FA */
/* Assume the following: */
/* ... register I0’s two LSBs = 10b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */

Pack Operations

8–188 ADSP-BF7xx Blackfin+ Processor

/* ... R6 = 0x00BA 00DD */
/* ... R5 = 0x00FE 00ED */
/* Assume the following: */
/* ... register I0’s two LSBs = 11b, */
/* ... R1 = 0xFEED FACE */
/* ... R0 = 0xBEEF BADD */
/* ... Then, this instruction returns: */
/* ... R6 = 0x00EF 00BA */
/* ... R5 = 0x00DD 00FE */

Pack 16-Bit to 32-Bit (Pack16Vec)

General Form

Shift (Dsp32Shf)

DREG Register Type = pack (DREG_L Register Type, DREG_L Register Type)

DREG Register Type = pack (DREG_L Register Type, DREG_H Register Type)

DREG Register Type = pack (DREG_H Register Type, DREG_L Register Type)

DREG Register Type = pack (DREG_H Register Type, DREG_H Register Type)

Abstract

This instruction packs two 16-bit half registers into one 32-bit register.

See Also (Pack 8-Bit to 32-Bit (BytePack), Spread 8-Bit to 16-Bit (ByteUnPack))

Pack16Vec Description

The vector pack instruction packs two 16-bit half-word numbers into the halves of a 32-bit data register as shown in
the Source Registers Contain figure and the Destination Register Contains figure.

0_drow_flah0_flah_crs

1_drow_flah1_flah_crs

31 23 15 08 71624

Figure 8-29: Source Registers Contain

1_drow_flah0_drow_flah:ger_tsed

31 23 15 08 71624

Figure 8-30: Destination Register Contains

This 16-bit instruction may be issued in parallel with certain other 16-bit instructions.

This instruction may be used in either User or Supervisor mode.

Pack16Vec Example

r3=pack(r4.l, r5.l) ; /* pack low / low half-words */

Pack Operations

ADSP-BF7xx Blackfin+ Processor 8–189

r1=pack(r6.l, r4.h) ; /* pack low / high half-words */
r0=pack(r2.h, r4.l) ; /* pack high / low half-words */
r5=pack(r7.h, r2.h) ; /* pack high / high half-words */

/* Special Applications */
/* If r4.l = 0xDEAD and r5.l = 0xBEEF, then . . . */
r3 = pack (r4.l, r5.l) ;
/* . . . produces r3 = 0xDEAD BEEF */
/* example needed here */

Memory Store Operations

These operations provide memory store operations on register and immediate value operands:

• 8-Bit Store to Memory (StDregToM08bit)

• 16-Bit Store to Memory (StDregLToM16bit)

• 16-Bit Store to Memory (StDregHToM16bit)

• 32-Bit Store to Memory (StDregToM32bit)

• Store Pointer (StPregToM32bit)

16-Bit Store to Memory (StDregHToM16bit)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

w[PREG Register Type ++ PREG Register Type] = DREG_H Register Type

Load/Store (DspLdSt)

w[IREG Register Type++] = DREG_H Register Type

w[IREG Register Type--] = DREG_H Register Type

w[IREG Register Type] = DREG_H Register Type

Load/Store 32-bit Absolute Address (LdStAbs)

w[uimm32 Register Type] = DREG_H Register Type

Abstract

This instruction stores the most significant 16-bit value from a register to memory.

See Also (8-Bit Store to Memory (StDregToM08bit), 32-Bit Store to Memory (StDregToM32bit), 16-Bit Store to
Memory (StDregLToM16bit))

Memory or Pointer Instructions

8–190 ADSP-BF7xx Blackfin+ Processor

StDregHToM16bit Description

The store word from high-half data register instruction stores a 16-bit value from a high-half data register to a mem-
ory location. The operation does not affect the related low-half register. The address of the memory location is iden-
tified with an index register, a pointer register, a pointer plus an offset, or a 32-bit absolute address. The address used
in this instruction is restricted to even memory address alignment (2-byte half-word address alignment). Failure to
maintain proper alignment causes a misaligned memory access exception. This instruction supports the following
options.

• Post-increment the source index by 2 bytes [Ireg ++]
• Post-decrement the source index by 2 bytes [Ireg --]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

The syntax of the form:

w [Dest_1 ++ Dest_2] = Src_hi ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

w [Dest_1] = Src_hi ; /* store to the 16-bit destination, indirect*/
Dest_1 += Dest_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Src_hi is the source high-half register. (Dreg_hi in the syntax example).

• Dest_1 is the first destination register on the left-hand side of the equation.

• Dest_2 is the second destination register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

w [p2 ++ p2] = r0.h ;

functions as:

w [p2] = r0.h ;

The instruction opcode size varies with the address type as follows:

Memory Store Operations

ADSP-BF7xx Blackfin+ Processor 8–191

• Store word to memory using an index register or a pointer register for the address encodes as a 16-bit instruc-
tion.

• Store word to memory using a pointer register offset by a second pointer for the address encodes as a 16-bit
instruction.

• Store word to memory using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load word instructions may be issued in parallel with certain other instructions. The 64-bit load word
instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

StDregHToM16bit Example

w[i1] = r3.h ;
w[i3 ++] = r7.h ;
w[i0 --] = r1.h ;
w[p4] = r2.h ;
w[p2 ++ p0] = r5.h ;

16-Bit Store to Memory (StDregLToM16bit)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

w[PREG Register Type ++ PREG Register Type] = DREG_L Register Type

Load/Store (DspLdSt)

w[IREG Register Type++] = DREG_L Register Type

w[IREG Register Type--] = DREG_L Register Type

w[IREG Register Type] = DREG_L Register Type

Load/Store (LdSt)

w[PREG Register Type++] = DREG Register Type

w[PREG Register Type--] = DREG Register Type

w[PREG Register Type] = DREG Register Type

Load/Store indexed with small immediate offset (LdStII)

w[PREG Register Type + uimm4s2 Register Type] = DREG Register Type

Long Load/Store with indexed addressing (LdStIdxI)

w[PREG Register Type + imm16s2 Register Type] = DREG Register Type

Load/Store 32-bit Absolute Address (LdStAbs)

w[uimm32 Register Type] = DREG Register Type

Memory Store Operations

8–192 ADSP-BF7xx Blackfin+ Processor

Abstract

This instruction stores the least significant 16-bit value from a register to memory.

See Also (8-Bit Store to Memory (StDregToM08bit), 32-Bit Store to Memory (StDregToM32bit), 16-Bit Store to
Memory (StDregHToM16bit))

StDregLToM16bit Description

The store word from low-half data register instruction stores a 16-bit value either from a low-half data register or
from the least significant 16 bits of a data register to a memory location. The operation does not affect the related
high-half register. The address of the memory location is identified with an index register, a pointer register, a point-
er plus an offset, or a 32-bit absolute address. The address used in this instruction is restricted to even memory ad-
dress alignment (2-byte half-word address alignment). Failure to maintain proper alignment causes a misaligned
memory access exception. This instruction supports the following options.

• Post-increment the source index by 2 bytes [Ireg ++]
• Post-decrement the source index by 2 bytes [Ireg --]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

The syntax of the form:

w [Dest_1 ++ Dest_2] = Src_hi ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

w [Dest_1] = Src_hi ; /* store to the 16-bit destination, indirect*/
Dest_1 += Dest_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Src_hi is the source high-half register. (Dreg_hi in the syntax example).

• Dest_1 is the first destination register on the left-hand side of the equation.

• Dest_2 is the second destination register.

Memory Store Operations

ADSP-BF7xx Blackfin+ Processor 8–193

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

w [p2 ++ p2] = r0.h ;

functions as:

w [p2] = r0.h ;

The instruction opcode size varies with the address type as follows:

• Store word to memory using an index register or a pointer register for the address encodes as a 16-bit instruc-
tion.

• Store word to memory using a pointer register offset by a second pointer for the address encodes as a 16-bit
instruction.

• Store word to memory using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit load word instructions may be issued in parallel with certain other instructions. The 64-bit load word
instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

StDregLToM16bit Example

w [i1] = r3.l ;
w [p0] = r3 ;
w [i3 ++] = r7.l ;
w [i0 --] = r1.l ;
w [p4] = r2.l ;
w [p1 ++] = r7 ;
w [sp --] = r2 ;
w [p2 + 12] = r6 ;
w [p4 - 0x200C] = r0 ;
w [p2 ++ p0] = r5.l ;

8-Bit Store to Memory (StDregToM08bit)

General Form

Load/Store (LdSt)

b[PREG Register Type++] = DREG Register Type

b[PREG Register Type--] = DREG Register Type

b[PREG Register Type] = DREG Register Type

Long Load/Store with indexed addressing (LdStIdxI)

b[PREG Register Type + imm16reloc Register Type] = DREG Register Type

Memory Store Operations

8–194 ADSP-BF7xx Blackfin+ Processor

Load/Store 32-bit Absolute Address (LdStAbs)

b[uimm32 Register Type] = DREG Register Type

Abstract

This instruction stores the least significant 8-bit value from a register to memory.

See Also (32-Bit Store to Memory (StDregToM32bit), 16-Bit Store to Memory (StDregLToM16bit), 16-Bit Store to
Memory (StDregHToM16bit))

StDregToM08bit Description

The store byte from data register instruction stores the least significant 8 bits from a 32-bit data register byte to a
memory location. The address of the memory location is identified with a pointer register, a pointer plus an offset,
or a 32-bit absolute address. The address used in this instruction has no restrictions for memory address alignment.
This instruction supports the following options.

• Post-increment the source pointer by 1 byte [Preg ++]
• Post-decrement the source pointer by 1 byte [Preg --]
• Offset the source pointer with a 16-bit signed constant [Preg + Offset]

The instruction opcode size varies with the address type as follows:

• Store byte to memory using a pointer register for the address encodes as a 16-bit instruction.

• Store byte to memory using a pointer register with 16-bit offset for the address encodes as a 32-bit instruction.

• Store byte to memory using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit store byte instructions may be issued in parallel with certain other instructions. The 32- and 64-bit load
byte instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

StDregToM08bit Example

b [p0] = r3 ;
b [p1 ++] = r7 ;
b [sp --] = r2 ;
b [p4 + 0x100F] = r0 ;
b [p4 - 0x53F] = r0 ;

32-Bit Store to Memory (StDregToM32bit)

General Form

Load/Store postmodify addressing, pregister based (LdStPmod)

Memory Store Operations

ADSP-BF7xx Blackfin+ Processor 8–195

[PREG Register Type ++ PREG Register Type] = DREG Register Type

Load/Store (DspLdSt)

[IREG Register Type++] = DREG Register Type

[IREG Register Type--] = DREG Register Type

[IREG Register Type] = DREG Register Type

[IREG Register Type ++ MREG Register Type] = DREG Register Type

Load/Store (LdSt)

[PREG Register Type++] = DREG Register Type

[PREG Register Type--] = DREG Register Type

[PREG Register Type] = DREG Register Type

Load/Store indexed with small immediate offset FP (LdStIIFP)

[fp - imm5nzs4negpos Register Type] = DREG Register Type

[fp - imm5nzs4negpos Register Type] = PREG Register Type

Load/Store indexed with small immediate offset (LdStII)

[PREG Register Type + uimm4s4 Register Type] = DREG Register Type

Long Load/Store with indexed addressing (LdStIdxI)

[PREG Register Type + imm16s4 Register Type] = DREG Register Type

Load/Store 32-bit Absolute Address (LdStAbs)

[uimm32 Register Type] = DREG Register Type

[uimm32 Register Type] = PREG Register Type

Abstract

This instruction stores the 32-bit value from a register to memory.

See Also (8-Bit Store to Memory (StDregToM08bit), 16-Bit Store to Memory (StDregLToM16bit), 16-Bit Store to
Memory (StDregHToM16bit))

StDregToM32bit Description

The store 32-bit data from data register instruction stores a 32-bit value from a data register into a memory location.
The address of the memory location is identified with an index register, an index register plus an offset, a pointer
register, a pointer plus an offset, or a 32-bit absolute address. The address used in this instruction is restricted to
even memory address alignment (4-byte word address alignment). Failure to maintain proper alignment causes a
misaligned memory access exception. This instruction supports the following options.

• Post-increment the source index by 4 bytes [Ireg ++]
• Post-decrement the source index by 4 bytes [Ireg --]
• Offset the source index with a modifier [Ireg ++ Mreg]

Memory Store Operations

8–196 ADSP-BF7xx Blackfin+ Processor

• Post-increment the source pointer by 4 bytes [Preg ++]
• Post-decrement the source pointer by 4 bytes [Preg --]
• Offset the source frame pointer with a 5-bit signed constant [FP - SmallOffset]
• Offset the source pointer with a 5-bit signed constant [Preg + SmallOffset]
• Offset the source pointer with a 16-bit signed constant [Preg + LargeOffset]
• Offset the source pointer with second pointer [Preg ++ Preg]

The instruction versions that explicitly modify an index register (Ireg) support optional circular buffering. See the
description of Automatic Circular Addressing in the Address Arithmetic Unit chapter for more information.

NOTE: Unless circular buffering is desired, disable it prior to issuing this instruction by clearing the length regis-
ter (Lreg) corresponding to the Ireg used in this instruction. For example, if you use I2 to increment
your address pointer, first clear L2 to disable circular buffering. Failure to explicitly clear Lreg beforehand
can result in unexpected Ireg values. The circular address buffer registers (index, length, and base) are
not initialized automatically by reset. Typically, user software clears all the circular address buffer registers
during boot-up to disable circular buffering, then initializes them later, if needed

The syntax of the form:

[Dest_1 ++ Dest_2] = Src ;

is indirect, post-increment index addressing. The form is shorthand for the following sequence.

[Dest_1] = Src ; /* store to the 32-bit destination, indirect*/
Dest_1 += Dest_2 ; /* post-increment Src_1 by a quantity indexed by Src_2 */

where:

• Src is the source register. (Dreg in the syntax example).

• Dest_1 is the first destination register on the right-hand side of the equation.

• Dest_2 is the second destination register.

Indirect and post-increment index addressing supports customized indirect address cadence. The indirect, post-in-
crement index version must have separate pointer registers for the input operands. If a common pointer is used for
the inputs, the instruction functions as a simple, non-incrementing load. For example,

[p2 ++ p2] = r0 ;

functions as:

[p2] = r0 ;

The instruction opcode size varies with the address type as follows:

• Store 32-bit data to memory using an index register or a pointer register for the address encodes as a 16-bit
instruction.

Memory Store Operations

ADSP-BF7xx Blackfin+ Processor 8–197

• Store 32-bit data to memory using an index register offset by a modifier register or a pointer register offset by a
second pointer for the address encodes as a 16-bit instruction.

• Store 32-bit data to memory using a pointer or frame pointer register with a small offset for the address enco-
des as a 16-bit instruction.

• Store 32-bit data to memory using a pointer register with a large offset for the address encodes as a 32-bit in-
struction.

• Store 32-bit data to memory using a 32-bit absolute address encodes as a 64-bit instruction.

The 16-bit store 32-bit data to register instructions may be issued in parallel with certain other instructions. The 32-
and 64-bit store 32-bit data to register instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

StDregToM32bit Example

[p0] = r3 ;
[p1 ++] = r7 ;
[sp --] = r2 ;
[p2 + 12] = r6 ;
[p4 - 0x1004] = r0 ;
[p0 ++ p1] = r1 ;
[fp - 28] = r5 ;
[i2] = r2 ;
[i0 ++] = r0 ;
[i0 --] = r0 ;
[i3 ++ m0] = r7 ;

Store Pointer (StPregToM32bit)

General Form

Load/Store (LdSt)

[PREG Register Type++] = PREG Register Type

[PREG Register Type--] = PREG Register Type

[PREG Register Type] = PREG Register Type

Load/Store indexed with small immediate offset (LdStII)

[PREG Register Type + uimm4s4 Register Type] = PREG Register Type

Long Load/Store with indexed addressing (LdStIdxI)

[PREG Register Type + imm16s4 Register Type] = PREG Register Type

Abstract

This instruction stores the 32-bit value from a pointer register to memory.

Memory Store Operations

8–198 ADSP-BF7xx Blackfin+ Processor

StPregToM32bit Description

The store 32-bit data from pointer register instruction stores a 32-bit value from a pointer register into a memory
location. The address of the memory location is identified with a pointer register or a pointer plus an offset. The
address used in this instruction is restricted to even memory address alignment (4-byte word address alignment).
Failure to maintain proper alignment causes a misaligned memory access exception. This instruction supports the
following options.

• Post-increment the source pointer by 4 bytes [Preg ++]
• Post-decrement the source pointer by 4 bytes [Preg --]
• Offset the source pointer with a 5-bit signed constant [Preg + SmallOffset]
• Offset the source pointer with a 16-bit signed constant [Preg + LargeOffset]

The instruction opcode size varies with the address type as follows:

• Store 32-bit data to memory using a pointer register for the address encodes as a 16-bit instruction.

• Store 32-bit data to memory using a pointer register with a small offset for the address encodes as a 16-bit
instruction.

• Store 32-bit data to memory using a pointer register with a large offset for the address encodes as a 32-bit in-
struction.

The 16-bit store 32-bit data from pointer instructions may be issued in parallel with certain other instructions. The
32-bit store 32-bit data from pointer instructions may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

StPregToM32bit Example

[p2] = p3 ;
[sp ++] = p5 ;
[p0 --] = p2 ;
[p2 + 8] = p3 ;
[p2 + 0x4444] = p0 ;
[fp -12] = p1 ;

Memory Store (Exclusive) Operations

The memory store (exclusive) instruction forms the second part of the exclusive instruction sequence, in which the
instruction has to establish exclusive access to a memory location. The store exclusive instruction only modifies
memory if the current task (for example, core or thread) still has exclusive access to that location. An intervening
load exclusive by another task, a write to the memory location, or a SYNCEXCL instruction may have caused the
exclusive access to have been lost.

Checking for exclusive access is a two stage process. First the SEQSTAT.XMONITOR bit is tested. If this is 0 the store
exclusive instruction terminates immediately. If SEQSTAT.XMONITOR is 1, the store exclusive instruction attempts

Memory or Pointer Instructions

ADSP-BF7xx Blackfin+ Processor 8–199

to write data to the memory location. When the memory location is in non-shareable memory, the instruction is
considered to have exclusive access to the location simply based on the SEQSTAT.XMONITOR bit, and the store ex-
clusive instruction performs the write in exactly the same manner as a regular memory store to the same memory
location. When the memory location is in shareable memory, the store exclusive instruction performs the write with
an exclusive transaction on the memory bus. This transaction may itself fail to update the location if another core
has established exclusive access or written to the location since the current task executed the prior load exclusive
instruction. For more information about illegal, non-shareable, and shareable memory regions, see the Exclusive
Loads and Stores section of the Memory chapter.

The memory store (exclusive) operations include the following instructions:

• 8-Bit Store to Memory (StDregToX08bit)

• 32-Bit Store to Memory (StDregToX32bit)

• 16-Bit Store to Memory (StDregLToX16bit)

• 16-Bit Store to Memory (StDregHToX16bit)

The store exclusive instruction terminates before the success or failure of the write transaction is known. The state of
the write transaction is tracked in the SEQSTAT.XWACTIVE and SEQSTAT.XWAVAIL bits which are updated asyn-
chronously to the core pipeline once the write response has been received from the system. These bits should not be
tested directly, instead the SYNCEXCL (Synchronize Exclusive State) instruction should be used to waits for the write
to complete and set ASTAT.CC according to whether the store exclusive instruction successfully wrote to the memo-
ry location. The Exclusive Related Bits in Status Registers (SEQSTAT and ASTAT) table shows how exclusive access
status changes during an exclusive memory store operation.

Table 8-25: Exclusive Related Bits in Status Registers (SEQSTAT and ASTAT)

Name Description Condition

SEQSTAT.XMONITOR Exclusive monitor (0=open, 1=exclusive) Not updated

=0 on start of instruction, CC=0

=1 on start of instruction, attempt update (Preg,val), ASTAT.CC=1,
SEQSTAT.XWACTIVE=1

SEQSTAT.XWACTIVE Exclusive write active (0=no status*1, 1=active) Always updated

=0 on completion of instruction

=1 while active

ASTAT.CC Condition Code (0=no write attempted, 1=write attempted) Always updated

SEQSTAT.XWAVAIL Exclusive write resp. (0=no status, 1=available) Always updated

=1 on completion of write transaction

*1 If XWACTIVE is not 0 when the instruction starts, the instruction throws an exception.

Memory or Pointer Instructions

8–200 ADSP-BF7xx Blackfin+ Processor

When the memory management unit cannot complete an memory store (exclusive) a number of exceptions and er-
rors may be issued, in addition to those that may be caused by a regular memory store. The Exceptions/Errors from
Unsuccessful Memory Store (Exclusive) Operations table lists these exceptions and errors.

Table 8-26: Exceptions/Errors from Unsuccessful Memory Store (Exclusive) Operations

Condition Exception or Hardware Error

Access to misaligned address The data access generated a misaligned address violation exception. The address
for the exclusive access must be aligned. This restriction holds even if misaligned
accesses are supported generally.

Access to core MMR The data access attempted an illegal use of a supervisor resource.

Access to I/O device space The data access generated a CPLB protection violation exception. This exception
occurs when the access is to memory marked as I/O device space in the CPLB.

Access during in progress exclusive op-
eration

The data access (exclusive write on memory bus) occurred while the
SEQSTAT.XWACTIVE bit =1 or the SEQSTAT.XWAVAIL bit =1 before the new
memory store (exclusive) instruction started.

16-Bit Store to Memory (StDregHToX16bit)

General Form

Long Load/Store with indexed addressing (LdStExcl)

cc = (w[PREG Register Type] = DREG_H Register Type) (excl)

Abstract

This instruction stores the most significant 16-bit value from a register to memory, using an exclusive memory write.

See Also (8-Bit Store to Memory (StDregToX08bit), 32-Bit Store to Memory (StDregToX32bit), 16-Bit Store to
Memory (StDregLToX16bit))

StDregHToX16bit Description

The store high half data register to memory (16-bit transfer) checks for exclusive access to a memory location and
writes a data value (contents of half register) to the location only if exclusive access is still held.

For more information about memory store (exclusive) operations, see Memory Store (Exclusive) Operations.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

Memory Store (Exclusive) Operations

ADSP-BF7xx Blackfin+ Processor 8–201

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

StDregHToX16bit Example

CC = (W[P4] = R3.H)(EXCL); /* store exclusive from high 16-bits of a D-register */

16-Bit Store to Memory (StDregLToX16bit)

General Form

Long Load/Store with indexed addressing (LdStExcl)

cc = (w[PREG Register Type] = DREG Register Type) (excl)

Abstract

This instruction stores the least significant 16-bit value from a register to memory, using an exclusive memory write.

See Also (8-Bit Store to Memory (StDregToX08bit), 32-Bit Store to Memory (StDregToX32bit), 16-Bit Store to
Memory (StDregHToX16bit))

StDregLToX16bit Description

The store low half data register to memory (16-bit transfer) checks for exclusive access to a memory location and
writes a data value (contents of half register) to the location only if exclusive access is still held.

For more information about memory store (exclusive) operations, see Memory Store (Exclusive) Operations.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

StDregLToX16bit Example

CC = (W[P4] = R3)(EXCL); /* store exclusive from low 16-bits of a D-register */
CC = (W[P4] = R3.L)(EXCL); /* alternate syntax for same instruction */

Memory Store (Exclusive) Operations

8–202 ADSP-BF7xx Blackfin+ Processor

8-Bit Store to Memory (StDregToX08bit)

General Form

Long Load/Store with indexed addressing (LdStExcl)

cc = (b[PREG Register Type] = DREG Register Type) (excl)

Abstract

This instruction stores the least significant 8-bit value from a register to memory, using an exclusive memory write.

See Also (32-Bit Store to Memory (StDregToX32bit), 16-Bit Store to Memory (StDregLToX16bit), 16-Bit Store to
Memory (StDregHToX16bit))

StDregToX08bit Description

The store data register to memory (8-bit transfer) checks for exclusive access to a memory location and writes a data
value (least significant byte of data register contents) to the location only if exclusive access is still held.

For more information about memory store (exclusive) operations, see Memory Store (Exclusive) Operations.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

StDregToX08bit Example

CC = (B[P4] = R6)(EXCL); /* store exclusive from low 8-bits of a D-register */

32-Bit Store to Memory (StDregToX32bit)

General Form

Long Load/Store with indexed addressing (LdStExcl)

cc = ([PREG Register Type] = DREG Register Type) (excl)

Abstract

This instruction stores the 32-bit value from a register to memory, using an exclusive memory write.

Memory Store (Exclusive) Operations

ADSP-BF7xx Blackfin+ Processor 8–203

See Also (8-Bit Store to Memory (StDregToX08bit), 16-Bit Store to Memory (StDregLToX16bit), 16-Bit Store to
Memory (StDregHToX16bit))

StDregToX32bit Description

The store data register to memory (32-bit transfer) checks for exclusive access to a memory location and writes a
data value (contents of register) to the location only if exclusive access is still held.

For more information about memory store (exclusive) operations, see Memory Store (Exclusive) Operations.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

StDregToX32bit Example

CC = ([P2] = R0)(EXCL); /* store exclusive all 32-bits of a D-register */

Specialized Compute Instructions
The specialized compute instructions provide operations, which execute on the data arithmetic unit in the processor
core. Users can take advantage of these instructions to detect exponents, add/subtract with pre-scale, divide, execute
bitwise XOR, execute vector operations, execute Viterbi operations, and execute video related operations. These in-
structions are considered specialized because (unlike the arithmetic operation instructions) these instructions tend to
provide features that are uniquely required to optimize specialized applications.

Specialized Compute Instructions

8–204 ADSP-BF7xx Blackfin+ Processor

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

A0 A1

8 8 8 8

40 40

DATA ARITHMETIC UNIT

CONTROL
UNIT

R7.H
R6.H
R5.H
R4.H
R3.H
R2.H
R1.H
R0.H

R7.L
R6.L
R5.L
R4.L
R3.L
R2.L
R1.L
R0.L

ASTAT

40 40

32 32

32
32

32
32
32LD0

LD1
SD

DAG0

DAG1

ADDRESS ARITHMETIC UNIT

I3
I2
I1
I0

L3
L2
L1
L0

B3
B2
B1
B0

M3
M2
M1
M0

SP
FP
P5
P4
P3
P2
P1
P0

DA1
DA0

32

32
32

PREGRAB
32

TO
 M

EM
O

RY

BARREL
SHIFTER

163216

72

Figure 8-31: Blackfin+ Core Block Diagram

The operation types of specialized compute instructions include:

• Block Floating Point Operations

• DCT Operations

• Divide Operations

• Linear Feedback Shift Register LFSR Operations

• Video Operations

• Viterbi Operations

Block Floating Point Operations

These operations provide exponent adjustment for floating-point operations on register operands:

• Exponent Detection (Shift_ExpAdj32)

Exponent Detection (Shift_ExpAdj32)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = expadj (DREG Register Type, DREG_L Register Type)

DREG_L Register Type = expadj (DREG Register Type, DREG_L Register Type) (v)

Specialized Compute Instructions

ADSP-BF7xx Blackfin+ Processor 8–205

DREG_L Register Type = expadj (DREG_L Register Type, DREG_L Register Type)

DREG_L Register Type = expadj (DREG_H Register Type, DREG_L Register Type)

Abstract

This instruction identifies the largest magnitude of a fractional number (YOP) and a reference exponent and returns
the smaller of the two exponents. The exponent is the number of sign bits minus one. Exponents are unsigned inte-
gers. The input values can be a 32-bit register, a 16-bit half register, or a 16-bit vector.

Shift_ExpAdj32 Description

The exponent detection instruction identifies the largest magnitude of two or three fractional numbers based on
their exponents. It compares the magnitude of one or two sample values to a reference exponent and returns the
smallest of the exponents.

The exponent is the number of sign bits minus one. In other words, the exponent is the number of redundant sign
bits in a signed number. Exponents are unsigned integers. The exponent detection instruction accommodates the
two special cases (0 and –1) and always returns the smallest exponent for each case.

The reference exponent and destination exponent are 16-bit half-word unsigned values. The sample number can be
either a word or half-word. The exponent detection instruction does not implicitly modify input values. The
dest_reg and exponent_register can be the same data register. Doing this explicitly modifies the expo-
nent_register.

The valid range of exponents is 0 through 31, with 31 representing the smallest 32-bit number magnitude and 15
representing the smallest 16-bit number magnitude.

Exponent detection supports three types of samples—one 32-bit sample, one 16-bit sample (either upper-half or
lower-half word), and two 16-bit samples that occupy the upper-half and lower-half words of a single 32-bit register.

One special application of EXPADJ is to use this instruction to detect the exponent of the largest magnitude number
in an array. The detected value may then be used to normalize the array on a subsequent pass with a shift operation.
Typically, use this feature to implement block floating-point capabilities.

This 16-bit instruction may be issued in parallel with certain other 16-bit other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_ExpAdj32 Example

r5.l = expadj (r4, r2.l) ;
/* ... Assume R4 = 0x0000 0052 and R2.L = 12. Then R5.L becomes 12. */
/* ... Assume R4 = 0xFFFF 0052 and R2.L = 12. Then R5.L becomes 12. */
/* ... Assume R4 = 0x0000 0052 and R2.L = 27. Then R5.L becomes 24. */
/* ... Assume R4 = 0xF000 0052 and R2.L = 27. Then R5.L becomes 3. */

r5.l = expadj (r4.l, r2.l) ;

Block Floating Point Operations

8–206 ADSP-BF7xx Blackfin+ Processor

/* ... Assume R4.L = 0x0765 and R2.L = 12. Then R5.L becomes 4. */
/* ... Assume R4.L = 0xC765 and R2.L = 12. Then R5.L becomes 1. */

r5.l = expadj (r4.h, r2.l) ;
/* ... Assume R4.H = 0x0765 and R2.L = 12. Then R5.L becomes 4. */
/* ... Assume R4.H = 0xC765 and R2.L = 12. Then R5.L becomes 1. */

r5.l = expadj (r4, r2.l)(v) ;
/* ... Assume R4.L = 0x0765, R4.H = 0xFF74 and R2.L = 12. Then R5.L becomes 4. */
/* ... Assume R4.L = 0x0765, R4.H = 0xE722 and R2.L = 12. Then R5.L becomes 2. */

DCT Operations

These operations provide addition and/or subtract operations with prescale and rounding on register operands:

• 32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12)

• 32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20)

32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12)

General Form

ALU Operations (Dsp32Alu)

DDST0_HL = DREG Register Type + DREG Register Type (rnd12)

DDST0_HL = DREG Register Type - DREG Register Type (rnd12)

Abstract

This instruction shifts then adds or subtracts two 32-bit numbers, then it extracts sixteen bits of result. The instru-
ciont pre-shifts the operands four bits to the left, then it does the add/sub, round, and extract. The instruction sup-
ports only biased rounding, which adds a half LSB (bit 15) before truncating bits 15-0. The RND_MOD bit in the
ASTAT register has no bearing on the rounding behavior of this instruction.

See Also (32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20))

AddSubRnd12 Description

The add/subtract prescale up instruction combines two 32-bit values to produce a 16-bit result as follows:

• Prescale up both input operand values by shifting them four places to the left

• Add or subtract the operands, depending on the instruction version used

• Round and saturate the upper 16 bits of the result

• Extract the upper 16 bits to the dest_reg

Specialized Compute Instructions

ADSP-BF7xx Blackfin+ Processor 8–207

The instruction supports only biased rounding. The RND_MOD bit in the ASTAT register has no bearing on the
rounding behavior of this instruction. See the Saturation topic in the Introduction chapter for a description of satura-
tion behavior.

This 32-bit instruction can be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

A special applications of the add/subtract prescale up instruction is to use this instruction to provide an IEEE 1180–
compliant 2D 8x8 inverse discrete cosine transform.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubRnd12 Example

r1.l = r6+r7(rnd12) ;
r1.l = r6-r7(rnd12) ;
r1.h = r6+r7(rnd12) ;
r1.h = r6-r7(rnd12) ;

32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20)

General Form

ALU Operations (Dsp32Alu)

DDST0_HL = DREG Register Type + DREG Register Type (rnd20)

DDST0_HL = DREG Register Type - DREG Register Type (rnd20)

Abstract

This instruction shifts then adds or subtracts two 32-bit numbers, then it extracts sixteen bits of result. The instruc-
tion arithmetically pre-shifts the operands four bits to the right. It adds or subtracts them, rounds the upper 16-Bits
of the result then extracts the upper 16-Bits to the result. The instruction supports only biased rounding, which
adds a half LSB (bit 15) before truncating bits 15-0. The RND_MOD bit in the ASTAT register has no bearing on
the rounding behavior of this instruction.

See Also (32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12))

DCT Operations

8–208 ADSP-BF7xx Blackfin+ Processor

AddSubRnd20 Description

The add/subtract prescale down instruction combines two 32-bit values to produce a 16-bit result as follows:

• Prescale down both input operand values by arithmetically shifting them four places to the right

• Add or subtract the operands, depending on the instruction version used

• Round the upper 16 bits of the result

• Extract the upper 16 bits to the dest_reg

The instruction supports only biased rounding. The RND_MOD bit in the ASTAT register has no bearing on the
rounding behavior of this instruction. See the Saturation topic in the Introduction chapter for a description of satura-
tion behavior.

This 32-bit instruction can be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

A special applications of the add/subtract prescale down instruction is to use this instruction to provide an IEEE
1180–compliant 2D 8x8 inverse discrete cosine transform.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AddSubRnd20 Example

r1.l = r6+r7(rnd20) ;
r1.l = r6-r7(rnd20) ;
r1.h = r6+r7(rnd20) ;
r1.h = r6-r7(rnd20) ;

Divide Operations

These operations provide division primitive operations on register operands:

• DIVS and DIVQ Divide Primitives (Divide)

Specialized Compute Instructions

ADSP-BF7xx Blackfin+ Processor 8–209

DIVS and DIVQ Divide Primitives (Divide)

General Form

ALU Binary Operations (ALU2op)

divq (DREG Register Type, DREG Register Type)

divs (DREG Register Type, DREG Register Type)

Abstract

The DIVQ instruction is a simple non-restoring divide primitive. It takes two operands, src and dst, where the
source operand is the denominator and dst is the numerator. The denominator or divisor is subtracted or added
repeatedly from the numerator which becomes the dividend. The algorithm uses a status bit AQ (quotient bit),
which determines how the ALU will compute the next bit of the quotient. If the AQ bit is 1 then an add is per-
formed otherwise the dividend is subtracted from the partial remainder. The DIVS instruction is the initializing in-
struction for DIVQ. It sets the AQ flag based on the signs of the 32-bit dividend and the 16-bit divisor, left shifts
the dividend one bit, then copies AQ into the dividend LSB.

Divide Description

The Divide Primitive instruction versions are the foundation elements of a nonrestoring conditional add-subtract
division algorithm. See “Example” on page 15-24 for such a routine.

The dividend (numerator) is a 32-bit value. The divisor (denominator) is a 16-bit value in the lower half of divi-
sor_register. The high-order half-word of divisor_register is ignored entirely.

The division can either be signed or unsigned, but the dividend and divisor must both be of the same type. The
divisor cannot be negative. A signed division operation, where the dividend may be negative, begins the sequence
with the DIVS (“divide-sign”) instruction, followed by repeated execution of the DIVQ (“divide-quotient”) instruc-
tion. An unsigned division omits the DIVS instruction. In that case, the user must manually clear the AQ status bit
of the ASTAT register before issuing the DIVQ instructions.

Up to 16 bits of signed quotient resolution can be calculated by issuing DIVS once, then repeating the DIVQ in-
struction 15 times. A 16-bit unsigned quotient is calculated by omitting DIVS, clearing the AQ status bit, then
issuing 16 DIVQ instructions.

Less quotient resolution is produced by executing fewer DIVQ iterations.

The result of each successive addition or subtraction appears in dividend_register, aligned and ready for the next
addition or subtraction step. The contents of divisor_register are not modified by this instruction.

The final quotient appears in the low-order half-word of dividend_register at the end of the successive add/subtract
sequence.

DIVS computes the sign bit of the quotient based on the signs of the dividend and divisor. DIVS initializes the AQ
status bit based on that sign, and initializes the dividend for the first addition or subtraction. DIVS performs no
addition or subtraction.

Divide Operations

8–210 ADSP-BF7xx Blackfin+ Processor

DIVQ either adds (dividend + divisor) or subtracts (dividend – divisor) based on the AQ status bit, then reinitializes
the AQ status bit and dividend for the next iteration. If AQ is 1, addition is performed; if AQ is 0, subtraction is
performed.

See “Status Bits Affected” on page 15-4 for the conditions that set and clear the AQ status bit.

Both instruction versions align the dividend for the next iteration by left shifting the dividend one bit to the left
(without carry). This left shift accomplishes the same function as aligning the divisor one bit to the right, such as
one would do in manual binary division.

The format of the quotient for any numeric representation can be determined by the format of the dividend and
divisor. Let:

• NL represent the number of bits to the left of the binal point of the dividend, and

• NR represent the number of bits to the right of the binal point of the dividend (numerator);

• DL represent the number of bits to the left of the binal point of the divisor, and

• DR represent the number of bits to the right of the binal point of the divisor (denominator).

Then the quotient has NL – DL + 1 bits to the left of the binal point and NR – DR – 1 bits to the right of the binal
point. See the following example.

4.12 format

Dividend (numerator) BBBB B .
NL bits

BBB BBBB BBBB BBBB BBBB BBBB BBBB
NR bits

Divisor (denominator) BB .
DL bits

BB BBBB BBBB BBBB
DR bits

Quotient BBBB . BBBB BBBB BBBB

NL - DL +1
(5 - 2 + 1)

NR - DR - 1
(27 - 14 - 1)

Figure 8-32: 4.12 Format

Some format manipulation may be necessary to guarantee the validity of the quotient. For example, if both operands
are signed and fully fractional (dividend in 1.31 format and divisor in 1.15 format), the result is fully fractional (in
1.15 format) and therefore the upper 16 bits of the dividend must have a smaller magnitude than the divisor to
avoid a quotient overflow beyond 16 bits. If an overflow occurs, AV0 is set. User software is able to detect the over-
flow, rescale the operand, and repeat the division.

Dividing two integers (32.0 dividend by a 16.0 divisor) results in an invalid quotient format because the result will
not fit in a 16-bit register. To divide two integers (dividend in 32.0 format and divisor in 16.0 format) and produce
an integer quotient (in 16.0 format), one must shift the dividend one bit to the left (into 31.1 format) before divid-
ing. This requirement to shift left limits the usable dividend range to 31 bits. Violations of this range produce an
invalid result of the division operation.

Divide Operations

ADSP-BF7xx Blackfin+ Processor 8–211

The algorithm overflows if the result cannot be represented in the format of the quotient as calculated above, or
when the divisor is zero or less than the upper 16 bits of the dividend in magnitude (which is tantamount to multi-
plication).

It is important to understand error conditions related to this instruction. Two special cases can produce invalid or
inaccurate results. Software can trap and correct both cases.

No signed division by a negative divisor

The Divide Primitive instructions do not support signed division by a negative divisor. Attempts to divide by a
negative divisor result in a quotient that is, in most cases, one LSB less than the correct value. If division by a
negative divisor is required, follow the steps below.

1. Before performing the division, save the sign of the divisor in a scratch register.

2. Calculate the absolute value of the divisor and use that value as the divisor operand in the Divide Primi-
tive instructions.

3. After the divide sequence concludes, multiply the resulting quotient by the original divisor sign.

4. The quotient then has the correct magnitude and sign.

No unsigned division by a divisor greater than 0x7FFF

The Divide Primitive instructions do not support unsigned division by a divisor greater than 0x7FFF. If such
divisions are necessary, prescale both operands by shifting the dividend and divisor one bit to the right prior to
division. The resulting quotient will be correctly aligned. Of course, prescaling the operands decreases their
resolution, and may introduce one LSB of error in the quotient. Such error can be detected and corrected by
the following steps.

1. Save the original (unscaled) dividend and divisor in scratch registers.

2. Prescale both operands as described and perform the division as usual.

3. Multiply the resulting quotient by the unscaled divisor. Do not corrupt the quotient by the multiplica-
tion step.

4. Subtract the product from the unscaled dividend. This step produces an error value.

5. Compare the error value to the unscaled divisor.

6. If error > divisor, add one LSB to the quotient.

7. If error < divisor, subtract one LSB from the quotient.

8. If error = divisor, do nothing.

This 16-bit instruction may not be issued in parallel with other instructions.

This instruction may be used in either User or Supervisor mode.

Divide Operations

8–212 ADSP-BF7xx Blackfin+ Processor

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Divide Example

/* Evaluate given a signed integer dividend and divisor */
p0 = 15 ; /* Evaluate the quotient to 16 bits. */
r0 = 70 ; /* Dividend, or numerator */
r1 = 5 ; /* Divisor, or denominator */
r0 <<= 1 ; /* Left shift dividend by 1 needed for integer division */
divs (r0, r1) ; /* Evaluate quotient MSB. Initialize AQ status bit and dividend for the
DIVQ loop. */
loop .div_prim lc0=p0 ; /* Evaluate DIVQ p0=15 times. */
loop_begin .div_prim ;
divq (r0, r1) ;
loop_end .div_prim ;
r0 = r0.l (x) ; /* Sign extend the 16-bit quotient to 32bits. */
/* r0 contains the quotient (70/5 = 14). */

Linear Feedback Shift Register LFSR Operations

These operations provide LFSR related operations on register operands:

• 40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF)

• 40-Bit BXOR LSFR with Feedback to a Register (BXOR)

• 32-Bit BXOR or BXORShift LSFR without Feedback (BXOR_NF)

40-Bit BXOR LSFR with Feedback to a Register (BXOR)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = cc = bxor (a0, a1, cc)

Abstract

This instruction (linear feedback shift register, LFSR) provides a bit-wise XOR reduction of A0 logically AND'ed
with A1 and the feedback bit (CC). The result is placed into both the CC flag and the least significant bit of the
destination register. The Accumulator is not modified by this operation.

Specialized Compute Instructions

ADSP-BF7xx Blackfin+ Processor 8–213

See Also (40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF), 32-Bit BXOR or BXOR-
Shift LSFR without Feedback (BXOR_NF))

BXOR Description

Four Bit-Wise Exclusive-OR (BXOR) instructions support two different types of linear feedback shift register
(LFSR) implementations. The Type I LFSRs (no feedback) applies a 32-bit registered mask to a 40-bit state residing
in Accumulator A0, followed by a bit-wise XOR reduction operation. The result is placed in CC and a destination
register half. The Type I LFSRs (with feedback) applies a 40-bit mask in Accumulator A1 to a 40-bit state residing
in A0. The result is shifted into A0. In the following circuits describing the BXOR instruction group, a bit-wise
XOR reduction is defined as:

Out B(((((0 B1) B2) B3) ...⊕) Bn 1–)⊕ ⊕ ⊕ ⊕=

Figure 8-33: BXOR Instruction Group

where B0 through BN–1 represent the N bits that result from masking the contents of Accumulator A0 with the
polynomial stored in either A1 or a 32-bit register. The instruction descriptions are shown in Figure 12-1.

D[0] D[1]

A0[0] A0[1]

s(D)

Figure 8-34: Bit-Wise Exclusive-OR Reduction

In the figure above, the bits A0 bit 0 and A0 bit 1 are logically AND’ed with bits D[0] and D[1]. The result from
this operation is XOR reduced according to the following formula.

() ()s D A0 0[]&D 0[]) A0 1[]&D 1[](⊕=

Figure 8-35: Bit-Wise Exclusive-OR Reduction Result

Modified Type I LFSR (without feedback) Two instructions support the LSFR with no feedback. Dreg_lo = CC =
BXORSHIFT(A0, dreg) Dreg_lo = CC = BXOR(A0, dreg) In the first instruction the Accumulator A0 is left-shifted
by 1 prior to the XOR reduction. This instruction provides a bit-wise XOR of A0 logically AND’ed with a dreg.
The result of the operation is placed into both the CC status bit and the least significant bit of the destination regis-
ter. The operation is shown in Figure 12-2. The upper 15 bits of dreg_lo are overwritten with zero, and dr[0] = IN
after the operation.

Linear Feedback Shift Register LFSR Operations

8–214 ADSP-BF7xx Blackfin+ Processor

A0[39] A0[38] A0[37] A0[0] 0

A0[39:0] Left Shift by 1

Before XOR Reduction

D[31]

0

XOR Reduction

+ + + + CC dreg_lo
IN

D[2] D[1] D[0]

A0[1] A0[0] 0A0[30]A0[38]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

Figure 8-36: A0 Left-Shifted by 1 Followed by XOR Reduction

The second instruction in this class performs a bit-wise XOR of A0 logically AND'ed with the dreg. The output is
placed into the least significant bit of the destination register and into the CC bit. The Accumulator A0 is not modi-
fied by this operation. This operation is illustrated in Figure 12-3. The upper 15 bits of dreg_lo are overwritten with
zero, and dr[0] = IN after the operation.

D[31]

0

XOR Reduction

+ + + + CC dreg_lo
IN

D[2] D[1] D[0]

A0[2] A0[1] A0[0]A0[31]A0[39]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

Figure 8-37: XOR of A0, Logical AND with the D-Register

Modified Type I LFSR (with feedback) Two instructions support the LFSR with feedback. A0 = BXORSHIFT(A0,
A1, CC) Dreg_lo = CC = BXOR(A0, A1, CC)

The first instruction provides a bit-wise XOR of A0 logically AND'ed with A1. The resulting intermediate bit is
XOR'ed with the CC status bit. The result of the operation is left-shifted into the least significant bit of A0 follow-
ing the operation. This operation is illustrated in Figure 12-4. The CC bit is not modified by this operation.

Linear Feedback Shift Register LFSR Operations

ADSP-BF7xx Blackfin+ Processor 8–215

A1[0]

A0[0]

CC + + +

IN

A1[39] A1[38] A1[37]

A0[39] A0[38] A0[37]

A0[38] A0[37] A0[36] IN

A0[39:0]

After Operation

+

Left Shift by 1
Following XOR
Reduction

Figure 8-38: XOR of A0 AND A1, Left-Shifted into LSB of A0

The second instruction in this class performs a bit-wise XOR of A0 logically AND'ed with A1. The resulting inter-
mediate bit is XOR'ed with the CC status bit. The result of the operation is placed into both the CC status bit and
the least significant bit of the destination register.

This operation is illustrated in Figure 12-5.

A1[0]

A0[0]

CC + + + CC dreg_lo[0]
IN

A1[39] A1[38] A1[37]

A0[39] A0[38] A0[37]

dr[15] dr[14] dr[13] IN

dreg_lo[15:0]

After Operation

Figure 8-39: XOR of A0 AND A1, to CC Bit and LSB of Dest Register

The Accumulator A0 is not modified by this operation. The upper 15 bits of dreg_lo are overwritten with zero, and
dr[0] = IN.

Special Applications Linear feedback shift registers (LFSRs) can multiply and divide polynomials and are often used
to implement cyclical encoders and decoders.

LFSRs use the set of Bit-Wise XOR instructions to compute bit XOR reduction from a state masked by a polyno-
mial.

When implementing a CRC algorithm, it is known that there is an equivalence between polynomial division and
LFSR circuits. For example, CRC is defined as the remainder of the division of a message polynomial appended
with n zeros by the code generator polynomial:

Cn(x)={Mk(x)xn}modGn(x)

Where:

• Mk-1(x) is the message polynomial of length k:

Mk-1(x)=mk-1xk-1+mk-2xk-2+…+m0x0

Linear Feedback Shift Register LFSR Operations

8–216 ADSP-BF7xx Blackfin+ Processor

• Gn(x) is the CRC generating polynomial of degree n, and n is also the CRC field length in bits:

Gn(x)=xn+gn-1xn-1+…+g0x0

• Cn(x) is the calculated CRC polynomial of degree n:

Cn(x)=xn+cn-1xn-1+…+c0x0

The division is performed modulo-2 over Galois field GF2. In the above equation, the message stream Mk is post-
fixed by n zeros before the actual division. This equation can be implemented by one of two types of n taps LFSR's.
The more familiar type of LFSR is called Type II (or internal) LFSR of the form:

Mk, 0..0 S0 S1 S2 Sn-1

g1 g2 gn-1

Cn(x) = [Sn-1 ... S1 S0] , after (k+n) clocks

g0

Figure 8-40: Internal LFSR (Type II)

The other type of LFSR, Type I (or external LFSR) has the form:

Cn(x) from clock (k+1) to (k+n)

i <= k

i > k

Mk, 0..0 S0 S1 S2 Sn-1

gn-1 gn-2 g1
g0

Figure 8-41: External LFSR (Type I)

The two are equivalent, and the simple rule for conversion from Type II to Type I is:

1. While keeping the LFSR flow direction, flip the order of the feedback taps.

2. After the first k clocks, feed the first tap (S0) with n zeros and read the n output bits (which are the required
CRC) as the sum of the feedback and the input.

For example, consider the following equivalent implementations of the polynomial G5(x) = x5+x4+x2+1:

Linear Feedback Shift Register LFSR Operations

ADSP-BF7xx Blackfin+ Processor 8–217

Mk, 0..0 S0 S1 S2 S4

i <= k

i > k

S3

Mk, 0..0 S0 S1 S2 S4S3

Figure 8-42: Internal (Type II) Versus External (Type I) LFSR

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BXOR Example

The BXOR and BXORSHIFT instructions let you calculate a Type I CRC at a rate of two cycles per input bit, as in
the following example program.

// _CRC_BXOR - calculate CRC value of a message polynomial
// for a given generator polynomial.
#define MSG_LEN 32 // bits
#define CRC_LEN 16 // bits
_CRC_BXOR:
 a1 = a0 = 0;
 r1 = 0x8408 (z); // LFSR polynomial, reversed:
 // x^16 + x^12 + x^5 + 1
 a1.w = r1; // initialize LFSR mask
 r2.h = 0xd065; // r2 = message
 r2.l = 0x86c9;
 p1 = MSG_LEN (z);
 loop _MSG_loop lc0 = p1;
 loop_begin _MSG_loop;
 r2 = rot r2 by 1;
 a0 = bxorshift(a0, a1, cc);

Linear Feedback Shift Register LFSR Operations

8–218 ADSP-BF7xx Blackfin+ Processor

 loop_end _MSG_loop;
 r0 = 0; // initialize CRC
 r2.l = cc = bxor(a0, r1);
 r0 = rot r0 by 1;
 p1 = CRC_LEN-1 (z);
 loop _CRC_loop lc0 = p1;
 loop_begin _CRC_loop;
 r2.l = cc = bxorshift(a0, r1);
 r0 = rot r0 by 1;
 loop_end _CRC_loop;
 // r0.l now contains the CRC
_CRC_BXOR.end:

40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF)

General Form

Shift (Dsp32Shf)

a0 = bxorshift (a0, a1, cc)

Abstract

This instruction (linear feedback shift register, LFSR) provides a bit-wise XOR reduction of A0 logically AND'ed
with A1 and the feedback bit (CC). The result is left-shifted into the least significant bit of A0. The CC bit is not
modified.

See Also (40-Bit BXOR LSFR with Feedback to a Register (BXOR), 32-Bit BXOR or BXORShift LSFR without
Feedback (BXOR_NF))

BXORShift_NF Description

Linear feedback shift register (LFSR) instruction. Provides a bit-wise XOR reduction of A0 logically AND'ed with
A1 and the feedback bit (CC). The result is left-shifted into the least significant bit of A0. The CC bit is not modi-
fied.

The bit-wise XOR reduction is defined as:

 out = (((((CC &oplus B0) &oplus B1) &oplus B2) &oplus ...) &oplus Bn-1)

For more information about this instruction, see 40-Bit BXOR LSFR with Feedback to a Register (BXOR).

BXORShift_NF Example

For examples using this instruction, see 40-Bit BXOR LSFR with Feedback to a Register (BXOR).

Linear Feedback Shift Register LFSR Operations

ADSP-BF7xx Blackfin+ Processor 8–219

32-Bit BXOR or BXORShift LSFR without Feedback (BXOR_NF)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = cc = bxorshift (a0, DREG Register Type)

DREG_L Register Type = cc = bxor (a0, DREG Register Type)

Abstract

This instruction (linear feedback shift register, LFSR) provides a bit-wise XOR reduction of A0 or A0 shifted left
one, logically AND'ed with a 32-bit data register. The result is placed into both the CC flag and the least significant
bit of the destination register.

See Also (40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF), 40-Bit BXOR LSFR with
Feedback to a Register (BXOR))

BXOR_NF Description

Linear feedback shift register (LFSR) instruction. Provides a bit-wise XOR reduction of A0 or A0 shifted left one,
logically AND'ed with a 32-bit data register. The result is placed into both the CC flag and the least significant bit
of the destination register.

A bit-wise XOR reduction is defined as:

out = %%(((((%%B0 &oplus B1) &oplus B2) &oplus B3) &oplus ...) &oplus Bn-1)

For more information about this instruction, see 40-Bit BXOR LSFR with Feedback to a Register (BXOR).

ASTAT Flags

The table shows the affected ASTAT flags. For more information, see Arithmetic Status Register .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

. VS V AV1S AV1 AV0S AV0

... ... AC1 AC0 RND_
MOD

... AQ CC AN AZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BXOR_NF Example

For examples using this instruction, see 40-Bit BXOR LSFR with Feedback to a Register (BXOR).

Video Operations

These operations provide video application specific operations on register operands:

Linear Feedback Shift Register LFSR Operations

8–220 ADSP-BF7xx Blackfin+ Processor

• Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (AddSub4x8)

• Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (AddClip)

• Disable Alignment Exception (DisAlignExcept)

• Quad Byte Average (Byteop2P) (Avg4x8Vec)

• Vector Byte Average (Byteop1P) (Avg8Vec)

• Dual Accumulator Extraction with Addition (AddAccHalf)

• Vectored 8-Bit Sum of Absolute Differences (SAD8Vec)

Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (AddClip)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = byteop3p (PAIR0, PAIR1) (lo RSC)

DREG Register Type = byteop3p (PAIR0, PAIR1) (hi RSC)

Abstract

This instruction adds two 8-bit unsigned values to two 16-bit signed values, then it clips the result back to the 8-bit
unsigned range. The instruction either adds Y[3] & Y[1] or Y[2] & Y[0] to the two 16-bt X values. The lower two
bits of I0 and I1 are used to [[extractBytes | extract four contiguous bytes]] from the input register pair. The results
are written back to either the lower or higher bytes of each 16-bit result half. The unused bytes are filled with zeros.

See Also (Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (AddSub4x8))

AddClip Description

The dual 16-bit add/clip instruction adds two 8-bit unsigned values to two 16-bit signed values, then limits (or
“clips”) the result to the 8-bit unsigned range 0 through 255, inclusive. The instruction loads the results as bytes on
half-word boundaries in one 32-bit destination register. Some syntax options load the upper byte in the half-word
and others load the lower byte, as shown in the next few figures.

aligned_s rc_reg_0 0y1y

aligned_s rc_reg_1 z3 z2 z1 z0

31 23 15 08 71624

Figure 8-43: The source registers contain:

31 23 15 08 71624

dest_reg 0 0 y1 + z3 clipped
to 8 bits

0 0 y 0 + z1 clipped
to 8 bits

Figure 8-44: The versions that load the result into the lower byte (LO) produce:

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–221

31 23 15 08 71624

dest_reg y 1 + z2 clipped
to 8 bits

00 y 0 + z0 clipped
to 8 bits

00

Figure 8-45: The versions that load the result into the higher byte (HI) produce:

In either case, the unused bytes in the destination register are filled with 0x00. The 8-bit and 16-bit addition is
performed as a signed operation. The 16-bit operand is sign-extended to 32 bits before adding.

The only valid input source register pairs are R1:0 and R3:2.

The dual 16-bit add/clip instruction provides byte alignment directly in the source register pairs src_reg_0 and
src_reg_1 based on index registers I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for source register pair src_reg_0 (typically
R1:0).

• The two LSBs of the I1 register determine the byte alignment for source register pair src_reg_1 (typically
R3:2).

The relationship between the I-register bits and the byte alignment is illustrated in the I-register Bits and the Byte
Alignment (no reverse) figure.

In the default source order case (for example, not the (– , R) syntax), assuming a source register pair contains the
following.

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 byt e 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 b yte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-46: I-register Bits and the Byte Alignment (no reverse)

Options The (– , R) syntax reverses the order of the source registers within each register pair. Typical high perform-
ance applications cannot afford the overhead of reloading both register pair operands to maintain byte order for ev-
ery calculation. Instead, they alternate and load only one register pair operand each time and alternate between the
forward and reverse byte order versions of this instruction. By default, the low order bytes come from the low regis-
ter in the register pair. The (– , R) option causes the low order bytes to come from the high register.

In the optional reverse source order case (for example, using the (– , R) syntax), the only difference is the source
registers swap places within the register pair in their byte ordering. Assume a source register pair contains the data
shown in the I-register Bits and the Byte Alignment (with reverse) figure.

Video Operations

8–222 ADSP-BF7xx Blackfin+ Processor

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 b yte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-47: I-register Bits and the Byte Alignment (with reverse)

A special application of this instruction is support for video motion compensation algorithms. The instruction sup-
ports the addition of the residual to a video pixel value, followed by unsigned byte saturation.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

AddClip Example

r3 = byteop3p (r1:0, r3:2) (lo) ;
r3 = byteop3p (r1:0, r3:2) (hi) ;
r3 = byteop3p (r1:0, r3:2) (lo, r) ;
r3 = byteop3p (r1:0, r3:2) (hi, r) ;

Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (AddSub4x8)

General Form

ALU Operations (Dsp32Alu)

(DREG Register Type, DREG Register Type) = byteop16p (PAIR0, PAIR1) RS

(DREG Register Type, DREG Register Type) = byteop16m (PAIR0, PAIR1) RS

Abstract

This instruction (Byteop16M and ByteOp16P) adds or subtracts two unsigned quad byte vectors, adjusting for byte
alignment. The lower two bits of I0 and I1 are used to [[extractBytes | extract four contiguous bytes]] from the input
register pair

See Also (Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (AddClip))

AddSub4x8 Description

The quad 8-bit add instruction adds two unsigned quad byte number sets byte-wise, adjusting for byte alignment. It
then loads the byte-wise results as 16-bit, zero-extended, half-words in two destination registers, as shown in the
next figures.

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–223

aligned_s rc_reg_0 y3 y2 y1 y0

aligned_s rc_reg_1 z3 z2 z1 z0

31 23 15 08 71624

Figure 8-48: Source Registers Contain

0z + 0y1z + 1y:0_ger_tsed

2z + 2y3z + 3y:1_ger_tsed

31 23 15 08 71624

Figure 8-49: Destination Registers Receive

The only valid input source register pairs are R1:0 and R3:2, and the two destination registers must be unique.

The Quad 8-Bit Add instruction provides byte alignment directly in the source register pairs src_reg_0 and
src_reg_1 based on index registers I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for source register pair src_reg_0 (typically
R1:0).

• The two LSBs of the I1 register determine the byte alignment for source register pair src_reg_1 (typically
R3:2).

The relationship between the I-register bits and the byte alignment is illustrated in Table 18-1.

In the default source order case (for example, not the (R) syntax), assume that a source register pair contains the data
shown in the I-register Bits and the Byte Alignment (No Reverse) figure.

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 b yte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-50: I-register Bits and the Byte Alignment (No Reverse)

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

Options

The (R) syntax reverses the order of the source registers within each register pair. Typical high performance applica-
tions cannot afford the overhead of reloading both register pair operands to maintain byte order for every calcula-
tion. Instead, they alternate and load only one register pair operand each time and alternate between the forward
and reverse byte order versions of this instruction. By default, the low order bytes come from the low register in the
register pair. The (R) option causes the low order bytes to come from the high register.

Video Operations

8–224 ADSP-BF7xx Blackfin+ Processor

In the optional reverse source order case (for example, using the (R) syntax), the only difference is the source regis-
ters swap places within the register pair in their byte ordering. Assume a source register pair contains the data shown
in the I-register Bits and the Byte Alignment (With Reverse) figure.

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 byt e 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 b yte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-51: I-register Bits and the Byte Alignment (With Reverse)

The mnemonic derives its name from the fact that the operands are bytes, the result is 16 bits, and the arithmetic
operation is “plus” for addition.

A special application of this instruction provides packed data arithmetic typical of video and image processing appli-
cations.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

AddSub4x8 Example

(r1,r2)= byteop16p (r3:2,r1:0) ;
(r1,r2)= byteop16p (r3:2,r1:0) (r) ;

Disable Alignment Exception (DisAlignExcept)

General Form

ALU Operations (Dsp32Alu)

disalgnexcpt

Abstract

This instruction disables alignment excptions. This instruction only affects misaligned loads that use I registers. The
address is forced to be 32-bit aligned.

See Also (Byte Align (Shift_Align))

DisAlignExcept Description

The disable alignment exception for load (DISALGNEXCPT) instruction prevents exceptions that would otherwise
be caused by misaligned 32-bit memory loads issued in parallel. This instruction only affects misaligned 32-bit load
instructions that use I-register indirect addressing.

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–225

In order to force address alignment to a 32-bit boundary, the two LSBs of the address are cleared before being sent
to the memory system. The I-register is not modified by the DISALIGNEXCPT instruction. Also, any modifica-
tions performed to the I-register by a parallel instruction are not affected by the DISALIGNEXCPT instruction.

A special applications of this instruction is to use the DISALGNEXCPT instruction when priming data registers for
Quad 8-Bit single-instruction, multiple-data (SIMD) instructions.

Quad 8-Bit SIMD instructions require as many as sixteen 8-bit operands, four D-registers worth, to be preloaded
with operand data. The operand data is 8 bits and not necessarily word aligned in memory. Thus, use DISALG-
NEXCPT to prevent spurious exceptions for these potentially misaligned accesses.

During execution, when Quad 8-Bit SIMD instructions perform 8-bit boundary accesses, they automatically pre-
vent exceptions for misaligned accesses. No user intervention is required.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

DisAlignExcept Example

disalgnexcpt || r1 = [i0++] || r3 = [i1++] ;
/* three instructions in parallel */
disalgnexcpt || [p0 ++ p1] = r5 || r3 = [i1++] ;
/* alignment exception is prevented only for the load */
disalgnexcpt || r0 = [p2++] || r3 = [i1++] ;
/* alignment exception is prevented only for the I-reg load */

Byte Align (Shift_Align)

General Form

Shift (Dsp32Shf)

DREG Register Type = align8 (DREG Register Type, DREG Register Type)

DREG Register Type = align16 (DREG Register Type, DREG Register Type)

DREG Register Type = align24 (DREG Register Type, DREG Register Type)

Abstract

This instruction copies four contiguous bytes from a register pair. The bytes are offset by 8, 16, or 24 bits in the
register pair.

See Also (Disable Alignment Exception (DisAlignExcept))

Video Operations

8–226 ADSP-BF7xx Blackfin+ Processor

Shift_Align Description

The Byte Align instruction copies a contiguous four-byte unaligned word from a combination of two data registers.
The instruction version determines the bytes that are copied; in other words, the byte alignment of the copied word.
Alignment options are shown in Table 18-1.

0_ger_crs1_ger_crs

byte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

dest_reg for ALIGN8: byte 4 byte 3 byte 2 byte 1

dest_reg for ALIGN16: byte 5 b yte 4 byte 3 byte 2

dest_reg for ALIGN24: byte 6 b yte 5 b yte 4 byte 3

Figure 8-52: Byte Alignment Options

The ALIGN16 version performs the same operation as the Vector Pack instruction using the syntax:

dest_reg = PACK (Dreg_lo, Dreg_hi)

Use the Byte Align instruction to align data bytes for subsequent single- instruction, multiple-data (SIMD) instruc-
tions.

The input values are not implicitly modified by this instruction. The destination register can be the same D-register
as one of the source registers. Doing this explicitly modifies that source register.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_Align Example

// If r3 = 0x0011 2233 and r4 = 0x4455 6677, then . . .
r0 = align8 (r3, r4) ; /* produces r0 = 0x3344 5566, */
r0 = align16 (r3, r4) ; /* produces r0 = 0x2233 4455, and */
r0 = align24 (r3, r4) ; /* produces r0 = 0x1122 3344, */

Quad Byte Average (Byteop2P) (Avg4x8Vec)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = byteop2p (PAIR0, PAIR1) (rndl RSC)

DREG Register Type = byteop2p (PAIR0, PAIR1) (rndh RSC)

DREG Register Type = byteop2p (PAIR0, PAIR1) (tl RSC)

DREG Register Type = byteop2p (PAIR0, PAIR1) (th RSC)

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–227

Abstract

This instruction averages the upper two bytes and the lower two bytes of two two unsigned quad byte vectors adjust-
ing for byte alignment. The lower two bits of I0 are used to [[extractBytes | extract four contiguous bytes]] from the
input register pair. Note that this operation only uses I0, which is different than all the other byteop instructions. If
you specify round (RND), a round bit is added prior to the shift. The RND_MOD bit in the ASTAT register has
no bearing on the rounding behavior of this instruction. It returns the two averages in either Dest[3] & Dest[1] or
Dest[2] & Dest[0].

See Also (Vector Byte Average (Byteop1P) (Avg8Vec))

Avg4x8Vec Description

The quad 8-bit average half-word instruction finds the arithmetic average of two unsigned quad byte number sets
byte wise, adjusting for byte alignment. This instruction averages four bytes together. The instruction loads the re-
sults as bytes on half-word boundaries in one 32-bit destination register. Some syntax options load the upper byte in
the half-word and others load the lower byte, as shown in the next few figures.

aligned_s rc_reg_0 y3 y2 y1 y0

aligned_s rc_reg_1 z3 z2 z1 z0

31 23 15 08 71624

Figure 8-53: Source Registers Contain

dest_reg 0 0 a vg(y3, y2, z3, z2) 0 0 a vg(y1, y0, z1, z0)

31 23 15 08 71624

Figure 8-54: The versions that load the result into the lower byte – RNDL and TL – produce:

dest_reg a vg(y3, y2, z3, z2) 0 0 a vg(y1, y0, z1, z0) 0 0

31 23 15 08 71624

Figure 8-55: The versions that load the result into the higher byte – RNDH and TH – produce:

In either case, the unused bytes in the destination register are filled with 0x00.

Arithmetic average (or mean) is calculated by summing the four byte operands, then shifting right two places to
divide by four.

When the intermediate sum is not evenly divisible by 4, precision may be lost.

The user has two options to bias the result–truncation or biased rounding.

The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this instruction.

The only valid input source register pairs are R1:0 and R3:2.

Video Operations

8–228 ADSP-BF7xx Blackfin+ Processor

The quad 8-bit average half-word instruction provides byte alignment directly in the source register pairs src_reg_0
(typically R1:0) and src_reg_1 (typically R3:2) based only on the I0 register. The byte alignment in both source
registers must be identical since only one register specifies the byte alignment for them both.

The relationship between the I-register bits and the byte alignment is shown in the I-register Bits and the Byte
Alignment (no reverse) figure. In the default source order case (for example, not the (R) syntax), assume a source
register pair contains the data shown in the figure.

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 byt e 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 b yte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-56: I-register Bits and the Byte Alignment (no reverse)

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

The quad 8-bit average half-word instruction supports the options shown in the Options for Quad 8-Bit Average --
Half-Word table.

Table 8-27: Options for Quad 8-Bit Average -- Half-Word

Option Description

(RND—) Rounds up the arithmetic mean.

(T—) Truncates the arithmetic mean.

(—L) Loads the results into the lower byte of each destination half-word.

(—H) Loads the results into the higher byte of each destination half-word.

(—,R) Reverses the order of the source registers within each register pair. Typical high performance
applications cannot afford the overhead of reloading both register pair operands to main-
tain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low order bytes come from the low register in the register pair.
The (R) option causes the low order bytes to come from the high register.

When used together, the order of the options in the syntax makes no difference. In the optional reverse source order
case (for example, using the (R) syntax), the only difference is the source registers swap places within the register pair
in their byte ordering. Assume a source register pair contains the data shown in the I-register Bits and the Byte
Alignment (with reverse) figure.

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–229

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 b yte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-57: I-register Bits and the Byte Alignment (with reverse)

The mnemonic derives its name from the fact that the operands are bytes, the result is two half-words, and the basic
arithmetic operation is “plus” for addition. The single destination register indicates that averaging is performed.

A special applications of this instruction is support for binary interpolation used in fractional motion search and
motion compensation algorithms.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Avg4x8Vec Example

r3 = byteop2p (r1:0, r3:2) (rndl) ;
r3 = byteop2p (r1:0, r3:2) (rndh) ;
r3 = byteop2p (r1:0, r3:2) (tl) ;
r3 = byteop2p (r1:0, r3:2) (th) ;
r3 = byteop2p (r1:0, r3:2) (rndl, r) ;
r3 = byteop2p (r1:0, r3:2) (rndh, r) ;
r3 = byteop2p (r1:0, r3:2) (tl, r) ;
r3 = byteop2p (r1:0, r3:2) (th, r) ;

Vector Byte Average (Byteop1P) (Avg8Vec)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = byteop1p (PAIR0, PAIR1) RS

DREG Register Type = byteop1p (PAIR0, PAIR1) (t RSC)

Abstract

This instruction computes the vector average of two unsigned quad byte vectors adjusting for byte alignment. The
lower two bits of I0 and I1 are used to [[extractBytes | extract four contiguous bytes]] from the input register pair.
By default, this instruction rounds by adding a one prior to shifting. If you specify truncate, the round bit is not
added. The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this instruction.

See Also (Quad Byte Average (Byteop2P) (Avg4x8Vec))

Video Operations

8–230 ADSP-BF7xx Blackfin+ Processor

Avg8Vec Description

The quad 8-bit average byte instruction computes the arithmetic average of two unsigned quad byte number sets
byte wise, adjusting for byte alignment. This instruction loads the byte-wise results as concatenated bytes in one 32-
bit destination register, as shown in the next figures.

aligned_s rc_reg_0 y3 y2 y1 y0

aligned_s rc_reg_1 z3 z2 z1 z0

31 23 15 08 71624

Figure 8-58: Source Registers Contain

dest_reg a vg(y3, z3) a vg(y2, z2) a vg(y1, z1) a vg(y0, z0)

31 23 15 08 71624

Figure 8-59: Destination Registers Receive

Arithmetic average (or mean) is calculated by summing the two operands, then shifting right one place to divide by
two.

The user has two options to bias the result–truncation or rounding up. By default, the architecture rounds up the
mean when the sum is odd. However, the syntax supports optional truncation.

See “Rounding and Truncating” on page 1-19 for a description of biased rounding and truncating behavior.

The RND_MOD bit in the ASTAT register has no bearing on the rounding behavior of this instruction. The only
valid input source register pairs are R1:0 and R3:2.

The Quad 8-Bit Average – Byte instruction provides byte alignment directly in the source register pairs src_reg_0
and src_reg_1 based on index registers I0 and I1.

• The two LSBs of the I0 register determine the byte alignment for source register pair src_reg_0 (typically
R1:0).

• The two LSBs of the I1 register determine the byte alignment for source register pair src_reg_1 (typically
R3:2).

The relationship between the I-register bits and the byte alignment is illustrated in the I-register Bits and the Byte
Alignment (no reverse) figure.

In the default source order case (for example, not the (R) syntax), assume a source register pair contains the data
shown in the figure.

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–231

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 byt e 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 b yte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-60: I-register Bits and the Byte Alignment (no reverse)

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

Options

The quad 8-bit average byte instruction supports the options shown in the Options for Quad 8-Bit Average – Byte
table.

Table 8-28: Options for Quad 8-Bit Average – Byte

Option Description

Default Rounds up the arithmetic mean.

(T) Truncates the arithmetic mean.

(R) Reverses the order of the source registers within each register pair. Typical high performance
applications cannot afford the overhead of reloading both register pair operands to main-
tain byte order for every calculation. Instead, they alternate and load only one register pair
operand each time and alternate between the forward and reverse byte order versions of this
instruction. By default, the low order bytes come from the low register in the register pair.
The (R) option causes the low order bytes to come from the high register.

(T, R) Combines both of the above options.

In the optional reverse source order case (for example, using the (R) syntax), the only difference is the source regis-
ters swap places within the register pair in their byte ordering. Assume a source register pair contains the data shown
in the I-register Bits and the Byte Alignment (with reverse) figure.

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 b yte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-61: I-register Bits and the Byte Alignment (with reverse)

The mnemonic derives its name from the fact that the operands are bytes, the result is one word, and the basic
arithmetic operation is “plus” for addition. The single destination register indicates that averaging is performed.

A special application of this instruction is support for binary interpolation used in fractional motion search and mo-
tion compensation algorithms.

Video Operations

8–232 ADSP-BF7xx Blackfin+ Processor

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Avg8Vec Example

r3 = byteop1p (r1:0, r3:2) ;
r3 = byteop1p (r1:0, r3:2) (r) ;
r3 = byteop1p (r1:0, r3:2) (t) ;
r3 = byteop1p (r1:0, r3:2) (t,r) ;

Dual Accumulator Extraction with Addition (AddAccHalf)

General Form

ALU Operations (Dsp32Alu)

DREG Register Type = a1.l + a1.h, DREG Register Type = a0.l + a0.h

Abstract

This instruction adds the accumulator half words together, then it extracts the result to a register. Each half word is
sign extended to 32-bits before being added. This operation is used to sum the results of the video [[.:SAD8Vec|Sum
of Absolute Differences]] instruction.

See Also (Vectored 8-Bit Sum of Absolute Differences (SAD8Vec))

AddAccHalf Description

The dual 16-bit accumulator eExtraction with addition instruction adds together the upper half-words (bits
31through 16) and lower half-words (bits 15 through 0) of each Accumulator and loads each result into a 32-bit
destination register.

Each 16-bit half-word in each Accumulator is sign extended before being added together.

A special application of this instruction is to use the dual 16-bit accumulator extraction with addition instruction for
motion estimation algorithms in conjunction with the quad 8-bit subtract-absolute-accumulate instruction.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

AddAccHalf Example

r4=a1.l+a1.h, r7=a0.l+a0.h ;

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–233

Vectored 8-Bit Sum of Absolute Differences (SAD8Vec)

General Form

ALU Operations (Dsp32Alu)

saa (PAIR0, PAIR1) RS

Abstract

This instruction does a vector 8-bit subtract, takes the absolute value of the differences and accumulates them ad-
justing for byte alignment. The lower two bits of I0 and I1 are used to [[extractBytes | extract four contiguous
bytes]] from the input register pair. The four 16-bit results are stored in A1.h, A1.l, A0.h and A0.l These will satu-
rate if the unsigned 16-Bit sections of the accumulator overflow.

See Also (Dual Accumulator Extraction with Addition (AddAccHalf))

SAD8Vec Description

The quad 8-bit subtract-absolute-accumulate instruction subtracts four pairs of values, takes the absolute value of
each difference, and accumulates each result into a 16-bit Accumulator half. The results are placed in the upper- and
lower-half Accumulators A0.H, A0.L, A1.H, and A1.L.

Saturation is performed if an operation overflows a 16-bit Accumulator half.

This instruction supports the following byte-wise Sum of Absolute Difference (SAD) calculations.

SAD a i j(,) b i j(,)–
j 0=

N 1–

∑
i 0=

N 1–

∑=

Figure 8-62: Absolute Difference (SAD) Calculations

Typical values for N are 8 and 16, corresponding to the video block size of 8x8 and 16x16 pixels, respectively. The
16-bit Accumulator registers limit the pixel region or block size to 32x32 pixels.

The SAA instruction behavior is shown in the SAA Instruction Behavior figure.

src_reg_0 a (i, j+3) a(i, j+2) a(i, j+1) a(i, j)

src_reg_1 b (i, j+3) b(i, j+2) b(i, j+1) b(i, j)

A1.H +=| a(i, j+3)
-b(i, j+3) |

A1.L +=| a(i, j+2)
- b(i, j+2) |

A0.H +=| a(i, j+1)
- b(i, j+1) |

A0.L +=| a(i, j)
- b(i, j) |

Figure 8-63: SAA Instruction Behavior

The Quad 8-Bit Subtract-Absolute-Accumulate instruction provides byte alignment directly in the source register
pairs src_reg_0 and src_reg_1 based on index registers I0 and I1.

Video Operations

8–234 ADSP-BF7xx Blackfin+ Processor

• The two LSBs of the I0 register determine the byte alignment for source register pair src_reg_0 (typically
R1:0).

• The two LSBs of the I1 register determine the byte alignment for source register pair src_reg_1 (typically
R3:2).

The relationship between the I-register bits and the byte alignment is shown in the I-register Bits and the Byte
Alignment (no reverse) figure.

In the default source order case (for example, not the (R) syntax), assume a source register pair contain the data
shown in the figure.

The bytes selected are src_reg_pair_H I src_reg_pair_ LO

Two LSB’s of I0 or I1 byt e 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 b yte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-64: I-register Bits and the Byte Alignment (no reverse)

This instruction prevents exceptions that would otherwise be caused by misaligned 32-bit memory loads issued in
parallel.

Options

The (R) syntax reverses the order of the source registers within each pair. Typical high performance applications can-
not afford the overhead of reloading both register pair operands to maintain byte order for every calculation. Instead,
they alternate and load only one register pair operand each time and alternate between the forward and reverse byte
order versions of this instruction. By default, the low order bytes come from the low register in the register pair. The
(R) option causes the low order bytes to come from the high register.

When reversing source order by using the (R) syntax, the source registers swap places within the register pair in their
byte ordering. If a source register pair contains the data shown in the I-register Bits and the Byte Alignment (with
reverse) figure, then the SAA instruction computes 12 pixel operations simultaneously–the three-operation subtract-
absolute-accumulate on four pairs of operand bytes in parallel.

The bytes selected are src_reg_pair_ LO src_reg_pair_ HI

Two LSB’s of I0 or I1 b yte 7 b yte 6 b yte 5 byte 4 byte 3 byte 2 byte 1 byte 0

00b: byte 3 byte 2 byte 1 byte 0

01b: byte 4 byte 3 byte 2 byte 1

10b: byte 5 byte 4 byte 3 byte 2

11b: byte 6 b yte 5 b yte 4 byte 3

Figure 8-65: I-register Bits and the Byte Alignment (with reverse)

A special application of this instruction is to use the quad 8-bit subtract-absolute-accumulate instruction for block-
based video motion estimation algorithms using block sum of absolute difference (SAD) calculations to measure dis-
tortion.

Video Operations

ADSP-BF7xx Blackfin+ Processor 8–235

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

SAD8Vec Example

saa (r1:0, r3:2) || r0 = [i0++] || r2 = [i1++] ; /* parallel fill instructions */
saa (r1:0, r3:2) (R) || r1 = [i0++] || r3 = [i1++] ; /* reverse, parallel fill instructions
*/
saa (r1:0, r3:2) ; /* last SAA in a loop, no more fill required */

Viterbi Operations

These operations provide Viterbi application specific operations on register operands:

• 16-Bit Add on Sign (AddOnSign)

• 16-Bit Modulo Maximum with History (Shift_VitMax)

• Dual 16-Bit Modulo Maximum with History (Shift_DualVitMax)

16-Bit Add on Sign (AddOnSign)

General Form

ALU Operations (Dsp32Alu)

DREG_H Register Type = DREG_L Register Type = sign(DREG_H Register Type) * DREG_H Register Type + sign(DREG_L Register
Type) * DREG_L Register Type

Abstract

This instruction does a vector multiply of the signs SRC0.h and SRC0.l by the values of SRC1.h and SRC1.l Then,
it adds the two results and stores it in both of the destination half registers. This instruction does not saturate if the
result is greater than 16-Bits.

See Also (16-Bit Modulo Maximum with History (Shift_VitMax), Dual 16-Bit Modulo Maximum with History
(Shift_DualVitMax))

AddOnSign Description

The Add on Sign instruction performs a two step function, as follows.

Step 1

Multiply the arithmetic sign of a 16-bit half-word number in src0 by the corresponding half-word number in
src1. The arithmetic sign of src0 is either (+1) or (–1), depending on the sign bit of src0. The instruction
performs this operation on the upper and lower half-words of the same data registers.

Specialized Compute Instructions

8–236 ADSP-BF7xx Blackfin+ Processor

The results of this step obey the signed multiplication rules summarized in the Signed Multiplication Rules
table. Y is the number in src0, and Z is the number in src1. The numbers in src0 and src1 may be positive or
negative. Note the result always bears the magnitude of Z with only the sign affected.

Table 8-29: Signed Multiplication Rules

SRC0 SRC1 Adjusted

+Y +Z +Z

+Y –Z –Z

–Y +Z –Z

–Y –Z +Z

Step 2

Add the sign-adjusted src1 upper and lower half-word results together and store the same 16-bit sum in the
upper and lower halves of the destination register, as shown in the next figures.

0a1a:0crs

0b1b:1crs

31 23 15 08 71624

Figure 8-66: Source Registers Contain

dest: (sign_adjusted_ b1) +
(sign_adjusted_b 0)

(sign_adjusted_b 1) +
(sign_adjusted_b0)

31 23 15 08 71624

Figure 8-67: Destination Register Receives

The sum is not saturated if the addition exceeds 16 bits.

A special application of this instruction is to use the Sum on Sign instruction to compute the branch metric used by
each Viterbi Butterfly.

This 16-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

AddOnSign Example

r7.h = r7.l = sign(r2.h) * r3.h + sign(r2.l) * r3.l ;

• If

R2.H = 2
R3.H = 23
R2.L = 2001
R3.L = 1234

then

Viterbi Operations

ADSP-BF7xx Blackfin+ Processor 8–237

R7.H = 1257 (or 1234 + 23)
R7.L = 1257

• If

R2.H = –2
R3.H = 23
R2.L = 2001
R3.L = 1234

then

R7.H = 1211 (or 1234 – 23)
R7.L = 1211

• If

R2.H = 2
R3.H = 23
R2.L = –2001
R3.L = 1234

then

R7.H = –1211 (or (–1234) + 23)
R7.L = –1211

• If

R2.H = –2
R3.H = 23
R2.L = –2001
R3.L = 1234

then

R7.H = –1257 (or (–1234) – 23)
R7.L = –1257

Dual 16-Bit Modulo Maximum with History (Shift_DualVitMax)

General Form

Shift (Dsp32Shf)

DREG Register Type = vit_max (DREG Register Type, DREG Register Type) (asl)

DREG Register Type = vit_max (DREG Register Type, DREG Register Type) (asr)

Abstract

This instruction performs maximum value selection and history update. It is used to implement the selection func-
tion of a Viterbi decoder. It performs a dual maximum value selection storing the two results in one destination
register.

Viterbi Operations

8–238 ADSP-BF7xx Blackfin+ Processor

See Also (16-Bit Add on Sign (AddOnSign), 16-Bit Modulo Maximum with History (Shift_VitMax))

Shift_DualVitMax Description

Maximum value selection and history update. This instruction is used to implement the selection function of a Vi-
terbi decoder. It performs a dual maximum value selection storing the two results in one destination register. In ad-
dition shifts left A0 by two bit positions, and stores two bits in A0 representing the result of the two maximum value
selections in bit1 and bit0 of A0. No attempt to correct the selection on overflow should be made. This ensures that
overflowed path metrics compare correctly, as long as they are close to each other in magnitude.

Reg1: PM3 PM2 Reg0: PM1 PM0
 | | | |
 MAX----+ +--------MAX
 | |
 v v
RegOut: H L

If the user specifies ASR or ASL this will shift in two bits into the accumulator specifying which 16-bit half register
was the max. For ASR it will shift the history bits right, for ASL it will shift them left. To compute the maximum
this instruction uses a form of modulo arithmetic where 0x8000 > 0x7fff > 0 > 0xffff > 0x8000.

For more information, see the 16-Bit Modulo Maximum with History (Shift_VitMax) instruction.

Shift_DualVitMax Example

For examples using this instruction, see the 16-Bit Modulo Maximum with History (Shift_VitMax) instruction.

16-Bit Modulo Maximum with History (Shift_VitMax)

General Form

Shift (Dsp32Shf)

DREG_L Register Type = vit_max (DREG Register Type) (asl)

DREG_L Register Type = vit_max (DREG Register Type) (asr)

Abstract

If the user specifies ASR or ASL, this instruction shifts in a bit into the accumulator specifying which 16-bit half
register was the max. For ASR, it will shift the history bits right. For ASL, it will shift them left. To compute the
maximum, this instruction uses a form of [[.:modulo_comparisons|modulo arithmetic]] where 0x8000 > 0x7fff > 0
> 0xffff > 0x8000 .

See Also (16-Bit Add on Sign (AddOnSign), Dual 16-Bit Modulo Maximum with History (Shift_DualVitMax))

Viterbi Operations

ADSP-BF7xx Blackfin+ Processor 8–239

Shift_VitMax Description

The Compare-Select (VIT_MAX) instruction selects the maximum values of pairs of 16-bit operands, returns the
largest values to the destination register, and serially records in A0.W the source of the maximum.This operation
performs signed operations. The operands are compared as two’s-complements.

The Accumulator extension bits (bits 39–32) must be cleared before executing this instruction.

Dual 16-Bit Operand Behavior

Versions are available for dual and single 16-bit operations. Whereas the dual versions compare four operands
to return two maxima, the single versions compare only two operands to return one maximum.

This operation is illustrated in Table 19-4 and Table 19-5.

0y1y0_ger_crs

0z1z1_ger_crs

31 23 15 08 71624

Figure 8-68: Source Registers Contain (Dual)

dest_reg Maximum, y1 or y0 Maximum, z1 or z0

31 23 15 08 71624

Figure 8-69: Destination Register Contains (Dual)

The ASL version shifts A0 left two bit positions and appends two LSBs to indicate the source of each maxi-
mum as shown in Table 19-6 and Table 19-7.

A0.X A0.W

A0 00000000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXBB

Figure 8-70: ASL Version Shifts (Dual)

Table 8-30: Where ...

BB Indicates

00 z0 and y0 are maxima

01 z0 and y1 are maxima

10 z1 and y0 are maxima

11 z1 and y1 are maxima

Conversely, the ASR version shifts A0 right two bit positions and appends two MSBs to indicate the source of
each maximum as shown in Table 19-8 and Table 19-9.

A0.X A0.W

A0 00000000 BBXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 8-71: ASR Version Shifts (Dual)

Viterbi Operations

8–240 ADSP-BF7xx Blackfin+ Processor

Table 8-31: Where ...

BB Indicates

00 y0 and z0 are maxima

01 y0 and z1 are maxima

10 y1 and z0 are maxima

11 y1 and z1 are maxima

Notice that the history bit code depends on the A0 shift direction. The bit for src_reg_1 is always shifted onto
A0 first, followed by the bit for src_reg_0. The single operand versions behave similarly.

Single 16-Bit Operand Behavior

If the dual source register contains the data shown in Table 19-10 the destination register receives the data
shown in Table 19-11.

0y1yger_crs

31 23 15 08 71624

Figure 8-72: Source Registers Contain (Single)

0y ro 1y ,mumixaMol_ger_tsed

31 23 15 08 71624

Figure 8-73: Destination Register Contains (Single)

The ASL version shifts A0 left one bit position and appends an LSB to indicate the source of the maximum.

W.0AX.0A

A0 00000000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXB

Figure 8-74: ASL Version Shifts (Single)

Conversely, the ASR version shifts A0 right one bit position and appends an MSB to indicate the source of the
maximum.

W.0AX.0A

A0 00000000 BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 8-75: ASR Version Shifts (Single)

Table 8-32: Where ...

B Indicates

0 y0 is the maximum

1 y1 is the maximum

Viterbi Operations

ADSP-BF7xx Blackfin+ Processor 8–241

The path metrics are allowed to overflow, and maximum comparison is done on the two’s-complement circle. Such
comparison gives a better indication of the relative magnitude of two large numbers when a small number is added/
subtracted to both.

A special application of this instruction is to use the Compare-Select (VIT_MAX) instruction as a key element of
the Add-Compare-Select (ACS) function for Viterbi decoders. Combine it with a Vector Add instruction to calcu-
late a trellis butterfly used in ACS functions.

This 32-bit instruction may be issued in parallel with certain other instructions.

This instruction may be used in either User or Supervisor mode.

Shift_VitMax Example

• For:

r5 = vit_max(r3, r2)(asl) ; /* shift left, dual operation */

Assume:

R3 = 0xFFFF 0000
R2 = 0x0000 FFFF
A0 = 0x00 0000 0000

This example produces:

R5 = 0x0000 0000
A0 = 0x00 0000 0002

• For:

r7 = vit_max (r1, r0) (asr) ; /* shift right, dual operation */

Assume:

R1 = 0xFEED BEEF
R0 = 0xDEAF 0000
A0 = 0x00 0000 0000

This example produces:

R7 = 0xFEED 0000
A0 = 0x00 8000 0000

• For:

r3.l = vit_max (r1)(asl) ; /* shift left, single operation */

Assume:

R1 = 0xFFFF 0000
A0 = 0x00 0000 0000

This example produces:

R3.L = 0x0000

Viterbi Operations

8–242 ADSP-BF7xx Blackfin+ Processor

A0 = 0x00 0000 0000

• For:

r3.l = vit_max (r1)(asr) ; /* shift right, single operation */

Assume:

R1 = 0x1234 FADE
A0 = 0x00 FFFF FFFF

This example produces:

R3.L = 0x1234
A0 = 0x00 FFFF FFFF

Instruction Page Tables
The instruction page tables provide definitions of:

• Instruction types (including opcodes for each instruction)

• Constant types (including immediate value types used in all instructions)

• Register types

These pages are organized alphabetically, with instruction types first, followed by constant types, then register types.

ALU Binary Operations (ALU2op)

ALU2op Instruction Syntax

ALU Binary Operations (ALU2op)

15

0

14

1

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC[3:0] DST[2:0]

SRC[2:0]

OPC[3:0]

Figure 8-76: ALU2op Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

0000 DREG Register Type >>>= DREG Register
Type

32-Bit Arithmetic Shift (AShift32)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–243

OPC Syntax Instruction

0001 DREG Register Type >>= DREG Register
Type

32-Bit Logical Shift (LShift)

0010 DREG Register Type <<= DREG Register
Type

32-Bit Logical Shift (LShift)

0011 DREG Register Type *= DREG Register
Type

32 x 32-Bit Multiply, Integer (MultInt)

0100 DREG Register Type = (DREG Register
Type + DREG Register Type) << 1

32-bit Add then Shift (AddSubShift)

0101 DREG Register Type = (DREG Register
Type + DREG Register Type) << 2

32-bit Add then Shift (AddSubShift)

1000 divq (DREG Register Type, DREG Register
Type)

DIVS and DIVQ Divide Primitives (Divide)

1001 divs (DREG Register Type, DREG Register
Type)

DIVS and DIVQ Divide Primitives (Divide)

1010 DREG Register Type = DREG_L Register
Type (x)

Pass 16-Bit to 32-Bit Register Expansion
(MvDregLToDreg)

1011 DREG Register Type = DREG_L Register
Type (z)

Pass 16-Bit to 32-Bit Register Expansion
(MvDregLToDreg)

1100 DREG Register Type = DREG_B Register
Type (x)

Pass 8-Bit to 32-Bit Register Expansion
(MvDregBToDreg)

1101 DREG Register Type = DREG_B Register
Type (z)

Pass 8-Bit to 32-Bit Register Expansion
(MvDregBToDreg)

1110 DREG Register Type = -DREG Register
Type

32-Bit Negate (Neg32)

1111 DREG Register Type = ~DREG Register
Type

32-Bit One's Complement (Not32)

Conditional Branch PC relative on CC (BrCC)

BrCC Instruction Syntax

Conditional Branch PC relative on CC (BrCC)

15

0

14

0

13

0

12

1

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

T

B

OFF[9:0]

OFF[9:0]

Figure 8-77: BrCC Instruction

Instruction Page Tables

8–244 ADSP-BF7xx Blackfin+ Processor

The following table provides the opcode field values (T, B), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

T B Syntax Instruction

0 0 if !cc jump imm10s2 Register Type Conditional Jump Immediate
(BrCC)

0 1 if !cc jump imm10s2 Register Type
(bp)

Conditional Jump Immediate
(BrCC)

1 0 if cc jump imm10s2 Register Type Conditional Jump Immediate
(BrCC)

1 1 if cc jump imm10s2 Register Type
(bp)

Conditional Jump Immediate
(BrCC)

Move CC conditional bit, to and from dreg (CC2Dreg)

CC2Dreg Instruction Syntax

Move CC conditional bit, to and from dreg (CC2Dreg)

15

0

14

0

13

0

12

0

11

0

10

0

9

1

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

REG[2:0]

OPC[1:0]

Figure 8-78: CC2Dreg Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction Rev

00 DREG Register Type = cc Compute Move CC to a D Regis-
ter (CCToDreg)

01 cc = DREG Register Type Move Status to CC (MvToCC)

10 DREG Register Type = !cc Compute Move CC to a D Regis-
ter (CCToDreg)

2.0

11 cc = !cc Move Status to CC (MvToCC)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–245

Copy CC conditional bit, from status (CC2Stat)

CC2Stat Instruction Syntax

Copy CC conditional bit, from status (CC2Stat)

15

0

14

0

13

0

12

0

11

0

10

0

9

1

8

1

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

CBIT[4:0]

OP[1:0]

D

Figure 8-79: CC2Stat Instruction

The following table provides the opcode field values (D, OP), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

D OP Syntax Instruction

0 00 cc = CBIT Move Status to CC
(MvToCC_STAT)

0 01 cc |= CBIT Move Status to CC
(MvToCC_STAT)

0 10 cc &= CBIT Move Status to CC
(MvToCC_STAT)

0 11 cc ^= CBIT Move Status to CC
(MvToCC_STAT)

1 00 CBIT = cc Move CC To/From AS-
TAT (CCToStat16)

1 01 CBIT |= cc Move CC To/From AS-
TAT (CCToStat16)

1 10 CBIT &= cc Move CC To/From AS-
TAT (CCToStat16)

1 11 CBIT ^= cc Move CC To/From AS-
TAT (CCToStat16)

CBIT

CBIT Encode Table

CBIT Syntax

00000 az

00001 an

Instruction Page Tables

8–246 ADSP-BF7xx Blackfin+ Processor

CBIT Syntax

00110 aq

01000 rnd_m
od

01100 ac0

01101 ac1

10000 av0

10001 av0s

10010 av1

10011 av1s

11000 v

11001 vs

Set CC conditional bit (CCFlag)

CCFlag Instruction Syntax

Set CC conditional bit (CCFlag)

15

0

14

0

13

0

12

0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

I

OPC[2:0]

X[2:0]

Y[2:0]

G

OPC[2:0]

Figure 8-80: CCFlag Instruction

The following table provides the opcode field values (OPC, G, I), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

OPC G I Syntax Instruction

000 0 0 cc = DREG Register Type ==
DREG Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

000 0 1 cc = DREG Register Type ==
imm3 Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

000 1 0 cc = PREG Register Type ==
PREG Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–247

OPC G I Syntax Instruction

000 1 1 cc = PREG Register Type ==
imm3 Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

001 0 0 cc = DREG Register Type <
DREG Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

001 0 1 cc = DREG Register Type <
imm3 Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

001 1 0 cc = PREG Register Type <
PREG Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

001 1 1 cc = PREG Register Type <
imm3 Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

010 0 0 cc = DREG Register Type <=
DREG Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

010 0 1 cc = DREG Register Type <=
imm3 Register Type

32-Bit Register Compare and Set
CC (CompRegisters)

010 1 0 cc = PREG Register Type <=
PREG Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

010 1 1 cc = PREG Register Type <=
imm3 Register Type

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

011 0 0 cc = DREG Register Type <
DREG Register Type (iu)

32-Bit Register Compare and Set
CC (CompRegisters)

011 0 1 cc = DREG Register Type <
uimm3 Register Type (iu)

32-Bit Register Compare and Set
CC (CompRegisters)

011 1 0 cc = PREG Register Type <
PREG Register Type (iu)

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

011 1 1 cc = PREG Register Type <
uimm3 Register Type (iu)

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

100 0 0 cc = DREG Register Type <=
DREG Register Type (iu)

32-Bit Register Compare and Set
CC (CompRegisters)

100 0 1 cc = DREG Register Type <=
uimm3 Register Type (iu)

32-Bit Register Compare and Set
CC (CompRegisters)

100 1 0 cc = PREG Register Type <=
PREG Register Type (iu)

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

100 1 1 cc = PREG Register Type <=
uimm3 Register Type (iu)

32-Bit Pointer Register Compare
and Set CC (CCFlagP)

101 0 0 cc = a0 == a1 Accumulator Compare and Set
CC (CompAccumulators)

110 0 0 cc = a0 < a1 Accumulator Compare and Set
CC (CompAccumulators)

Instruction Page Tables

8–248 ADSP-BF7xx Blackfin+ Processor

OPC G I Syntax Instruction

111 0 0 cc = a0 <= a1 Accumulator Compare and Set
CC (CompAccumulators)

Conditional Move (CCMV)

CCMV Instruction Syntax

Conditional Move (CCMV)

15

0

14

0

13

0

12

0

11

0

10

1

9

1

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

T SRC[2:0]

DST[2:0]

S

D

Figure 8-81: CCMV Instruction

The following table provides the opcode field values (T), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

T Syntax Instruction

1 if cc GDST = GSRC Conditional Move Register to
Register (MvRegToRegCond)

0 if !cc GDST = GSRC Conditional Move Register to
Register (MvRegToRegCond)

GDST

GDST Encode Table

D DST Syntax

0 --- DREG Register Type

1 --- PREG Register Type

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–249

GSRC

GSRC Encode Table

S SRC Syntax

0 --- DREG Register Type

1 --- PREG Register Type

Cache Control (CacheCtrl)

CacheCtrl Instruction Syntax

Cache Control (CacheCtrl)

15

0

14

0

13

0

12

0

11

0

10

0

9

1

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

0

REG[2:0]

OPC[1:0]

A

Figure 8-82: CacheCtrl Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

00 prefetch [PREGA] Cache Control (CacheCtrl)

01 flushinv [PREGA] Cache Control (CacheCtrl)

10 flush [PREGA] Cache Control (CacheCtrl)

11 iflush [PREGA] Cache Control (CacheCtrl)

PREGA

PREGA Encode Table

A Syntax

0 PREG Register Type

1 PREG Register Type++

Conditional Move (CCMV)

8–250 ADSP-BF7xx Blackfin+ Processor

Call function with pcrel address (CallA)

CallA Instruction Syntax

Call function with pcrel address (CallA)

31

1

30

1

29

1

28

0

27

0

26

0

25

1

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

S SW[23:16]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

SW[15:0] SW[15:0]

Figure 8-83: CallA Instruction

The following table provides the opcode field values (S), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

S Syntax Instruction

0 jump.l imm24s2 Register Type Jump Immediate (JumpAbs)

1 call imm24nxs2 Register Type Call (Call)

Compute with 3 operands (Comp3op)

Comp3op Instruction Syntax

Compute with 3 operands (Comp3op)

15

0

14

1

13

0

12

1

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC[2:0]

DST[2:0]

SRC0[2:0]

SRC1[2:0]

DST[2:0]

Figure 8-84: Comp3op Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

000 DREG Register Type = DREG Register
Type + DREG Register Type

32-bit Add or Subtract (AddSub32)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–251

OPC Syntax Instruction

001 DREG Register Type = DREG Register
Type - DREG Register Type

32-bit Add or Subtract (AddSub32)

010 DREG Register Type = DREG Register
Type & DREG Register Type

32-Bit Logic Operations (Logic32)

011 DREG Register Type = DREG Register
Type | DREG Register Type

32-Bit Logic Operations (Logic32)

100 DREG Register Type = DREG Register
Type ^ DREG Register Type

32-Bit Logic Operations (Logic32)

101 PREG Register Type = PREG Register Type
+ PREG Register Type

32-bit Add or Subtract (DagAdd32)

110 PREG Register Type = PREG Register Type
+ (PREG Register Type << 1)

32-bit Add Shifted Pointer (PtrOp)

111 PREG Register Type = PREG Register Type
+ (PREG Register Type << 2)

32-bit Add Shifted Pointer (PtrOp)

Destructive Binary Operations, dreg with 7bit immediate (CompI2opD)

CompI2opD Instruction Syntax

Destructive Binary Operations, dreg with 7bit immediate (CompI2opD)

15

0

14

1

13

1

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC

SRC[6:0]

DST[2:0]

SRC[6:0]

Figure 8-85: CompI2opD Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

0 DREG Register Type = imm7 Register Type
(x)

32-Bit Register Initialization (LdImmToReg)

1 DREG Register Type += imm7 Register
Type

32-bit Add Constant (AddImm)

Instruction Page Tables

8–252 ADSP-BF7xx Blackfin+ Processor

Destructive Binary Operations, preg with 7bit immediate (CompI2opP)

CompI2opP Instruction Syntax

Destructive Binary Operations, preg with 7bit immediate (CompI2opP)

15

0

14

1

13

1

12

0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC

SRC[6:0]

DST[2:0]

SRC[6:0]

Figure 8-86: CompI2opP Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

0 PREG Register Type = imm7 Register Type
(x)

32-Bit Register Initialization (LdImmToReg)

1 PREG Register Type += imm7 Register Type 32-bit Add or Subtract Constant (DagAd-
dImm)

DAG Arithmetic (DAGModIk)

DAGModIk Instruction Syntax

DAG Arithmetic (DAGModIk)

15

1

14

0

13

0

12

1

11

1

10

1

9

1

8

1

7

0

6

1

5

1

4

0

3

0

2

0

1

0

0

0

I[1:0]

OPC[1:0]

Figure 8-87: DAGModIk Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

00 IREG Register Type += 2 32-bit Add or Subtract Constant (DagAd-
dImm)

01 IREG Register Type -= 2 32-bit Add or Subtract Constant (DagAd-
dImm)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–253

OPC Syntax Instruction

10 IREG Register Type += 4 32-bit Add or Subtract Constant (DagAd-
dImm)

11 IREG Register Type -= 4 32-bit Add or Subtract Constant (DagAd-
dImm)

DAG Arithmetic (DAGModIm)

DAGModIm Instruction Syntax

DAG Arithmetic (DAGModIm)

15

1

14

0

13

0

12

1

11

1

10

1

9

1

8

0

7

0

6

1

5

1

4

0

3

0

2

0

1

0

0

0

I[1:0]

M[1:0]

OP

BR

Figure 8-88: DAGModIm Instruction

The following table provides the opcode field values (OP, BR), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

OP BR Syntax Instruction

0 0 IREG Register Type += MREG Register
Type

32-bit Add or Subtract (DagAdd32)

0 1 IREG Register Type += MREG Register
Type (brev)

32-bit Add or Subtract (DagAdd32)

1 0 IREG Register Type -= MREG Register
Type

32-bit Add or Subtract (DagAdd32)

Instruction Page Tables

8–254 ADSP-BF7xx Blackfin+ Processor

ALU Operations (Dsp32Alu)

Dsp32Alu Instruction Syntax

ALU Operations (Dsp32Alu)

31

1

30

1

29

0

28

0

27

0

26

1

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

DEAD[2:0] AOPC[4:0]

HL

DEAD[2:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

AOP[1:0]

S

X

DST0[2:0]

DST1[2:0]

SRC1[2:0]

SRC0[2:0]

DST1[2:0]

Figure 8-89: Dsp32Alu Instruction

The following table provides the opcode field values (AOPC, AOP, HL, S, X), the instruction syntax overview (Syn-
tax), and a link to the corresponding instruction reference page (Instruction)

AOPC AOP HL S X Syntax Instruction Rev

00000 -- - - - DREG Register Type = DREG Register
Type AOPL DREG Register Type SX

Vectored 16-Bit Add or Subtract (AddSub-
Vec16)

00001 -- 0 - - DREG Register Type = DREG Register
Type +|+ DREG Register Type, DREG Reg-
ister Type = DREG Register Type -|- DREG
Register Type SXA

Vectored 16-Bit Add or Subtract (AddSub-
Vec16)

00001 -- 1 - - DREG Register Type = DREG Register
Type +|- DREG Register Type, DREG Reg-
ister Type = DREG Register Type -|+ DREG
Register Type SXA

Vectored 16-Bit Add or Subtract (AddSub-
Vec16)

00010 00 - - 0 DDST0_HL = DREG_L Register Type +
DREG_L Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00010 01 - - 0 DDST0_HL = DREG_L Register Type +
DREG_H Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00010 10 - - 0 DDST0_HL = DREG_H Register Type +
DREG_L Register Type SAT2

16-Bit Add or Subtract (AddSub16)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–255

AOPC AOP HL S X Syntax Instruction Rev

00010 11 - - 0 DDST0_HL = DREG_H Register Type +
DREG_H Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00011 00 - - 0 DDST0_HL = DREG_L Register Type -
DREG_L Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00011 01 - - 0 DDST0_HL = DREG_L Register Type -
DREG_H Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00011 10 - - 0 DDST0_HL = DREG_H Register Type -
DREG_L Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00011 11 - - 0 DDST0_HL = DREG_H Register Type -
DREG_H Register Type SAT2

16-Bit Add or Subtract (AddSub16)

00100 00 0 - 0 DREG Register Type = DREG Register
Type + DREG Register Type NSAT

32-bit Add or Subtract (AddSub32)

00100 01 0 - 0 DREG Register Type = DREG Register
Type - DREG Register Type NSAT

32-bit Add or Subtract (AddSub32)

00100 10 0 - 0 DREG Register Type = DREG Register
Type + DREG Register Type, DREG Regis-
ter Type = DREG Register Type - DREG
Register Type SAT

32-bit Add and Subtract (AddSub32Dual)

00101 00 - 0 0 DDST0_HL = DREG Register Type +
DREG Register Type (rnd12)

32-Bit Prescale Up Add/Sub to 16-bit (Add-
SubRnd12)

00101 01 - 0 0 DDST0_HL = DREG Register Type -
DREG Register Type (rnd12)

32-Bit Prescale Up Add/Sub to 16-bit (Add-
SubRnd12)

00101 10 - 0 1 DDST0_HL = DREG Register Type +
DREG Register Type (rnd20)

32-Bit Prescale Down Add/Sub to 16-Bit
(AddSubRnd20)

00101 11 - 0 1 DDST0_HL = DREG Register Type -
DREG Register Type (rnd20)

32-Bit Prescale Down Add/Sub to 16-Bit
(AddSubRnd20)

00110 00 0 0 0 DREG Register Type = max(DREG Register
Type, DREG Register Type) (v)

Vectored 16-Bit Maximum (Max16Vec)

00110 01 0 0 0 DREG Register Type = min(DREG Register
Type, DREG Register Type) (v)

Vectored 16-Bit Minimum (Min16Vec)

00110 10 0 0 0 DREG Register Type = abs DREG Register
Type (v)

Vectored 16-Bit Absolute Value (Abs2x16)

00111 00 0 0 0 DREG Register Type = max(DREG Register
Type, DREG Register Type)

32-bit Maximum (Max32)

00111 01 0 0 0 DREG Register Type = min(DREG Register
Type, DREG Register Type)

32-Bit Minimum (Min32)

00111 10 0 0 0 DREG Register Type = abs DREG Register
Type

32-bit Absolute Value (Abs32)

Instruction Page Tables

8–256 ADSP-BF7xx Blackfin+ Processor

AOPC AOP HL S X Syntax Instruction Rev

00111 11 0 - 0 DREG Register Type = -DREG Register
Type NSAT

32-Bit Negate (Neg32)

01000 00 0 0 0 a0 = 0 Accumulator Register Initialization (LdImm-
ToAx)

01000 00 0 1 0 a0 = a0 (s) Accumulator0 32-Bit Saturate (ALU_Sa-
tAcc0)

01000 01 0 0 0 a1 = 0 Accumulator Register Initialization (LdImm-
ToAx)

01000 01 0 1 0 a1 = a1 (s) Accumulator1 32-Bit Saturate (ALU_Sa-
tAcc1)

01000 10 0 0 0 a1 = a0 = 0 Dual Accumulator 0 and 1 Registers Initiali-
zation (LdImmToAxDual)

01000 10 0 1 0 a1 = a1 (s), a0 = a0 (s) Dual Accumulator 32-Bit Saturate
(ALU_SatAccDual)

01000 11 0 0 0 a0 = a1 Move Register to Accumulator0 (MvAx-
ToAx)

01000 11 0 1 0 a1 = a0 Move Register to Accumulator0 (MvAx-
ToAx)

01001 00 - 0 0 A0_HL = DSRC0_HL Move Register Half to 16-Bit Accumulator
Section (MvDregHLToAxHL)

01001 00 0 1 - a0 = DREG Register Type XMODE Move Register to Accumulator1 (MvDreg-
ToAx)

01001 01 0 0 0 a0.x = DREG_L Register Type Move Register Half (LSBs) to 8-Bit Accu-
mulator Section (MvDregLToAxX)

01001 10 - 0 0 A1_HL = DSRC0_HL Move Register Half to 16-Bit Accumulator
Section (MvDregHLToAxHL)

01001 10 0 1 - a1 = DREG Register Type XMODE Move Register to Accumulator1 (MvDreg-
ToAx)

01001 11 0 0 0 a1.x = DREG_L Register Type Move Register Half (LSBs) to 8-Bit Accu-
mulator Section (MvDregLToAxX)

01010 00 0 0 0 DREG_L Register Type = a0.x Move 8-Bit Accumulator Section to Register
Half (MvAxXToDregL)

01010 01 0 0 0 DREG_L Register Type = a1.x Move 8-Bit Accumulator Section to Register
Half (MvAxXToDregL)

01011 00 0 0 0 DREG Register Type = (a0 += a1) Accumulator Add and Extract (AddAccExt)

01011 01 - 0 0 DDST0_HL = (a0 += a1) Accumulator Add and Extract (AddAccExt)

01011 10 0 0 0 a0 += a1 Accumulator Add or Subtract (AddSubAcc)

01011 10 0 1 0 a0 += a1 (w32) Accumulator Add or Subtract (AddSubAcc)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–257

AOPC AOP HL S X Syntax Instruction Rev

01011 11 0 0 0 a0 -= a1 Accumulator Add or Subtract (AddSubAcc)

01011 11 0 1 0 a0 -= a1 (w32) Accumulator Add or Subtract (AddSubAcc)

01100 00 0 0 0 DREG_H Register Type = DREG_L Regis-
ter Type = sign(DREG_H Register Type) *
DREG_H Register Type + sign(DREG_L
Register Type) * DREG_L Register Type

16-Bit Add on Sign (AddOnSign)

01100 01 0 0 0 DREG Register Type = a1.l + a1.h, DREG
Register Type = a0.l + a0.h

Dual Accumulator Extraction with Addition
(AddAccHalf)

01100 11 - 0 0 DDST0_HL = DREG Register Type (rnd) Fractional 32-bit to 16-Bit Conversion
(Pass32Rnd16)

01101 00 0 0 0 (DREG Register Type, DREG Register
Type) = search DREG Register Type (gt)

Vectored 16-Bit Search (Search)

01101 01 0 0 0 (DREG Register Type, DREG Register
Type) = search DREG Register Type (ge)

Vectored 16-Bit Search (Search)

01101 10 0 0 0 (DREG Register Type, DREG Register
Type) = search DREG Register Type (lt)

Vectored 16-Bit Search (Search)

01101 11 0 0 0 (DREG Register Type, DREG Register
Type) = search DREG Register Type (le)

Vectored 16-Bit Search (Search)

01110 00 0 0 0 a0 = -a0 Accumulator0 Negate (NegAcc0)

01110 00 1 0 0 a1 = -a0 Accumulator1 Negate (NegAcc1)

01110 01 0 0 0 a0 = -a1 Accumulator0 Negate (NegAcc0)

01110 01 1 0 0 a1 = -a1 Accumulator1 Negate (NegAcc1)

01110 11 0 0 0 a1 = -a1, a0 = -a0 Dual Accumulator Negate (NegAccDual)

01111 11 0 0 0 DREG Register Type = -DREG Register
Type (v)

Vectored 16-bit Negate (Neg16Vec)

10000 00 0 0 0 a0 = abs a0 Accumulator0 Absolute Value (AbsAcc0)

10000 00 1 0 0 a1 = abs a0 Accumulator Absolute Value (AbsAcc1)

10000 01 0 0 0 a0 = abs a1 Accumulator0 Absolute Value (AbsAcc0)

10000 01 1 0 0 a1 = abs a1 Accumulator Absolute Value (AbsAcc1)

10000 11 0 0 0 a1 = abs a1, a0 = abs a0 Accumulator Absolute Value (AbsAccDual)

10000 11 1 - - a1 = DREG Register Type SMODE, a0 =
DREG Register Type XMODE

Move Register to Accumulator0 & Accumu-
lator1 (MvDregToAxDual)

2.1

10001 00 0 - 0 DREG Register Type = a1 + a0, DREG Reg-
ister Type = a1 - a0 SAT

Dual Accumulator Add and Subtract to Reg-
isters (AddSubAccExt)

10001 01 0 - 0 DREG Register Type = a0 + a1, DREG Reg-
ister Type = a0 - a1 SAT

Dual Accumulator Add and Subtract to Reg-
isters (AddSubAccExt)

Instruction Page Tables

8–258 ADSP-BF7xx Blackfin+ Processor

AOPC AOP HL S X Syntax Instruction Rev

10010 00 0 - 0 saa (PAIR0, PAIR1) RS Vectored 8-Bit Sum of Absolute Differences
(SAD8Vec)

10010 11 0 0 0 disalgnexcpt Disable Alignment Exception (DisAlignEx-
cept)

10100 00 0 - 0 DREG Register Type = byteop1p (PAIR0,
PAIR1) RS

Vector Byte Average (Byteop1P) (Avg8Vec)

10100 01 0 - 0 DREG Register Type = byteop1p (PAIR0,
PAIR1) (t RSC)

Vector Byte Average (Byteop1P) (Avg8Vec)

10101 00 0 - 0 (DREG Register Type, DREG Register
Type) = byteop16p (PAIR0, PAIR1) RS

Vectored 8-Bit Add or Subtract to 16-Bit
(Byteop16P/M) (AddSub4x8)

10101 01 0 - 0 (DREG Register Type, DREG Register
Type) = byteop16m (PAIR0, PAIR1) RS

Vectored 8-Bit Add or Subtract to 16-Bit
(Byteop16P/M) (AddSub4x8)

10110 00 0 - 0 DREG Register Type = byteop2p (PAIR0,
PAIR1) (rndl RSC)

Quad Byte Average (Byteop2P) (Avg4x8Vec)

10110 00 1 - 0 DREG Register Type = byteop2p (PAIR0,
PAIR1) (rndh RSC)

Quad Byte Average (Byteop2P) (Avg4x8Vec)

10110 01 0 - 0 DREG Register Type = byteop2p (PAIR0,
PAIR1) (tl RSC)

Quad Byte Average (Byteop2P) (Avg4x8Vec)

10110 01 1 - 0 DREG Register Type = byteop2p (PAIR0,
PAIR1) (th RSC)

Quad Byte Average (Byteop2P) (Avg4x8Vec)

10111 00 0 - 0 DREG Register Type = byteop3p (PAIR0,
PAIR1) (lo RSC)

Vectored 8-Bit to 16-Bit Add then Clip to 8-
Bit (Byteop3P) (AddClip)

10111 00 1 - 0 DREG Register Type = byteop3p (PAIR0,
PAIR1) (hi RSC)

Vectored 8-Bit to 16-Bit Add then Clip to 8-
Bit (Byteop3P) (AddClip)

11000 00 0 0 0 DREG Register Type = bytepack (DREG
Register Type, DREG Register Type)

Pack 8-Bit to 32-Bit (BytePack)

11000 01 0 - 0 (DREG Register Type, DREG Register
Type) = byteunpack PAIR0 RS

Spread 8-Bit to 16-Bit (ByteUnPack)

11001 00 0 - 0 DREG Register Type = DREG Register
Type + DREG Register Type + ac0 SAT

32-Bit Add or Subtract with Carry (AddSu-
bAC0)

2.0

11001 01 0 - 0 DREG Register Type = DREG Register
Type - DREG Register Type + ac0 - 1 SAT

32-Bit Add or Subtract with Carry (AddSu-
bAC0)

2.0

A0_HL

A0_HL Encode Table

HL Syntax

0 a0.l

ALU Operations (Dsp32Alu)

ADSP-BF7xx Blackfin+ Processor 8–259

HL Syntax

1 a0.h

A1_HL

A1_HL Encode Table

HL Syntax

0 a1.l

1 a1.h

AOPL

AOPL Encode Table

AOP Syntax

00 +|+

01 +|-

10 -|+

11 -|-

DDST0_HL

DDST0_HL Encode Table

HL Syntax

0 DREG_L Register Type

1 DREG_H Register Type

DSRC0_HL

DSRC0_HL Encode Table

HL Syntax

0 DREG_L Register Type

1 DREG_H Register Type

ALU Operations (Dsp32Alu)

8–260 ADSP-BF7xx Blackfin+ Processor

NSAT

NSAT Encode Table

S Syntax Description

0 (ns) The (ns) option directs the ALU not to saturate the result.

1 (s) The (s) option directs the ALU to saturate the result at 16 or 32 bits,
depending on the operand size.

PAIR0

PAIR0 Encode Table

SRC0 Syntax

00- r1:0

01- r3:2

PAIR1

PAIR1 Encode Table

SRC1 Syntax

00- r1:0

01- r3:2

RS

RS Encode Table

S Syntax Description

0 The default (no option select) operation directs the ALU to execute the
operation with no optional modification to the result.

1 (r) The (r) option directs the ALU to reverse the order of the source regis-
ters within each register pair.

ALU Operations (Dsp32Alu)

ADSP-BF7xx Blackfin+ Processor 8–261

RSC

RSC Encode Table

S Syntax Description

0 The default (no option select) operation directs the ALU to execute the
operation with no optional modification to the result.

1 ,r The ,r option directs the ALU to reverse the order of the source regis-
ters within each register pair.

SAT

SAT Encode Table

S Syntax Description

0 (ns) The (ns) option directs the ALU not to saturate the result.

1 (s) The (s) option directs the ALU to saturate the result at 16 or 32 bits, depending on the
operand size.

SAT2

SAT2 Encode Table

S Syntax Description

0 (ns) The (ns) option directs the ALU not to saturate the result.

1 (s) The (s) option directs the ALU to saturate the result at 16 or 32 bits,
depending on the operand size.

SMODE

SMODE Encode Table

S Syntax Description Rev

0 (x) The (x) option directs the ALU to sign-extend the result. 2.1

1 (z) The (z) option directs the ALU to zero extend the result. 2.1

ALU Operations (Dsp32Alu)

8–262 ADSP-BF7xx Blackfin+ Processor

SX

SX Encode Table

S X Syntax Description

0 0 The default (no option select) operation directs the ALU to execute the operation with no
optional modification to the result.

0 1 (co) The (co) option directs the ALU to swap (cross order) the order of the results in the desti-
nation register.

1 0 (s) The (s) option directs the ALU to saturate the result at 16 or 32 bits, depending on the
operand size.

1 1 (sco) The (sco) option directs the ALU to apply the combination of the (co) and (s) op-
tions.

SXA

SXA Encode Table

AOP S X Syntax Description

00 0 0 The default (no option select) operation directs the ALU to execute the
operation with no optional modification to the result.

00 0 1 (co) The (co) option directs the ALU to swap (cross order) the order of the
results in the destination register.

00 1 0 (s) The (s) option directs the ALU to saturate the result at 16 or 32 bits,
depending on the operand size.

00 1 1 (sco) The (sco) option directs the ALU to apply the combination of the
(co) and (s) options.

10 0 0 (asr) The (asr) option directs the ALU to arithmetic shift right, halving the
result (divide by 2) before storing in the destination register.

10 0 1 (co, asr) The (co, asr) option directs the ALU to to apply the combination of
the (asr) and (co) options

10 1 0 (s, asr) The (s, asr) option directs the ALU to arithmetic shift right (halving
the result; divide by 2) then saturate before storing in the destination
register.

10 1 1 (sco, asr) The (sco, asr) option directs the ALU to apply the combination of
the (asr) and (sco) options

11 0 0 (asl) The (asl) option directs the ALU to arithmetic shift left, doubling the
result (multiply by 2, truncated) before storing in the destination regis-
ter.

11 0 1 (co, asl) The (co, asl) option directs the ALU to to apply the combination of
the (asl) and (co) options

ALU Operations (Dsp32Alu)

ADSP-BF7xx Blackfin+ Processor 8–263

AOP S X Syntax Description

11 1 0 (s, asl) The (s, asl) option directs the ALU to arithmetic shift left (doubling
the result; multiply by 2, truncated) then saturate before storing in the
destination register.

11 1 1 (sco, asl) The (sco, asl) option directs the ALU to apply the combination of
the (asl) and (sco) options

XMODE

XMODE Encode Table

X Syntax Description Rev

0 (x) The (x) option directs the ALU to sign-extend the result. 2.1

1 (z) The (z) option directs the ALU to zero extend the result. 2.1

Multiply Accumulate (Dsp32Mac)

Dsp32Mac Instruction Syntax

Mulitply Accumulate (Dsp32Mac)

31

1

30

1

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

MMOD[3:0] OP1[1:0]

W1

P

MM

MMOD[3:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

H01

H11

W0

OP0[1:0]

H00

H10

DST[2:0]

SRC1[2:0]

SRC0[2:0]

DST[2:0]

Figure 8-90: Dsp32Mac Instruction

ALU Operations (Dsp32Alu)

8–264 ADSP-BF7xx Blackfin+ Processor

The following table provides the opcode field values (MMOD), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

MMOD Syntax

0--- TRADMAC

10-- TRADMAC

1100 TRADMAC

1101 CMPLXMAC

111- CMPLXMAC

CMODE

CMODE Encode Table

MMOD Syntax Description

1101 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1111 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–265

CMPLXMAC

CMPLXMAC Encode Table

W0 P OP0 Syntax Instruction Rev

0 0 00 a1:0 = CMPLXOP CMODE 2.0

0 0 01 a1:0 += CMPLXOP CMODE 2.0

0 0 10 a1:0 -= CMPLXOP CMODE 2.0

1 0 00 DREG Register Type = (a1:0 = CMPLXOP) NARROWING_CMODE 2.0

1 0 01 DREG Register Type = (a1:0 += CMPLXOP) NARROW-
ING_CMODE

2.0

1 0 10 DREG Register Type = (a1:0 -= CMPLXOP) NARROW-
ING_CMODE

2.0

1 0 11 DREG Register Type = CMPLXOP NARROWING_CMODE 2.0

1 1 00 DREG_PAIR Register Type = (a1:0 = CMPLXOP) CMODE 2.0

1 1 01 DREG_PAIR Register Type = (a1:0 += CMPLXOP) CMODE 2.0

1 1 10 DREG_PAIR Register Type = (a1:0 -= CMPLXOP) CMODE 2.0

1 1 11 DREG_PAIR Register Type = CMPLXOP CMODE 2.0

CMPLXOP

CMPLXOP Encode Table

OP1 Syntax

00 cmul(DREG Register Type, DREG Register
Type)

01 cmul(DREG Register Type, DREG Register
Type*)

10 cmul(DREG Register Type*, DREG Regis-
ter Type*)

MAC0

MAC0 Encode Table

OP0 Syntax

00 a0 = MAC0S

01 a0 += MAC0S

Multiply Accumulate (Dsp32Mac)

8–266 ADSP-BF7xx Blackfin+ Processor

OP0 Syntax

10 a0 -= MAC0S

MAC0S

MAC0S Encode Table

H00 H10 Syntax

0 0 DREG_L Register Type * DREG_L Register
Type

0 1 DREG_L Register Type * DREG_H Regis-
ter Type

1 0 DREG_H Register Type * DREG_L Regis-
ter Type

1 1 DREG_H Register Type * DREG_H Regis-
ter Type

MAC1

MAC1 Encode Table

OP1 Syntax

00 a1 = MAC1S

01 a1 += MAC1S

10 a1 -= MAC1S

MAC1S

MAC1S Encode Table

H01 H11 Syntax

0 0 DREG_L Register Type * DREG_L Register
Type

0 1 DREG_L Register Type * DREG_H Regis-
ter Type

1 0 DREG_H Register Type * DREG_L Regis-
ter Type

1 1 DREG_H Register Type * DREG_H Regis-
ter Type

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–267

MML

MML Encode Table

MM Syntax Description

0 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1 (m) The (m) option directs the MAC to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

MMLMMOD0

MMLMMOD0 Encode Table

MM MMOD Syntax Description

0 0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0011 (w32) The (w32) option directs the MAC to use signed fraction with 32-bit saturation. Multiply
1.15 x 1.15 to produce 1.31 format data after shift correction. Sign extend the result to
9.31 format before passing it to the accumulator. Saturate the accumulator after copying or

Multiply Accumulate (Dsp32Mac)

8–268 ADSP-BF7xx Blackfin+ Processor

MM MMOD Syntax Description

accumulating at bit 31 to maintain 1.31 precision. Result is between minimum -1 and

maximum 1-2-31 (or, expressed in hex, between minimum 0xFF 8000 0000 and maximum
0x00 7FFF FFFF).

0 0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum
0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round accu-
mulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0 1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1 0000 (m) The (m) option directs the MAC to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1 0011 (m,w32) The (m,w32) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed fraction (with 32-bit saturation) operation.

1 0100 (m,fu) The (m,fu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned fraction format operation.

1 1000 (m,is) The (m,is) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format operation.

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–269

MMLMMOD1

MMLMMOD1 Encode Table

MM MMOD Syntax Description

0 0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0001 (s2rnd) The (s2rnd) option directs the MAC to use signed fraction format with scaling and
rounding. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The
special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same
as the default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulat-
ing to accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator
result is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract
to half register, shift the accumulator contents one place to the left (multiply x 2). Round
accumulator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 1.15 precision and copy it to the destination register half. Result

is between minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF). To extract to full register, shift the accumulator contents
one place to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the

destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in
hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF)

0 0010 (t) The (t) option directs the MAC to use signed fraction format with truncation. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default
mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to accumu-
lator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register,
truncate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF).

0 0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum

Multiply Accumulate (Dsp32Mac)

8–270 ADSP-BF7xx Blackfin+ Processor

MM MMOD Syntax Description

0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0 0110 (tfu) The (tfu) option directs the MAC to use unsigned fraction format with truncation. Mul-
tiply 0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of
0x8000 * 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction
occurs. (Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or
accumulating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accu-
mulator result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To
extract to half-register, truncate Accumulator 8.32 format value at bit 16. (Perform no
rounding.) Saturate the result to 0.16 precision and copy it to the destination register half.

Result is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between mini-
mum 0x0000 and maximum 0xFFFF).

0 1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1001 (iss2) The (iss2) option directs the MAC to use signed integer format with scaling. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 40.0 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract
the lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Satu-
rate the result for 16.0 format and copy to the destination register half. Result is between

minimum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, shift the accumulator contents one place to
the left (multiply x 2), saturate the result for 32.0 format, and copy to the destination regis-

ter. Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1011 (ih) The (ih) option directs the MAC to use signed integer format, high word extract. Multi-
ply 16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumulator.
Then, saturate accumulator to maintain 32.0 precision; accumulator result is between min-
imum 0x00 8000 0000 and maximum 0x00 7FFF FFFF. To extract to half-register, round
accumulator 40.0 format value at bit 16. (The ASTAT.RND_MOD bit controls the

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–271

MM MMOD Syntax Description

rounding.) Saturate to 32.0 result. Copy the upper 16 bits of that value to the destination

register half. Result is between minimum -215 and maximum 215-1 (or, expressed in hex,
between minimum 0x8000 and maximum 0x7FFF).

0 1100 (iu) The (iu) option directs the MAC to use unsigned integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x00 0000 0000 and maximum
0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0 precision
and copy to the destination register half. Result is between minimum 0 and maximum

216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

1 0000 (m) The (m) option directs the MAC to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1 0001 (m,s2rnd) The (m,s2rnd) option directs the MAC to use mixed mode multiply format (valid only
for MAC1) and signed fraction format (with scaling and rounding) operation.

1 0010 (m,t) The (m,t) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed fraction format (with truncation) operation.

1 0100 (m,fu) The (m,fu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned fraction format operation.

1 0110 (m,tfu) The (m,tfu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned fraction format (with truncation) operation.

1 1000 (m,is) The (m,is) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format operation.

1 1001 (m,iss2) The (m,iss2) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format with scaling operation.

1 1011 (m,ih) The (m,ih) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format (high word extract) operation.

1 1100 (m,iu) The (m,iu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned integer format operation.

Multiply Accumulate (Dsp32Mac)

8–272 ADSP-BF7xx Blackfin+ Processor

MMLMMODE

MMLMMODE Encode Table

MM MMOD Syntax Description

0 0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0001 (s2rnd) The (s2rnd) option directs the MAC to use signed fraction format with scaling and
rounding. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The
special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same
as the default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulat-
ing to accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator
result is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract
to half register, shift the accumulator contents one place to the left (multiply x 2). Round
accumulator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 1.15 precision and copy it to the destination register half. Result

is between minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF). To extract to full register, shift the accumulator contents
one place to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the

destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in
hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF)

0 0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum
0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round accu-
mulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0 1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–273

MM MMOD Syntax Description

before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1001 (iss2) The (iss2) option directs the MAC to use signed integer format with scaling. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 40.0 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract
the lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Satu-
rate the result for 16.0 format and copy to the destination register half. Result is between

minimum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, shift the accumulator contents one place to
the left (multiply x 2), saturate the result for 32.0 format, and copy to the destination regis-

ter. Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1100 (iu) The (iu) option directs the MAC to use unsigned integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x00 0000 0000 and maximum
0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0 precision
and copy to the destination register half. Result is between minimum 0 and maximum

216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

1 0000 (m) The (m) option directs the MAC to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1 0001 (m,s2rnd) The (m,s2rnd) option directs the MAC to use mixed mode multiply format (valid only
for MAC1) and signed fraction format (with scaling and rounding) operation.

1 0100 (m,fu) The (m,fu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned fraction format operation.

1 1000 (m,is) The (m,is) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format operation.

1 1001 (m,iss2) The (m,iss2) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and signed integer format with scaling operation.

1 1100 (m,iu) The (m,iu) option directs the MAC to use mixed mode multiply format (valid only for
MAC1) and unsigned integer format operation.

Multiply Accumulate (Dsp32Mac)

8–274 ADSP-BF7xx Blackfin+ Processor

MMOD0

MMOD0 Encode Table

MM
OD

Syntax Description

0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0011 (w32) The (w32) option directs the MAC to use signed fraction with 32-bit saturation. Multiply
1.15 x 1.15 to produce 1.31 format data after shift correction. Sign extend the result to
9.31 format before passing it to the accumulator. Saturate the accumulator after copying or
accumulating at bit 31 to maintain 1.31 precision. Result is between minimum -1 and

maximum 1-2-31 (or, expressed in hex, between minimum 0xFF 8000 0000 and maximum
0x00 7FFF FFFF).

0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum
0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round accu-
mulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–275

MMOD1

MMOD1 Encode Table

MMOD Syntax Description

0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0001 (s2rnd) The (s2rnd) option directs the MAC to use signed fraction format with scaling and
rounding. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The
special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same
as the default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulat-
ing to accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator
result is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract
to half register, shift the accumulator contents one place to the left (multiply x 2). Round
accumulator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 1.15 precision and copy it to the destination register half. Result

is between minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF). To extract to full register, shift the accumulator contents
one place to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the

destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in
hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF)

0010 (t) The (t) option directs the MAC to use signed fraction format with truncation. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default
mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to accumu-
lator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register,
truncate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF).

0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum

Multiply Accumulate (Dsp32Mac)

8–276 ADSP-BF7xx Blackfin+ Processor

MMOD Syntax Description

0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0110 (tfu) The (tfu) option directs the MAC to use unsigned fraction format with truncation. Mul-
tiply 0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of
0x8000 * 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction
occurs. (Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or
accumulating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accu-
mulator result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To
extract to half-register, truncate Accumulator 8.32 format value at bit 16. (Perform no
rounding.) Saturate the result to 0.16 precision and copy it to the destination register half.

Result is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between mini-
mum 0x0000 and maximum 0xFFFF).

1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1001 (iss2) The (iss2) option directs the MAC to use signed integer format with scaling. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 40.0 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract
the lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Satu-
rate the result for 16.0 format and copy to the destination register half. Result is between

minimum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, shift the accumulator contents one place to
the left (multiply x 2), saturate the result for 32.0 format, and copy to the destination regis-

ter. Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1011 (ih) The (ih) option directs the MAC to use signed integer format, high word extract. Multi-
ply 16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to Accumulator.
Then, saturate accumulator to maintain 32.0 precision; accumulator result is between min-
imum 0x00 8000 0000 and maximum 0x00 7FFF FFFF. To extract to half-register, round
accumulator 40.0 format value at bit 16. (The ASTAT.RND_MOD bit controls the

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–277

MMOD Syntax Description

rounding.) Saturate to 32.0 result. Copy the upper 16 bits of that value to the destination

register half. Result is between minimum -215 and maximum 215-1 (or, expressed in hex,
between minimum 0x8000 and maximum 0x7FFF).

1100 (iu) The (iu) option directs the MAC to use unsigned integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x00 0000 0000 and maximum
0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0 precision
and copy to the destination register half. Result is between minimum 0 and maximum

216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

MMODE

MMODE Encode Table

MMOD Syntax Description

0000 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0001 (s2rnd) The (s2rnd) option directs the MAC to use signed fraction format with scaling and
rounding. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The
special case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same
as the default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulat-
ing to accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator
result is between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract
to half register, shift the accumulator contents one place to the left (multiply x 2). Round
accumulator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 1.15 precision and copy it to the destination register half. Result

is between minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum
0x8000 and maximum 0x7FFF). To extract to full register, shift the accumulator contents
one place to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the

destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in
hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF)

Multiply Accumulate (Dsp32Mac)

8–278 ADSP-BF7xx Blackfin+ Processor

MMOD Syntax Description

0100 (fu) The (fu) option directs the MAC to use unsigned fraction format. Multiply 0.16* 0.16
formats to produce 0.32 results. No shift correction. The special case of 0x8000 * 0x8000
yields 0x4000 0000. No saturation is necessary since no shift correction occurs. Zero ex-
tend 0.32 result to 8.32 format before copying or accumulating to accumulator. Then, sat-
urate accumulator to maintain 8.32 precision; accumulator result is between minimum
0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round accu-
mulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

1000 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1001 (iss2) The (iss2) option directs the MAC to use signed integer format with scaling. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 40.0 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract
the lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Satu-
rate the result for 16.0 format and copy to the destination register half. Result is between

minimum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, shift the accumulator contents one place to
the left (multiply x 2), saturate the result for 32.0 format, and copy to the destination regis-

ter. Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1100 (iu) The (iu) option directs the MAC to use unsigned integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x00 0000 0000 and maximum
0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0 precision
and copy to the destination register half. Result is between minimum 0 and maximum

216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–279

NARROWING_CMODE

NARROWING_CMODE Encode Table

MMOD Syntax Description

1101 The default (no option) operation directs the MAC to use signed fraction format. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend 1.31 re-
sult to 9.31 format before copying or accumulating to Accumulator. Then, saturate Accu-
mulator to maintain 9.31 precision; Accumulator result is between minimum 0x80 0000
0000 and maximum 0x7F FFFF FFFF. To extract to half register, round Accumulator 9.31
format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and copy it to

the destination register. Result is between minimum -1 and maximum 1-2-31 (or, expressed
in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1110 (t) The (t) option directs the MAC to use signed fraction format with truncation. Multiply
1.15 * 1.15 formats to produce 1.31 results after shift correction. The special case of
0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default
mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to accumu-
lator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is between
minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register,
truncate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the re-
sult to 1.15 precision and copy it to the destination register half. Result is between mini-

mum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maxi-
mum 0x7FFF).

1111 (is) The (is) option directs the MAC to use signed integer format. Multiply 16.0 * 16.0 for-
mats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

TRADMAC

TRADMAC Encode Table

P W1 W0 OP1 OP0 Syntax Instruction

0 0 0 11 0- MAC0 MMOD0 16 x 16-Bit MAC (Mac16)

0 0 0 11 10 MAC0 MMOD0 16 x 16-Bit MAC (Mac16)

Multiply Accumulate (Dsp32Mac)

8–280 ADSP-BF7xx Blackfin+ Processor

P W1 W0 OP1 OP0 Syntax Instruction

0 0 0 0- 11 MAC1 MMLMMOD0 16 x 16-Bit MAC (Mac16)

0 0 0 10 11 MAC1 MMLMMOD0 16 x 16-Bit MAC (Mac16)

0 0 0 0- 0- MAC1 MML, MAC0 MMOD0 Dual 16 x 16-Bit MAC (Para-
Mac16AndMac16)

0 0 0 0- 10 MAC1 MML, MAC0 MMOD0 Dual 16 x 16-Bit MAC (Para-
Mac16AndMac16)

0 0 0 10 0- MAC1 MML, MAC0 MMOD0 Dual 16 x 16-Bit MAC (Para-
Mac16AndMac16)

0 0 0 10 10 MAC1 MML, MAC0 MMOD0 Dual 16 x 16-Bit MAC (Para-
Mac16AndMac16)

0 0 1 11 11 DREG_L Register Type = a0
MMOD1

Move 16-Bit Accumulator Section
to Low Half Register (MvA0To-
DregL)

0 0 1 11 0- DREG_L Register Type = (MAC0)
MMOD1

16 x 16-Bit MAC with Move to
Register (Mac16WithMv)

0 0 1 11 10 DREG_L Register Type = (MAC0)
MMOD1

16 x 16-Bit MAC with Move to
Register (Mac16WithMv)

0 0 1 0- 11 MAC1 MML, DREG_L Register
Type = a0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16AndMv)

0 0 1 10 11 MAC1 MML, DREG_L Register
Type = a0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16AndMv)

0 0 1 0- 0- MAC1 MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

0 0 1 0- 10 MAC1 MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

0 0 1 10 0- MAC1 MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

0 0 1 10 10 MAC1 MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

0 1 0 11 11 DREG_H Register Type = a1
MMLMMOD1

Move 16-Bit Accumulator Section
to High Half Register (MvA1To-
DregH)

0 1 0 11 0- DREG_H Register Type = a1
MML, MAC0 MMOD1

Dual Move to Register and 16 x
16-Bit MAC (ParaMvAndMac16)

0 1 0 11 10 DREG_H Register Type = a1
MML, MAC0 MMOD1

Dual Move to Register and 16 x
16-Bit MAC (ParaMvAndMac16)

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–281

P W1 W0 OP1 OP0 Syntax Instruction

0 1 0 0- 11 DREG_H Register Type =
(MAC1) MMLMMOD1

16 x 16-Bit MAC with Move to
Register (Mac16WithMv)

0 1 0 10 11 DREG_H Register Type =
(MAC1) MMLMMOD1

16 x 16-Bit MAC with Move to
Register (Mac16WithMv)

0 1 0 0- 0- DREG_H Register Type =
(MAC1) MML, MAC0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

0 1 0 0- 10 DREG_H Register Type =
(MAC1) MML, MAC0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

0 1 0 10 0- DREG_H Register Type =
(MAC1) MML, MAC0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

0 1 0 10 10 DREG_H Register Type =
(MAC1) MML, MAC0 MMOD1

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

0 1 1 11 11 DREG_H Register Type = a1
MML, DREG_L Register Type =
a0 MMOD1

Dual Move Accumulators to Half
Registers (ParaMvA1ToDregH-
withMvA0ToDregL)

0 1 1 11 0- DREG_H Register Type = a1
MML, DREG_L Register Type =
(MAC0) MMOD1

Dual Move to Register and 16 x
16-Bit MAC with Move to Register
(ParaMvAndMac16WithMv)

0 1 1 11 10 DREG_H Register Type = a1
MML, DREG_L Register Type =
(MAC0) MMOD1

Dual Move to Register and 16 x
16-Bit MAC with Move to Register
(ParaMvAndMac16WithMv)

0 1 1 0- 11 DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = a0 MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMv)

0 1 1 10 11 DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = a0 MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMv)

0 1 1 0- 0- DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

0 1 1 10 0- DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

Multiply Accumulate (Dsp32Mac)

8–282 ADSP-BF7xx Blackfin+ Processor

P W1 W0 OP1 OP0 Syntax Instruction

0 1 1 0- 10 DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMac16WithM
v)

0 1 1 10 10 DREG_H Register Type =
(MAC1) MML, DREG_L Register
Type = (MAC0) MMOD1

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

1 0 1 11 11 DREG_E Register Type = a0
MMODE

Move 32-Bit Accumulator Section
to Even Register (MvA0ToDregE)

1 0 1 11 0- DREG_E Register Type = (MAC0)
MMODE

32 x 32-Bit MAC with Move to
Register (Mac32WithMv)

1 0 1 11 10 DREG_E Register Type = (MAC0)
MMODE

32 x 32-Bit MAC with Move to
Register (Mac32WithMv)

1 0 1 0- 11 MAC1 MML, DREG_E Register
Type = a0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16AndMv)

1 0 1 0- 0- MAC1 MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

1 0 1 0- 10 MAC1 MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

1 0 1 10 11 MAC1 MML, DREG_E Register
Type = a0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16AndMv)

1 0 1 10 0- MAC1 MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

1 0 1 10 10 MAC1 MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16And-
Mac16WithMv)

1 1 0 11 11 DREG_O Register Type = a1
MMLMMODE

Move 32-Bit Accumulator Section
to Odd Register (MvA1ToDregO)

1 1 0 11 0- DREG_O Register Type = a1
MML, MAC0 MMODE

Dual Move to Register and 16 x
16-Bit MAC (ParaMvAndMac16)

1 1 0 11 10 DREG_O Register Type = a1
MML, MAC0 MMODE

Dual Move to Register and 16 x
16-Bit MAC (ParaMvAndMac16)

1 1 0 0- 11 DREG_O Register Type =
(MAC1) MMLMMODE

32 x 32-Bit MAC with Move to
Register (Mac32WithMv)

1 1 0 10 11 DREG_O Register Type =
(MAC1) MMLMMODE

32 x 32-Bit MAC with Move to
Register (Mac32WithMv)

Multiply Accumulate (Dsp32Mac)

ADSP-BF7xx Blackfin+ Processor 8–283

P W1 W0 OP1 OP0 Syntax Instruction

1 1 0 0- 0- DREG_O Register Type =
(MAC1) MML, MAC0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

1 1 0 0- 10 DREG_O Register Type =
(MAC1) MML, MAC0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

1 1 0 10 0- DREG_O Register Type =
(MAC1) MML, MAC0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

1 1 0 10 10 DREG_O Register Type =
(MAC1) MML, MAC0 MMODE

Dual 16 x 16-Bit MAC with Move
to Register (ParaMac16With-
MvAndMac16)

1 1 1 11 11 DREG_O Register Type = a1
MML, DREG_E Register Type =
a0 MMODE

Dual Move Accumulators to Regis-
ter (ParaMvA1ToDregOwithM-
vA0ToDregE)

1 1 1 11 0- DREG_O Register Type = a1
MML, DREG_E Register Type =
(MAC0) MMODE

Dual Move to Register and 16 x
16-Bit MAC with Move to Register
(ParaMvAndMac16WithMv)

1 1 1 11 10 DREG_O Register Type = a1
MML, DREG_E Register Type =
(MAC0) MMODE

Dual Move to Register and 16 x
16-Bit MAC with Move to Register
(ParaMvAndMac16WithMv)

1 1 1 0- 11 DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = a0 MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMv)

1 1 1 10 11 DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = a0 MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMv)

1 1 1 0- 0- DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

1 1 1 0- 10 DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

1 1 1 10 0- DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAnd-
Mac16WithMv)

Multiply Accumulate (Dsp32Mac)

8–284 ADSP-BF7xx Blackfin+ Processor

P W1 W0 OP1 OP0 Syntax Instruction

1 1 1 10 10 DREG_O Register Type =
(MAC1) MML, DREG_E Register
Type = (MAC0) MMODE

Dual 16 x 16-Bit MAC with
Moves to Registers (Para-
Mac16WithMvAndMac16WithM
v)

Multiply with 3 operands (Dsp32Mult)

Dsp32Mult Instruction Syntax

Multiply with 3 operands (Dsp32Mult)

31

1

30

1

29

0

28

0

27

0

26

0

25

1

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

MMOD[3:0] OP1[1:0]

W1

P

MM

MMOD[3:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

H01

H11

W0

OP0[1:0]

H00

H10

DST[2:0]

SRC1[2:0]

SRC0[2:0]

DST[2:0]

Figure 8-91: Dsp32Mult Instruction

The following table provides the opcode field values (OP1, OP0, MM, P, W1, W0), the instruction syntax overview
(Syntax), and a link to the corresponding instruction reference page (Instruction)

OP1 OP0 MM P W1 W0 Syntax Instruction Rev

00 00 0 0 0 1 DREG_L Register Type = MUL0 MMOD1 16 x 16-Bit Multiply (Mult16)

00 00 - 0 1 0 DREG_H Register Type = MUL1
MMLMMOD1

16 x 16-Bit Multiply (Mult16)

00 00 - 0 1 1 DREG_H Register Type = MUL1 MML,
DREG_L Register Type = MUL0 MMOD1

Dual 16 x 16-Bit Multiply (ParaMult16And-
Mult16)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–285

OP1 OP0 MM P W1 W0 Syntax Instruction Rev

00 00 0 1 0 1 DREG_E Register Type = MUL0 MMODE 16 x 16-Bit Multiply (Mult16)

00 00 - 1 1 0 DREG_O Register Type = MUL1
MMLMMODE

16 x 16-Bit Multiply (Mult16)

00 00 - 1 1 1 DREG_O Register Type = MUL1 MML,
DREG_E Register Type = MUL0 MMODE

Move Accumulator to Register (MvAxTo-
Dreg)

01 00 0 0 0 0 a1:0 = DREG Register Type * DREG Regis-
ter Type M32MMOD

32 x 32-Bit MAC (Mac32) 2.1

01 01 0 0 0 0 a1:0 += DREG Register Type * DREG Reg-
ister Type M32MMOD

32 x 32-Bit MAC (Mac32) 2.1

01 10 0 0 0 0 a1:0 -= DREG Register Type * DREG Reg-
ister Type M32MMOD

32 x 32-Bit MAC (Mac32) 2.1

01 00 0 0 0 1 DREG Register Type = (a1:0 = DREG Reg-
ister Type * DREG Register Type)
M32MMOD1

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 01 0 0 0 1 DREG Register Type = (a1:0 += DREG
Register Type * DREG Register Type)
M32MMOD1

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 10 0 0 0 1 DREG Register Type = (a1:0 -= DREG Reg-
ister Type * DREG Register Type)
M32MMOD1

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 11 0 0 0 1 DREG Register Type = a1:0 M32MMOD2 Move Accumulator to Register (MvAxTo-
Dreg)

2.1

01 00 0 1 0 1 DREG_PAIR Register Type = (a1:0 =
DREG Register Type * DREG Register
Type) M32MMOD

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 01 0 1 0 1 DREG_PAIR Register Type = (a1:0 +=
DREG Register Type * DREG Register
Type) M32MMOD

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 10 0 1 0 1 DREG_PAIR Register Type = (a1:0 -=
DREG Register Type * DREG Register
Type) M32MMOD

32 x 32-Bit MAC with Move to Register
(Mac32WithMv)

2.1

01 11 0 1 0 1 DREG_PAIR Register Type = a1:0
M32MMOD

Move Accumulator to Register (MvAxTo-
Dreg)

2.1

01 00 1 0 0 1 DREG Register Type = DREG Register
Type * DREG Register Type M32MMOD2

32 x 32-bit Multiply (Mult32) 2.1

01 00 1 1 0 1 DREG_PAIR Register Type = DREG Regis-
ter Type * DREG Register Type
M32MMOD

32 x 32-bit Multiply (Mult32) 2.1

Instruction Page Tables

8–286 ADSP-BF7xx Blackfin+ Processor

M32MMOD

M32MMOD Encode Table

MMOD Syntax Description

0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0010 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0011 (is,ns) The (is,ns) option directs the multiplier to

0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0110 (iu) The (iu) option directs the multiplier to use unsigned integer format. Multiply 16.0 *
16.0 formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0
format before copying or accumulating to accumulator. Then, saturate accumulator to
maintain 40.0 precision; accumulator result is between minimum 0x00 0000 0000 and
maximum 0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–287

MMOD Syntax Description

precision and copy to the destination register half. Result is between minimum 0 and

maximum 216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

0111 (iu,ns) The (iu,ns) option directs the multiplier to

1000 (m) The (m) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1010 (m,is) The (m,is) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format operation.

1011 (m,is,ns) The (m,is,ns) option directs the multiplier to use mixed mode multiply format (valid
only for MAC1) and signed integer format (with no saturation) operation.

M32MMOD1

M32MMOD1 Encode Table

MMOD Syntax Description

0001 (t) The (t) option directs the multiplier to use signed fraction with truncation. Multiply 1.15
* 1.15 formats to produce 1.31 results after shift correction. The special case of 0x8000 *
0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 9.31 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register, trun-
cate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the result to
1.15 precision and copy it to the destination register half. Result is between minimum -1

and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

0010 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0011 (is,ns) The (is,ns) option directs the multiplier to

Multiply with 3 operands (Dsp32Mult)

8–288 ADSP-BF7xx Blackfin+ Processor

MMOD Syntax Description

0101 (tfu) The (tfu) option directs the multiplier to use unsigned fraction with truncation. Multiply
0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000
* 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
(Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or accumu-
lating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract
to half-register, truncate accumulator 8.32 format value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF).

0110 (iu) The (iu) option directs the multiplier to use unsigned integer format. Multiply 16.0 *
16.0 formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0
format before copying or accumulating to accumulator. Then, saturate accumulator to
maintain 40.0 precision; accumulator result is between minimum 0x00 0000 0000 and
maximum 0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0
precision and copy to the destination register half. Result is between minimum 0 and maxi-

mum 216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

0111 (iu,ns) The (iu,ns) option directs the multiplier to

1001 (m,t) The (m,t) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1) and signed fraction format (with truncation) operation.

1010 (m,is) The (m,is) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format operation.

1011 (m,is,ns) The (m,is,ns) option directs the multiplier to use mixed mode multiply format (valid
only for MAC1) and signed integer format (with no saturation) operation.

M32MMOD2

M32MMOD2 Encode Table

MMOD Syntax Description

0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–289

MMOD Syntax Description

0001 (t) The (t) option directs the multiplier to use signed fraction with truncation. Multiply 1.15
* 1.15 formats to produce 1.31 results after shift correction. The special case of 0x8000 *
0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 9.31 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register, trun-
cate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the result to
1.15 precision and copy it to the destination register half. Result is between minimum -1

and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

0010 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0011 (is,ns) The (is,ns) option directs the multiplier to

0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0101 (tfu) The (tfu) option directs the multiplier to use unsigned fraction with truncation. Multiply
0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000
* 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
(Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or accumu-
lating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract
to half-register, truncate accumulator 8.32 format value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF).

Multiply with 3 operands (Dsp32Mult)

8–290 ADSP-BF7xx Blackfin+ Processor

MMOD Syntax Description

0110 (iu) The (iu) option directs the multiplier to use unsigned integer format. Multiply 16.0 *
16.0 formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0
format before copying or accumulating to accumulator. Then, saturate accumulator to
maintain 40.0 precision; accumulator result is between minimum 0x00 0000 0000 and
maximum 0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0
precision and copy to the destination register half. Result is between minimum 0 and maxi-

mum 216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

0111 (iu,ns) The (iu,ns) option directs the multiplier to

1000 (m) The (m) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1001 (m,t) The (m,t) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1) and signed fraction format (with truncation) operation.

1010 (m,is) The (m,is) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format operation.

1011 (m,is,ns) The (m,is,ns) option directs the multiplier to use mixed mode multiply format (valid
only for MAC1) and signed integer format (with no saturation) operation.

MML

MML Encode Table

MM Syntax Description

0 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1 (m) The (m) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–291

MM Syntax Description

mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

MMLMMOD1

MMLMMOD1 Encode Table

MM MMOD Syntax Description

0 0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0001 (s2rnd) The (s2rnd) option directs the multiplier to use signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the
default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to
accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is
between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half
register, shift the accumulator contents one place to the left (multiply x 2). Round accumu-
lator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Satu-
rate the result to 1.15 precision and copy it to the destination register half. Result is be-

tween minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF). To extract to full register, shift the accumulator contents one place
to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the destination

register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, be-
tween minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0010 (t) The (t) option directs the multiplier to use signed fraction with truncation. Multiply 1.15
* 1.15 formats to produce 1.31 results after shift correction. The special case of 0x8000 *
0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 9.31 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register, trun-
cate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the result to
1.15 precision and copy it to the destination register half. Result is between minimum -1

Multiply with 3 operands (Dsp32Mult)

8–292 ADSP-BF7xx Blackfin+ Processor

MM MMOD Syntax Description

and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

0 0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0 0110 (tfu) The (tfu) option directs the multiplier to use unsigned fraction with truncation. Multiply
0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000
* 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
(Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or accumu-
lating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract
to half-register, truncate accumulator 8.32 format value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF).

0 1000 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1001 (iss2) The (iss2) option directs the multiplier to use signed integer with scaling. Multiply 16.0
* 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.) Sign
extend 32.0 result to 40.0 format before copying or accumulating to accumulator. Then,
saturate Accumulator to maintain 40.0 precision; accumulator result is between minimum
0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract the
lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Saturate
the result for 16.0 format and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, shift the accumulator contents one place to the
left (multiply x 2), saturate the result for 32.0 format, and copy to the destination register.

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–293

MM MMOD Syntax Description

Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between
minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1011 (ih) The (ih) option directs the multiplier to use signed integer, high word extract. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 32.0 precision; accumulator result is between min-
imum 0x00 8000 0000 and maximum 0x00 7FFF FFFF. To extract to half-register, round
accumulator 40.0 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate to 32.0 result. Copy the upper 16 bits of that value to the destination register

half. Result is between minimum -215 and maximum 215-1 (or, expressed in hex, between
minimum 0x8000 and maximum 0x7FFF).

0 1100 (iu) The (iu) option directs the multiplier to use unsigned integer format. Multiply 16.0 *
16.0 formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0
format before copying or accumulating to accumulator. Then, saturate accumulator to
maintain 40.0 precision; accumulator result is between minimum 0x00 0000 0000 and
maximum 0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0
precision and copy to the destination register half. Result is between minimum 0 and maxi-

mum 216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

1 0000 (m) The (m) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1 0001 (m,s2rnd) The (m,s2rnd) option directs the multiplier to use mixed mode multiply format (valid
only for MAC1) and signed fraction format (with scaling and rounding) operation.

1 0010 (m,t) The (m,t) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1) and signed fraction format (with truncation) operation.

1 0100 (m,fu) The (m,fu) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and unsigned fraction format operation.

1 0110 (m,tfu) The (m,tfu) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and unsigned fraction format (with truncation) operation.

1 1000 (m,is) The (m,is) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format operation.

1 1001 (m,iss2) The (m,iss2) option directs the multiplier to use mixed mode multiply format (valid on-
ly for MAC1) and signed integer format with scaling operation.

1 1011 (m,ih) The (m,ih) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format (high word extract) operation.

1 1100 (m,iu) The (m,iu) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and unsigned integer format operation.

Multiply with 3 operands (Dsp32Mult)

8–294 ADSP-BF7xx Blackfin+ Processor

MMLMMODE

MMLMMODE Encode Table

MM MMOD Syntax Description

0 0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0001 (s2rnd) The (s2rnd) option directs the multiplier to use signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the
default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to
accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is
between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half
register, shift the accumulator contents one place to the left (multiply x 2). Round accumu-
lator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Satu-
rate the result to 1.15 precision and copy it to the destination register half. Result is be-

tween minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF). To extract to full register, shift the accumulator contents one place
to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the destination

register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, be-
tween minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0 1000 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–295

MM MMOD Syntax Description

before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0 1001 (iss2) The (iss2) option directs the multiplier to use signed integer with scaling. Multiply 16.0
* 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.) Sign
extend 32.0 result to 40.0 format before copying or accumulating to accumulator. Then,
saturate Accumulator to maintain 40.0 precision; accumulator result is between minimum
0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract the
lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Saturate
the result for 16.0 format and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, shift the accumulator contents one place to the
left (multiply x 2), saturate the result for 32.0 format, and copy to the destination register.

Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

1 0000 (m) The (m) option directs the multiplier to use mixed mode multiply format (valid only for
MAC1). When issued in a fraction mode instruction (with default, FU, T, TFU, or
S2RND mode), multiply 1.15 * 0.16 to produce 1.31 results. When issued in an integer
mode instruction (with IS, ISS2, or IH mode), multiply 16.0 * 16.0 (signed * unsigned) to
produce 32.0 results. No shift correction in either case. Src_reg_0 is the signed operand
and Src_reg_1 is the unsigned operand. Accumulation and extraction proceed according
to the other mode selection or default.

1 0001 (m,s2rnd) The (m,s2rnd) option directs the multiplier to use mixed mode multiply format (valid
only for MAC1) and signed fraction format (with scaling and rounding) operation.

1 0100 (m,fu) The (m,fu) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and unsigned fraction format operation.

1 1000 (m,is) The (m,is) option directs the multiplier to use mixed mode multiply format (valid only
for MAC1) and signed integer format operation.

1 1001 (m,iss2) The (m,iss2) option directs the multiplier to use mixed mode multiply format (valid on-
ly for MAC1) and signed integer format with scaling operation.

Multiply with 3 operands (Dsp32Mult)

8–296 ADSP-BF7xx Blackfin+ Processor

MMOD1

MMOD1 Encode Table

MMOD Syntax Description

0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0001 (s2rnd) The (s2rnd) option directs the multiplier to use signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the
default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to
accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is
between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half
register, shift the accumulator contents one place to the left (multiply x 2). Round accumu-
lator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Satu-
rate the result to 1.15 precision and copy it to the destination register half. Result is be-

tween minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF). To extract to full register, shift the accumulator contents one place
to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the destination

register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, be-
tween minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0010 (t) The (t) option directs the multiplier to use signed fraction with truncation. Multiply 1.15
* 1.15 formats to produce 1.31 results after shift correction. The special case of 0x8000 *
0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the default mode.)
Sign extend 1.31 result to 9.31 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 9.31 precision; accumulator result is between min-
imum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half-register, trun-
cate accumulator 9.31 format value at bit 16. (Perform no rounding.) Saturate the result to
1.15 precision and copy it to the destination register half. Result is between minimum -1

and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and maximum
0x7FFF).

0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–297

MMOD Syntax Description

Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

0110 (tfu) The (tfu) option directs the multiplier to use unsigned fraction with truncation. Multiply
0.16* 0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000
* 0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
(Same as the FU mode.) Zero extend 0.32 result to 8.32 format before copying or accumu-
lating to accumulator. Then, saturate accumulator to maintain 8.32 precision; accumulator
result is between minimum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract
to half-register, truncate accumulator 8.32 format value at bit 16. (Perform no rounding.)
Saturate the result to 0.16 precision and copy it to the destination register half. Result is

between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF).

1000 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1001 (iss2) The (iss2) option directs the multiplier to use signed integer with scaling. Multiply 16.0
* 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.) Sign
extend 32.0 result to 40.0 format before copying or accumulating to accumulator. Then,
saturate Accumulator to maintain 40.0 precision; accumulator result is between minimum
0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract the
lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Saturate
the result for 16.0 format and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, shift the accumulator contents one place to the
left (multiply x 2), saturate the result for 32.0 format, and copy to the destination register.

Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

1011 (ih) The (ih) option directs the multiplier to use signed integer, high word extract. Multiply
16.0 * 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.)
Sign extend 32.0 result to 40.0 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 32.0 precision; accumulator result is between min-
imum 0x00 8000 0000 and maximum 0x00 7FFF FFFF. To extract to half-register, round

Multiply with 3 operands (Dsp32Mult)

8–298 ADSP-BF7xx Blackfin+ Processor

MMOD Syntax Description

accumulator 40.0 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate to 32.0 result. Copy the upper 16 bits of that value to the destination register

half. Result is between minimum -215 and maximum 215-1 (or, expressed in hex, between
minimum 0x8000 and maximum 0x7FFF).

1100 (iu) The (iu) option directs the multiplier to use unsigned integer format. Multiply 16.0 *
16.0 formats to produce 32.0 results. No shift correction. Zero extend 32.0 result to 40.0
format before copying or accumulating to accumulator. Then, saturate accumulator to
maintain 40.0 precision; accumulator result is between minimum 0x00 0000 0000 and
maximum 0xFF FFFF FFFF. Extract the lower 16 bits of the accumulator. Saturate for 16.0
precision and copy to the destination register half. Result is between minimum 0 and maxi-

mum 216-1 (or, expressed in hex, between minimum 0x0000 and maximum 0xFFFF).

MMODE

MMODE Encode Table

MMOD Syntax Description

0000 The default (no option selected) operation directs the multiplier to use signed fraction for-
mat. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. Sign extend
1.31 result to 9.31 format before copying or accumulating to accumulator. Then, saturate
accumulator to maintain 9.31 precision; accumulator result is between minimum 0x80
0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, round accumulator
9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Saturate
the result to 1.15 precision and copy it to the destination register half. Result is between

minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000 and
maximum 0x7FFF). To extract to full register, saturate the result to 1.31 precision and

copy it to the destination register. Result is between minimum -1 and maximum 1-2-31 (or,
expressed in hex, between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

0001 (s2rnd) The (s2rnd) option directs the multiplier to use signed fraction with scaling and round-
ing. Multiply 1.15 * 1.15 formats to produce 1.31 results after shift correction. The special
case of 0x8000 * 0x8000 is saturated to 0x7FFF FFFF to fit the 1.31 result. (Same as the
default mode.) Sign extend 1.31 result to 9.31 format before copying or accumulating to
accumulator. Then, saturate accumulator to maintain 9.31 precision; accumulator result is
between minimum 0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half
register, shift the accumulator contents one place to the left (multiply x 2). Round accumu-
lator 9.31 format value at bit 16. (The ASTAT.RND_MOD bit controls the rounding.) Satu-
rate the result to 1.15 precision and copy it to the destination register half. Result is be-

tween minimum -1 and maximum 1-2-15 (or, expressed in hex, between minimum 0x8000
and maximum 0x7FFF). To extract to full register, shift the accumulator contents one place
to the left (multiply x 2), saturate the result to 1.31 precision, and copy it to the destination

register. Result is between minimum -1 and maximum 1-2-31 (or, expressed in hex, be-
tween minimum 0x8000 0000 and maximum 0x7FFF FFFF).

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–299

MMOD Syntax Description

0100 (fu) The (fu) option directs the multiplier to use unsigned fraction format. Multiply 0.16*
0.16 formats to produce 0.32 results. No shift correction. The special case of 0x8000 *
0x8000 yields 0x4000 0000. No saturation is necessary since no shift correction occurs.
Zero extend 0.32 result to 8.32 format before copying or accumulating to accumulator.
Then, saturate accumulator to maintain 8.32 precision; accumulator result is between min-
imum 0x00 0000 0000 and maximum 0xFF FFFF FFFF. To extract to half register, round
accumulator 8.32 format value at bit 16. (The ASTAT.RND_MOD bit controls the round-
ing.) Saturate the result to 0.16 precision and copy it to the destination register half. Result

is between minimum 0 and maximum 1-2-16 (or, expressed in hex, between minimum
0x0000 and maximum 0xFFFF). To extract to full register, saturate the result to 0.32 preci-
sion and copy it to the destination register. Result is between minimum 0 and maximum

1-2-32 (or, expressed in hex, between minimum 0x0000 0000 and maximum 0xFFFF
FFFF).

1000 (is) The (is) option directs the multiplier to use signed integer format. Multiply 16.0 * 16.0
formats to produce 32.0 results. No shift correction. Sign extend 32.0 result to 40.0 format
before copying or accumulating to accumulator. Then, saturate accumulator to maintain
40.0 precision; accumulator result is between minimum 0x80 0000 0000 and maximum
0x7F FFFF FFFF. To extract to half register, extract the lower 16 bits of the accumulator.
Saturate for 16.0 precision and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, saturate for 32.0 precision and copy to the desti-

nation register. Result is between minimum -231 and maximum 231-1 (or, expressed in hex,
between minimum 0x8000 0000 and maximum 0x7FFF FFFF).

1001 (iss2) The (iss2) option directs the multiplier to use signed integer with scaling. Multiply 16.0
* 16.0 formats to produce 32.0 results. No shift correction. (Same as the IS mode.) Sign
extend 32.0 result to 40.0 format before copying or accumulating to accumulator. Then,
saturate Accumulator to maintain 40.0 precision; accumulator result is between minimum
0x80 0000 0000 and maximum 0x7F FFFF FFFF. To extract to half register, extract the
lower 16 bits of the accumulator. Shift them one place to the left (multiply x 2). Saturate
the result for 16.0 format and copy to the destination register half. Result is between mini-

mum -215 and maximum 215-1 (or, expressed in hex, between minimum 0x8000 and max-
imum 0x7FFF). To extract to full register, shift the accumulator contents one place to the
left (multiply x 2), saturate the result for 32.0 format, and copy to the destination register.

Result is between minimum -231 and maximum 231-1 (or, expressed in hex, between mini-
mum 0x8000 0000 and maximum 0x7FFF FFFF).

MUL0

MUL0 Encode Table

H00 H10 Syntax

0 0 DREG_L Register Type * DREG_L Register
Type

Multiply with 3 operands (Dsp32Mult)

8–300 ADSP-BF7xx Blackfin+ Processor

H00 H10 Syntax

0 1 DREG_L Register Type * DREG_H Regis-
ter Type

1 0 DREG_H Register Type * DREG_L Regis-
ter Type

1 1 DREG_H Register Type * DREG_H Regis-
ter Type

MUL1

MUL1 Encode Table

H01 H11 Syntax

0 0 DREG_L Register Type * DREG_L Register
Type

0 1 DREG_L Register Type * DREG_H Regis-
ter Type

1 0 DREG_H Register Type * DREG_L Regis-
ter Type

1 1 DREG_H Register Type * DREG_H Regis-
ter Type

Shift (Dsp32Shf)

Dsp32Shf Instruction Syntax

Shift (Dsp32Shf)

31

1

30

1

29

0

28

0

27

0

26

1

25

1

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

SOPC[4:0]

DEAD[1:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

SOP[1:0]

HLS[1:0]

DST[2:0]

SRC1[2:0]

SRC0[2:0]

Figure 8-92: Dsp32Shf Instruction

Multiply with 3 operands (Dsp32Mult)

ADSP-BF7xx Blackfin+ Processor 8–301

The following table provides the opcode field values (SOPC, SOP, HLS), the instruction syntax overview (Syntax),
and a link to the corresponding instruction reference page (Instruction)

SOPC SOP HLS Syntax Instruction

00000 00 00 DREG_L Register Type = ashift DREG_L
Register Type by DREG_L Register Type

16-Bit Arithmetic Shift (AShift16)

00000 00 01 DREG_L Register Type = ashift DREG_H
Register Type by DREG_L Register Type

16-Bit Arithmetic Shift (AShift16)

00000 00 10 DREG_H Register Type = ashift DREG_L
Register Type by DREG_L Register Type

16-Bit Arithmetic Shift (AShift16)

00000 00 11 DREG_H Register Type = ashift DREG_H
Register Type by DREG_L Register Type

16-Bit Arithmetic Shift (AShift16)

00000 01 00 DREG_L Register Type = ashift DREG_L
Register Type by DREG_L Register Type (s)

16-Bit Arithmetic Shift (AShift16)

00000 01 01 DREG_L Register Type = ashift DREG_H
Register Type by DREG_L Register Type (s)

16-Bit Arithmetic Shift (AShift16)

00000 01 10 DREG_H Register Type = ashift DREG_L
Register Type by DREG_L Register Type (s)

16-Bit Arithmetic Shift (AShift16)

00000 01 11 DREG_H Register Type = ashift DREG_H
Register Type by DREG_L Register Type (s)

16-Bit Arithmetic Shift (AShift16)

00000 10 00 DREG_L Register Type = lshift DREG_L
Register Type by DREG_L Register Type

16-Bit Logical Shift (LShift16)

00000 10 01 DREG_L Register Type = lshift DREG_H
Register Type by DREG_L Register Type

16-Bit Logical Shift (LShift16)

00000 10 10 DREG_H Register Type = lshift DREG_L
Register Type by DREG_L Register Type

16-Bit Logical Shift (LShift16)

00000 10 11 DREG_H Register Type = lshift DREG_H
Register Type by DREG_L Register Type

16-Bit Logical Shift (LShift16)

00001 00 00 DREG Register Type = ashift DREG Regis-
ter Type by DREG_L Register Type (v)

Vectored 16-Bit Arithmetic (AShift16Vec)

00001 01 00 DREG Register Type = ashift DREG Regis-
ter Type by DREG_L Register Type (v,s)

Vectored 16-Bit Arithmetic (AShift16Vec)

00001 10 00 DREG Register Type = lshift DREG Regis-
ter Type by DREG_L Register Type (v)

Vectored 16-Bit Logical Shift (LShift16Vec)

00010 00 00 DREG Register Type = ashift DREG Regis-
ter Type by DREG_L Register Type

32-Bit Arithmetic Shift (AShift32)

00010 01 00 DREG Register Type = ashift DREG Regis-
ter Type by DREG_L Register Type (s)

32-Bit Arithmetic Shift (AShift32)

00010 10 00 DREG Register Type = lshift DREG Regis-
ter Type by DREG_L Register Type

32-Bit Logical Shift (LShift)

Instruction Page Tables

8–302 ADSP-BF7xx Blackfin+ Processor

SOPC SOP HLS Syntax Instruction

00010 11 00 DREG Register Type = rot DREG Register
Type by DREG_L Register Type

32-Bit Rotate (Shift_Rot32)

00011 00 00 a0 = ashift a0 by DREG_L Register Type Accumulator Arithmetic Shift (AShiftAcc)

00011 00 01 a1 = ashift a1 by DREG_L Register Type Accumulator Arithmetic Shift (AShiftAcc)

00011 01 00 a0 = lshift a0 by DREG_L Register Type Accumulator Logical Shift (LShiftA)

00011 01 01 a1 = lshift a1 by DREG_L Register Type Accumulator Logical Shift (LShiftA)

00011 10 00 a0 = rot a0 by DREG_L Register Type Accumulator Rotate (Shift_RotAcc)

00011 10 01 a1 = rot a1 by DREG_L Register Type Accumulator Rotate (Shift_RotAcc)

00100 00 00 DREG Register Type = pack (DREG_L
Register Type, DREG_L Register Type)

Pack 16-Bit to 32-Bit (Pack16Vec)

00100 01 00 DREG Register Type = pack (DREG_L
Register Type, DREG_H Register Type)

Pack 16-Bit to 32-Bit (Pack16Vec)

00100 10 00 DREG Register Type = pack (DREG_H
Register Type, DREG_L Register Type)

Pack 16-Bit to 32-Bit (Pack16Vec)

00100 11 00 DREG Register Type = pack (DREG_H
Register Type, DREG_H Register Type)

Pack 16-Bit to 32-Bit (Pack16Vec)

00101 00 00 DREG_L Register Type = signbits DREG
Register Type

Redundant Sign Bits (Shift_SignBits32)

00101 01 00 DREG_L Register Type = signbits DREG_L
Register Type

Redundant Sign Bits (Shift_SignBits32)

00101 10 00 DREG_L Register Type = signbits
DREG_H Register Type

Redundant Sign Bits (Shift_SignBits32)

00110 00 00 DREG_L Register Type = signbits a0 Redundant Sign Bits (Shift_SignBitsAcc)

00110 01 00 DREG_L Register Type = signbits a1 Redundant Sign Bits (Shift_SignBitsAcc)

00110 11 00 DREG_L Register Type = ones DREG Reg-
ister Type

Ones Count (Shift_Ones)

00111 00 00 DREG_L Register Type = expadj (DREG
Register Type, DREG_L Register Type)

Exponent Detection (Shift_ExpAdj32)

00111 01 00 DREG_L Register Type = expadj (DREG
Register Type, DREG_L Register Type) (v)

Exponent Detection (Shift_ExpAdj32)

00111 10 00 DREG_L Register Type = expadj (DREG_L
Register Type, DREG_L Register Type)

Exponent Detection (Shift_ExpAdj32)

00111 11 00 DREG_L Register Type = expadj
(DREG_H Register Type, DREG_L Regis-
ter Type)

Exponent Detection (Shift_ExpAdj32)

01000 00 00 bitmux (DREG Register Type, DREG Reg-
ister Type, a0) (asr)

Bit Mux (BitMux)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–303

SOPC SOP HLS Syntax Instruction

01000 01 00 bitmux (DREG Register Type, DREG Reg-
ister Type, a0) (asl)

Bit Mux (BitMux)

01001 00 00 DREG_L Register Type = vit_max (DREG
Register Type) (asl)

16-Bit Modulo Maximum with History
(Shift_VitMax)

01001 01 00 DREG_L Register Type = vit_max (DREG
Register Type) (asr)

16-Bit Modulo Maximum with History
(Shift_VitMax)

01001 10 00 DREG Register Type = vit_max (DREG
Register Type, DREG Register Type) (asl)

Dual 16-Bit Modulo Maximum with Histo-
ry (Shift_DualVitMax)

01001 11 00 DREG Register Type = vit_max (DREG
Register Type, DREG Register Type) (asr)

Dual 16-Bit Modulo Maximum with Histo-
ry (Shift_DualVitMax)

01010 00 00 DREG Register Type = extract (DREG Reg-
ister Type, DREG_L Register Type) (z)

Extract Bits (Shift_Extract)

01010 01 00 DREG Register Type = extract (DREG Reg-
ister Type, DREG_L Register Type) (x)

Extract Bits (Shift_Extract)

01010 10 00 DREG Register Type = deposit (DREG
Register Type, DREG Register Type)

Deposit Bits (Shift_Deposit)

01010 11 00 DREG Register Type = deposit (DREG
Register Type, DREG Register Type) (x)

Deposit Bits (Shift_Deposit)

01011 00 00 DREG_L Register Type = cc = bxorshift (a0,
DREG Register Type)

32-Bit BXOR or BXORShift LSFR without
Feedback (BXOR_NF)

01011 01 00 DREG_L Register Type = cc = bxor (a0,
DREG Register Type)

32-Bit BXOR or BXORShift LSFR without
Feedback (BXOR_NF)

01100 00 00 a0 = bxorshift (a0, a1, cc) 40-Bit BXORShift LSFR with Feedback to
the Accumulator (BXORShift_NF)

01100 01 00 DREG_L Register Type = cc = bxor (a0, a1,
cc)

40-Bit BXOR LSFR with Feedback to a
Register (BXOR)

01101 00 00 DREG Register Type = align8 (DREG Reg-
ister Type, DREG Register Type)

Byte Align (Shift_Align)

01101 01 00 DREG Register Type = align16 (DREG
Register Type, DREG Register Type)

Byte Align (Shift_Align)

01101 10 00 DREG Register Type = align24 (DREG
Register Type, DREG Register Type)

Byte Align (Shift_Align)

Instruction Page Tables

8–304 ADSP-BF7xx Blackfin+ Processor

Shift Immediate (Dsp32ShfImm)

Dsp32ShfImm Instruction Syntax

Shift Immediate (Dsp32ShfImm)

31

1

30

1

29

0

28

0

27

0

26

1

25

1

24

0

23

1

22

0

21

0

20

0

19

0

18

0

17

0

16

0

SOPC[4:0]

DEAD[1:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

SOP[1:0]

HLS[1:0]

DST[2:0]

IMM[5:0]

SRC[2:0]

IMM[5:0]

Figure 8-93: Dsp32ShfImm Instruction

The following table provides the opcode field values (SOPC, SOP, HLS), the instruction syntax overview (Syntax),
and a link to the corresponding instruction reference page (Instruction)

SOPC SOP HLS Syntax Instruction

00000 00 00 DREG_L Register Type = DREG_L Regis-
ter Type AHSH4

16-Bit Arithmetic Shift (AShift16)

00000 00 01 DREG_L Register Type = DREG_H Regis-
ter Type AHSH4

16-Bit Arithmetic Shift (AShift16)

00000 00 10 DREG_H Register Type = DREG_L Regis-
ter Type AHSH4

16-Bit Arithmetic Shift (AShift16)

00000 00 11 DREG_H Register Type = DREG_H Regis-
ter Type AHSH4

16-Bit Arithmetic Shift (AShift16)

00000 01 00 DREG_L Register Type = DREG_L Regis-
ter Type AHSH4S

16-Bit Arithmetic Shift (AShift16)

00000 01 01 DREG_L Register Type = DREG_H Regis-
ter Type AHSH4S

16-Bit Arithmetic Shift (AShift16)

00000 01 10 DREG_H Register Type = DREG_L Regis-
ter Type AHSH4S

16-Bit Arithmetic Shift (AShift16)

00000 01 11 DREG_H Register Type = DREG_H Regis-
ter Type AHSH4S

16-Bit Arithmetic Shift (AShift16)

00000 10 00 DREG_L Register Type = DREG_L Regis-
ter Type LHSH4

16-Bit Logical Shift (LShift16)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–305

SOPC SOP HLS Syntax Instruction

00000 10 01 DREG_L Register Type = DREG_H Regis-
ter Type LHSH4

16-Bit Logical Shift (LShift16)

00000 10 10 DREG_H Register Type = DREG_L Regis-
ter Type LHSH4

16-Bit Logical Shift (LShift16)

00000 10 11 DREG_H Register Type = DREG_H Regis-
ter Type LHSH4

16-Bit Logical Shift (LShift16)

00001 00 00 DREG Register Type = DREG Register
Type AHSH4 (v)

Vectored 16-Bit Arithmetic (AShift16Vec)

00001 01 00 DREG Register Type = DREG Register
Type AHSH4VS

Vectored 16-Bit Arithmetic (AShift16Vec)

00001 10 00 DREG Register Type = DREG Register
Type LHSH4 (v)

Vectored 16-Bit Logical Shift (LShift16Vec)

00010 00 00 DREG Register Type = DREG Register
Type ASH5

32-Bit Arithmetic Shift (AShift32)

00010 01 00 DREG Register Type = DREG Register
Type ASH5S

32-Bit Arithmetic Shift (AShift32)

00010 10 00 DREG Register Type = DREG Register
Type LSH5

32-Bit Logical Shift (LShift)

00010 11 00 DREG Register Type = rot DREG Register
Type by imm6 Register Type

32-Bit Rotate (Shift_Rot32)

00011 00 00 a0 = a0 ASH5 Accumulator Arithmetic Shift (AShiftAcc)

00011 00 01 a1 = a1 ASH5 Accumulator Arithmetic Shift (AShiftAcc)

00011 01 00 a0 = a0 LSH5 Accumulator Logical Shift (LShiftA)

00011 01 01 a1 = a1 LSH5 Accumulator Logical Shift (LShiftA)

00011 10 00 a0 = rot a0 by imm6 Register Type Accumulator Rotate (Shift_RotAcc)

00011 10 01 a1 = rot a1 by imm6 Register Type Accumulator Rotate (Shift_RotAcc)

AHSH4

AHSH4 Encode Table

IMM Syntax Rev

000000 <<< 0 2.1.1

00---- <<< uimm4nz Register
Type

2.1.1

11---- >>> uimm4nznegpos
Register Type

Shift Immediate (Dsp32ShfImm)

8–306 ADSP-BF7xx Blackfin+ Processor

AHSH4S

AHSH4S Encode Table

IMM Syntax Rev

000000 << 0 (s)

00---- << uimm4nz Register
Type (s)

11---- >>> uimm4nznegpos
Register Type (s)

2.1.1

AHSH4VS

AHSH4VS Encode Table

IMM Syntax Rev

000000 << 0 (v,s)

00---- << uimm4nz Register Type
(v,s)

11---- >>> uimm4nznegpos Regis-
ter Type (v,s)

2.1.1

ASH5

ASH5 Encode Table

IMM Syntax Rev

000000 <<< 0 2.1.1

0----- <<< uimm5nz Register
Type

2.1.1

1----- >>> uimm5nznegpos Regis-
ter Type

ASH5S

ASH5S Encode Table

IMM Syntax Rev

000000 << 0 (s)

Shift Immediate (Dsp32ShfImm)

ADSP-BF7xx Blackfin+ Processor 8–307

IMM Syntax Rev

0----- << uimm5nz Register Type
(s)

1----- >>> uimm5nznegpos Register
Type (s)

2.1.1

LHSH4

LHSH4 Encode Table

IMM Syntax

000000 << 0

00---- << uimm4nz Register Type

11---- >> uimm4nznegpos Register Type

LSH5

LSH5 Encode Table

IMM Syntax

000000 << 0

0----- << uimm5nz Register Type

1----- >> uimm5nznegpos Register Type

Load/Store (DspLdSt)

DspLdSt Instruction Syntax

Load/Store (DspLdSt)

15

1

14

0

13

0

12

1

11

1

10

1

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

W

AOP[1:0]

REG[2:0]

I[1:0]

M[1:0]

AOP[1:0]

Figure 8-94: DspLdSt Instruction

Shift Immediate (Dsp32ShfImm)

8–308 ADSP-BF7xx Blackfin+ Processor

The following table provides the opcode field values (W, M, AOP), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

W M AOP Syntax Instruction

0 00 00 DREG Register Type = [IREG Register Type
++]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 00 01 DREG Register Type = [IREG Register
Type--]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 00 10 DREG Register Type = [IREG Register
Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 01 00 DREG_L Register Type = w[IREG Register
Type++]

16-Bit Load from Memory (LdM16bitTo-
DregL)

0 01 01 DREG_L Register Type = w[IREG Register
Type--]

16-Bit Load from Memory (LdM16bitTo-
DregL)

0 01 10 DREG_L Register Type = w[IREG Register
Type]

16-Bit Load from Memory (LdM16bitTo-
DregL)

0 10 00 DREG_H Register Type = w[IREG Register
Type++]

16-Bit Load from Memory (LdM16bitTo-
DregH)

0 10 01 DREG_H Register Type = w[IREG Register
Type--]

16-Bit Load from Memory (LdM16bitTo-
DregH)

0 10 10 DREG_H Register Type = w[IREG Register
Type]

16-Bit Load from Memory (LdM16bitTo-
DregH)

0 -- 11 DREG Register Type = [IREG Register Type
++ MREG Register Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

1 00 00 [IREG Register Type++] = DREG Register
Type

32-Bit Store to Memory (StDregToM32bit)

1 00 01 [IREG Register Type--] = DREG Register
Type

32-Bit Store to Memory (StDregToM32bit)

1 00 10 [IREG Register Type] = DREG Register
Type

32-Bit Store to Memory (StDregToM32bit)

1 01 00 w[IREG Register Type++] = DREG_L Reg-
ister Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 01 01 w[IREG Register Type--] = DREG_L Regis-
ter Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 01 10 w[IREG Register Type] = DREG_L Register
Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 10 00 w[IREG Register Type++] = DREG_H Reg-
ister Type

16-Bit Store to Memory (StDregH-
ToM16bit)

1 10 01 w[IREG Register Type--] = DREG_H Reg-
ister Type

16-Bit Store to Memory (StDregH-
ToM16bit)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–309

W M AOP Syntax Instruction

1 10 10 w[IREG Register Type] = DREG_H Regis-
ter Type

16-Bit Store to Memory (StDregH-
ToM16bit)

1 -- 11 [IREG Register Type ++ MREG Register
Type] = DREG Register Type

32-Bit Store to Memory (StDregToM32bit)

Jump/Call to 32-bit Immediate (Jump32)

Jump32 Instruction Syntax

Jump/Call to 32-bit Immediate (Jump32)

63

1

62

1

61

0

60

1

59

1

58

1

57

0

56

0

55

0

54

0

53

0

52

0

51

0

50

0

49

0

48

0

C REL

47

0

46

0

45

0

44

0

43

0

42

0

41

0

40

0

39

0

38

0

37

0

36

0

35

0

34

0

33

0

32

0

IMM[31:16] IMM[31:16]

31

0

30

0

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

IMM[15:0] IMM[15:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

Figure 8-95: Jump32 Instruction

The following table provides the opcode field values (C, REL), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

C REL Syntax Instruction

0 0 jump.a buimm32 Register Type Jump Immediate (JumpAbs)

0 1 jump bimm32 Register Type Jump Immediate (JumpAbs)

1 0 call.a buimm32 Register Type Call (Call)

1 1 call bimm32 Register Type Call (Call)

Instruction Page Tables

8–310 ADSP-BF7xx Blackfin+ Processor

Load Immediate Word (LdImm)

LdImm Instruction Syntax

Load Immediate Word (LdImm)

63

1

62

1

61

0

60

1

59

1

58

0

57

1

56

0

55

0

54

0

53

0

52

0

51

0

50

0

49

0

48

0

REG[2:0]

GRP[2:0]

47

0

46

0

45

0

44

0

43

0

42

0

41

0

40

0

39

0

38

0

37

0

36

0

35

0

34

0

33

0

32

0

IMM[31:16] IMM[31:16]

31

0

30

0

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

IMM[15:0] IMM[15:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

DUMMY[15:0] DUMMY[15:0]

Figure 8-96: LdImm Instruction

The following table provides the opcode field values (GRP, REG), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

GRP REG Syntax Instruction

000 --- DREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

001 --- PREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

010 0-- IREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

010 1-- MREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

011 0-- BREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

011 1-- LREG Register Type = imm32
Register Type

32-Bit Register Initialization
(LdImmToReg)

100 000 a0.x = imm32 Register Type 32-Bit Accumulator Register
(.x) Initialization (LdImm-
ToAxX)

100 001 a0.w = imm32 Register Type 32-Bit Accumulator Register
(.w) Initialization (LdImm-
ToAxW)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–311

GRP REG Syntax Instruction

100 010 a1.x = imm32 Register Type 32-Bit Accumulator Register
(.x) Initialization (LdImm-
ToAxX)

100 011 a1.w = imm32 Register Type 32-Bit Accumulator Register
(.w) Initialization (LdImm-
ToAxW)

100 110 astat = imm32 Register Type 32-Bit Register Initialization
(LdImmToReg)

100 111 rets = imm32 Register Type 32-Bit Register Initialization
(LdImmToReg)

110 --- SYSREG2 Register Type =
imm32 Register Type

32-Bit Register Initialization
(LdImmToReg)

111 --- SYSREG3 Register Type =
imm32 Register Type

32-Bit Register Initialization
(LdImmToReg)

Load Immediate Half Word (LdImmHalf)

LdImmHalf Instruction Syntax

Load Immediate Half Word (LdImmHalf)

31

1

30

1

29

1

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

REG[2:0]

GRP[1:0]

S

H

Z

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

HWORD[15:0] HWORD[15:0]

Figure 8-97: LdImmHalf Instruction

The following table provides the opcode field values (H, Z, S), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

H Z S Syntax Instruction

0 0 0 DST_L = imm16 Register Type 16-Bit Register Initialization (LdImmTo-
DregHL)

Instruction Page Tables

8–312 ADSP-BF7xx Blackfin+ Processor

H Z S Syntax Instruction

0 0 1 DST = imm16 Register Type (x) 32-Bit Register Initialization (LdImmToReg)

0 1 0 DST = rimm16 Register Type (z) 32-Bit Register Initialization (LdImmToReg)

1 0 0 DST_H = imm16 Register Type 16-Bit Register Initialization (LdImmTo-
DregHL)

DST

DST Encode Table

GRP REG Syntax

00 --- DREG Register Type

01 --- PREG Register Type

10 0-- IREG Register Type

10 1-- MREG Register Type

11 0-- BREG Register Type

11 1-- LREG Register Type

DST_H

DST_H Encode Table

GRP REG Syntax

00 --- DREG_H Register Type

01 --- PREG_H Register Type

10 0-- IREG_H Register Type

10 1-- MREG_H Register Type

11 0-- BREG_H Register Type

11 1-- LREG_H Register Type

DST_L

DST_L Encode Table

GRP REG Syntax

00 --- DREG_L Register Type

01 --- PREG_L Register Type

Load Immediate Half Word (LdImmHalf)

ADSP-BF7xx Blackfin+ Processor 8–313

GRP REG Syntax

10 0-- IREG_L Register Type

10 1-- MREG_L Register Type

11 0-- BREG_L Register Type

11 1-- LREG_L Register Type

Load/Store (LdSt)

LdSt Instruction Syntax

Load/Store (LdSt)

15

1

14

0

13

0

12

1

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

SZ[1:0]

W

AOP[1:0]

REG[2:0]

PTR[2:0]

Z

AOP[1:0]

Figure 8-98: LdSt Instruction

The following table provides the opcode field values (W, SZ, Z, AOP), the instruction syntax overview (Syntax), and
a link to the corresponding instruction reference page (Instruction)

W SZ Z AOP Syntax Instruction

0 00 0 00 DREG Register Type = [PREG
Register Type++]

32-Bit Load from Memory
(LdM32bitToDreg)

0 00 0 01 DREG Register Type = [PREG
Register Type--]

32-Bit Load from Memory
(LdM32bitToDreg)

0 00 0 10 DREG Register Type = [PREG
Register Type]

32-Bit Load from Memory
(LdM32bitToDreg)

0 01 0 00 DREG Register Type = w[PREG
Register Type++] (z)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 01 0 01 DREG Register Type = w[PREG
Register Type--] (z)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 01 0 10 DREG Register Type = w[PREG
Register Type] (z)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 01 1 00 DREG Register Type = w[PREG
Register Type++] (x)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

Instruction Page Tables

8–314 ADSP-BF7xx Blackfin+ Processor

W SZ Z AOP Syntax Instruction

0 01 1 01 DREG Register Type = w[PREG
Register Type--] (x)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 01 1 10 DREG Register Type = w[PREG
Register Type] (x)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 10 0 00 DREG Register Type = b[PREG
Register Type++] (z)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 10 0 01 DREG Register Type = b[PREG
Register Type--] (z)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 10 0 10 DREG Register Type = b[PREG
Register Type] (z)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 10 1 00 DREG Register Type = b[PREG
Register Type++] (x)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 10 1 01 DREG Register Type = b[PREG
Register Type--] (x)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 10 1 10 DREG Register Type = b[PREG
Register Type] (x)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

1 00 0 00 [PREG Register Type++] = DREG
Register Type

32-Bit Store to Memory (StDreg-
ToM32bit)

1 00 0 01 [PREG Register Type--] = DREG
Register Type

32-Bit Store to Memory (StDreg-
ToM32bit)

1 00 0 10 [PREG Register Type] = DREG
Register Type

32-Bit Store to Memory (StDreg-
ToM32bit)

1 00 1 00 [PREG Register Type++] = PREG
Register Type

Store Pointer (StPregToM32bit)

1 00 1 01 [PREG Register Type--] = PREG
Register Type

Store Pointer (StPregToM32bit)

1 00 1 10 [PREG Register Type] = PREG
Register Type

Store Pointer (StPregToM32bit)

1 01 0 00 w[PREG Register Type++] =
DREG Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 01 0 01 w[PREG Register Type--] = DREG
Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 01 0 10 w[PREG Register Type] = DREG
Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 10 0 00 b[PREG Register Type++] =
DREG Register Type

8-Bit Store to Memory (StDreg-
ToM08bit)

1 10 0 01 b[PREG Register Type--] = DREG
Register Type

8-Bit Store to Memory (StDreg-
ToM08bit)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–315

W SZ Z AOP Syntax Instruction

1 10 0 10 b[PREG Register Type] = DREG
Register Type

8-Bit Store to Memory (StDreg-
ToM08bit)

Load/Store 32-bit Absolute Address (LdStAbs)

LdStAbs Instruction Syntax

Load/Store 32-bit Absolute Address (LdStAbs)

63

1

62

1

61

0

60

1

59

1

58

0

57

0

56

0

55

0

54

0

53

0

52

0

51

0

50

0

49

0

48

0

47

0

46

0

45

0

44

0

43

0

42

0

41

0

40

0

39

0

38

0

37

0

36

0

35

0

34

0

33

0

32

0

IMM[31:16] IMM[31:16]

31

0

30

0

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

IMM[15:0] IMM[15:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

SZ[1:0]

W

REG[2:0]

Z

Figure 8-99: LdStAbs Instruction

The following table provides the opcode field values (W, SZ, Z), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

W SZ Z Syntax Instruction

0 00 0 DREG Register Type = [uimm32
Register Type]

32-Bit Load from Memory
(LdM32bitToDreg)

0 00 1 PREG Register Type = [uimm32
Register Type]

32-Bit Load from Memory
(LdM32bitToDreg)

0 01 0 DREG Register Type = w[uimm32
Register Type] (z)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 01 1 DREG Register Type = w[uimm32
Register Type] (x)

16-Bit Load from Memory to 32-
Bit Register (LdM16bitToDreg)

0 10 0 DREG Register Type = b[uimm32
Register Type] (z)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

Instruction Page Tables

8–316 ADSP-BF7xx Blackfin+ Processor

W SZ Z Syntax Instruction

0 10 1 DREG Register Type = b[uimm32
Register Type] (x)

8-Bit Load from Memory to 32-bit
Register (LdM08bitToDreg)

0 11 0 DREG_L Register Type =
w[uimm32 Register Type]

16-Bit Load from Memory
(LdM16bitToDregL)

0 11 1 DREG_H Register Type =
w[uimm32 Register Type]

16-Bit Load from Memory
(LdM16bitToDregH)

1 00 0 [uimm32 Register Type] = DREG
Register Type

32-Bit Store to Memory (StDreg-
ToM32bit)

1 00 1 [uimm32 Register Type] = PREG
Register Type

32-Bit Store to Memory (StDreg-
ToM32bit)

1 01 0 w[uimm32 Register Type] =
DREG Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 10 0 b[uimm32 Register Type] = DREG
Register Type

8-Bit Store to Memory (StDreg-
ToM08bit)

1 11 1 w[uimm32 Register Type] =
DREG_H Register Type

16-Bit Store to Memory (StDregH-
ToM16bit)

Long Load/Store with indexed addressing (LdStExcl)

LdStExcl Instruction Syntax

Long Load/Store with indexed addressing (LdStExcl)

31

1

30

1

29

1

28

0

27

1

26

1

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

W

Z

REG[2:0]

PTR[2:0]

SZ[1:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

Figure 8-100: LdStExcl Instruction

The following table provides the opcode field values (W, SZ, Z), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

W SZ Z Syntax Instruction Rev

0 00 0 DREG Register Type = [PREG Register
Type] (excl)

32-Bit Load from Memory (LdX32bitTo-
Dreg)

2.2

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–317

W SZ Z Syntax Instruction Rev

0 01 0 DREG Register Type = w[PREG Register
Type] (z,excl)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdX16bitToDreg)

2.2

0 01 1 DREG Register Type = w[PREG Register
Type] (x,excl)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdX16bitToDreg)

2.2

0 10 0 DREG Register Type = b[PREG Register
Type] (z,excl)

8-Bit Load from Memory to 32-bit Register
(LdX08bitToDreg)

2.2

0 10 1 DREG Register Type = b[PREG Register
Type] (x,excl)

8-Bit Load from Memory to 32-bit Register
(LdX08bitToDreg)

2.2

0 11 0 DREG_L Register Type = w[PREG Register
Type] (excl)

16-Bit Load from Memory (LdX16bitTo-
DregL)

2.2

0 11 1 DREG_H Register Type = w[PREG Regis-
ter Type] (excl)

16-Bit Load from Memory (LdX16bitTo-
DregH)

2.2

1 00 0 cc = ([PREG Register Type] = DREG Regis-
ter Type) (excl)

32-Bit Store to Memory (StDregToX32bit) 2.2

1 01 0 cc = (w[PREG Register Type] = DREG Reg-
ister Type) (excl)

16-Bit Store to Memory (StDregLToX16bit) 2.2

1 10 0 cc = (b[PREG Register Type] = DREG Reg-
ister Type) (excl)

8-Bit Store to Memory (StDregToX08bit) 2.2

1 11 0 cc = (w[PREG Register Type] = DREG_H
Register Type) (excl)

16-Bit Store to Memory (StDregHT-
oX16bit)

2.2

1 11 1 syncexcl SyncExcl (SyncExcl) 2.2

Load/Store indexed with small immediate offset (LdStII)

LdStII Instruction Syntax

Load/Store indexed with small immediate offset (LdStII)

15

1

14

0

13

1

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

W

OP[1:0]

OFF[3:0]

REG[2:0]

PTR[2:0]

OFF[3:0]

Figure 8-101: LdStII Instruction

The following table provides the opcode field values (W, OP), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

Instruction Page Tables

8–318 ADSP-BF7xx Blackfin+ Processor

W OP Syntax Instruction

0 00 DREG Register Type = [PREG Register
Type + uimm4s4 Register Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 01 DREG Register Type = w[PREG Register
Type + uimm4s2 Register Type] (z)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

0 10 DREG Register Type = w[PREG Register
Type + uimm4s2 Register Type] (x)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

1 00 [PREG Register Type + uimm4s4 Register
Type] = DREG Register Type

32-Bit Store to Memory (StDregToM32bit)

1 01 w[PREG Register Type + uimm4s2 Register
Type] = DREG Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 11 [PREG Register Type + uimm4s4 Register
Type] = PREG Register Type

Store Pointer (StPregToM32bit)

Load/Store indexed with small immediate offset FP (LdStIIFP)

LdStIIFP Instruction Syntax

Load/Store indexed with small immediate offset FP (LdStIIFP)

15

1

14

0

13

1

12

1

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

W

OFF[4:0]

REG[2:0]

G

OFF[4:0]

Figure 8-102: LdStIIFP Instruction

The following table provides the opcode field values (W, G), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

W G Syntax Instruction

0 0 DREG Register Type = [fp -
imm5nzs4negpos Register
Type]

32-Bit Load from Memory
(LdM32bitToDreg)

1 0 [fp - imm5nzs4negpos Register
Type] = DREG Register Type

32-Bit Store to Memory
(StDregToM32bit)

1 1 [fp - imm5nzs4negpos Register
Type] = PREG Register Type

32-Bit Store to Memory
(StDregToM32bit)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–319

Long Load/Store with indexed addressing (LdStIdxI)

LdStIdxI Instruction Syntax

Long Load/Store with indexed addressing (LdStIdxI)

31

1

30

1

29

1

28

0

27

0

26

1

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

W

Z

REG[2:0]

PTR[2:0]

SZ[1:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OFF[15:0] OFF[15:0]

Figure 8-103: LdStIdxI Instruction

The following table provides the opcode field values (W, SZ, Z), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

W SZ Z Syntax Instruction

0 00 0 DREG Register Type = [PREG Register
Type + imm16s4 Register Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 00 1 PREG Register Type = [PREG Register Type
+ imm16s4 Register Type]

32-Bit Pointer Load from Memory
(LdM32bitToPreg)

0 01 0 DREG Register Type = w[PREG Register
Type + imm16s2 Register Type] (z)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

0 01 1 DREG Register Type = w[PREG Register
Type + imm16s2 Register Type] (x)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

0 10 0 DREG Register Type = b[PREG Register
Type + imm16reloc Register Type] (z)

8-Bit Load from Memory to 32-bit Register
(LdM08bitToDreg)

0 10 1 DREG Register Type = b[PREG Register
Type + imm16reloc Register Type] (x)

8-Bit Load from Memory to 32-bit Register
(LdM08bitToDreg)

1 00 0 [PREG Register Type + imm16s4 Register
Type] = DREG Register Type

32-Bit Store to Memory (StDregToM32bit)

1 00 1 [PREG Register Type + imm16s4 Register
Type] = PREG Register Type

Store Pointer (StPregToM32bit)

1 01 0 w[PREG Register Type + imm16s2 Register
Type] = DREG Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 10 0 b[PREG Register Type + imm16reloc Regis-
ter Type] = DREG Register Type

8-Bit Store to Memory (StDregToM08bit)

Instruction Page Tables

8–320 ADSP-BF7xx Blackfin+ Processor

Load/Store postmodify addressing, pregister based (LdStPmod)

LdStPmod Instruction Syntax

Load/Store postmodify addressing, pregister based (LdStPmod)

15

1

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

W

AOP[1:0]

REG[2:0]

PTR[2:0]

IDX[2:0]

REG[2:0]

Figure 8-104: LdStPmod Instruction

The following table provides the opcode field values (W, AOP), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

W AOP Syntax Instruction

0 00 DREG Register Type = [PREG Register
Type ++ PREG Register Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

0 01 DREG_L Register Type = w[PREG Register
Type ++ PREG Register Type]

16-Bit Load from Memory (LdM16bitTo-
DregL)

0 10 DREG_H Register Type = w[PREG Regis-
ter Type ++ PREG Register Type]

16-Bit Load from Memory (LdM16bitTo-
DregH)

0 11 DREG Register Type = w[PREG Register
Type ++ PREG Register Type] (z)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

1 00 [PREG Register Type ++ PREG Register
Type] = DREG Register Type

32-Bit Store to Memory (StDregToM32bit)

1 01 w[PREG Register Type ++ PREG Register
Type] = DREG_L Register Type

16-Bit Store to Memory (StDregL-
ToM16bit)

1 10 w[PREG Register Type ++ PREG Register
Type] = DREG_H Register Type

16-Bit Store to Memory (StDregH-
ToM16bit)

1 11 DREG Register Type = w[PREG Register
Type ++ PREG Register Type] (x)

16-Bit Load from Memory to 32-Bit Regis-
ter (LdM16bitToDreg)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–321

Load/Store (Ldp)

Ldp Instruction Syntax

Load/Store (Ldp)

15

1

14

0

13

0

12

1

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

0

AOP[1:0] REG[2:0]

PTR[2:0]

AOP[1:0]

Figure 8-105: Ldp Instruction

The following table provides the opcode field values (AOP), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

AOP Syntax Instruction

00 PREG Register Type = [PREG
Register Type++]

32-Bit Pointer Load from
Memory (LdM32bitToPreg)

01 PREG Register Type = [PREG
Register Type--]

32-Bit Pointer Load from
Memory (LdM32bitToPreg)

10 PREG Register Type = [PREG
Register Type]

32-Bit Pointer Load from
Memory (LdM32bitToPreg)

Load/Store indexed with small immediate offset (LdpII)

LdpII Instruction Syntax

Load/Store indexed with small immediate offset (LdpII)

15

1

14

0

13

1

12

0

11

1

10

1

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OFF[3:0] REG[2:0]

PTR[2:0]

OFF[3:0]

Figure 8-106: LdpII Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Instruction Page Tables

8–322 ADSP-BF7xx Blackfin+ Processor

Syntax Instruction

PREG Register Type = [PREG
Register Type + uimm4s4 Register
Type]

32-Bit Pointer Load from Memory
(LdM32bitToPreg)

Load/Store indexed with small immediate offset FP (LdpIIFP)

LdpIIFP Instruction Syntax

Load/Store indexed with small immediate offset FP (LdpIIFP)

15

1

14

0

13

1

12

1

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

1

2

0

1

0

0

0

OFF[4:0] REG[2:0]

OFF[4:0]

Figure 8-107: LdpIIFP Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Syntax Instruction

PREG Register Type = [fp - imm5nzs4neg-
pos Register Type]

32-Bit Load from Memory (LdM32bitTo-
Dreg)

Save/restore registers and link/unlink frame, multiple cycles (Linkage)

Linkage Instruction Syntax

Save/restore registers and link/unlink frame, multiple cycles (Linkage)

31

1

30

1

29

1

28

0

27

1

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

R

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

FRM[15:0] FRM[15:0]

Figure 8-108: Linkage Instruction

The following table provides the opcode field values (R), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–323

R Syntax Instruction

0 link uimm16s4 Register Type Linkage (Linkage)

1 unlink Linkage (Linkage)

Logic Binary Operations (Logi2Op)

Logi2Op Instruction Syntax

Logic Binary Operations (Logi2Op)

15

0

14

1

13

0

12

0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC[2:0] DST[2:0]

SRC[4:0]

Figure 8-109: Logi2Op Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

000 cc = !bittst (DREG Register Type, uimm5
Register Type)

Bit Test (Shift_BitTst)

001 cc = bittst (DREG Register Type, uimm5
Register Type)

Bit Test (Shift_BitTst)

010 bitset (DREG Register Type, uimm5 Regis-
ter Type)

Bit Modify (Shift_BitMod)

011 bittgl (DREG Register Type, uimm5 Regis-
ter Type)

Bit Modify (Shift_BitMod)

100 bitclr (DREG Register Type, uimm5 Regis-
ter Type)

Bit Modify (Shift_BitMod)

101 DREG Register Type >>>= uimm5 Register
Type

32-Bit Arithmetic Shift (AShift32)

110 DREG Register Type >>= uimm5 Register
Type

32-Bit Logical Shift (LShift)

111 DREG Register Type <<= uimm5 Register
Type

32-Bit Logical Shift (LShift)

Instruction Page Tables

8–324 ADSP-BF7xx Blackfin+ Processor

Virtually Zero Overhead Loop Mechanism (LoopSetup)

LoopSetup Instruction Syntax

Virtually Zero Overhead Loop Mechanism (LoopSetup)

31

1

30

1

29

1

28

0

27

0

26

0

25

0

24

0

23

1

22

0

21

0

20

0

19

0

18

0

17

0

16

0

SOFF[3:0]

C

ROP[1:0]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

IMM

REG[2:0]

LOP[1:0]

EOFF[9:0]

EOFF[9:0]

Figure 8-110: LoopSetup Instruction

The following table provides the opcode field values (LOP, ROP), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

LOP ROP Syntax Instruction Rev

00 00 lsetup (uimm4s2o4 Register Type,
uimm10s2o4 Register Type) LC

Hardware Loop Set Up (LoopSetup)

00 01 lsetup (uimm4s2o4 Register Type,
uimm10s2o4 Register Type) LC = PREG
Register Type

Hardware Loop Set Up (LoopSetup)

-- 10 lsetup (uimm10s2o4 Register Type) LC =
uimm10 Register Type

Hardware Loop Set Up (LoopSetup) 2.0

00 11 lsetup (uimm4s2o4 Register Type,
uimm10s2o4 Register Type) LC = PREG
Register Type >> 1

Hardware Loop Set Up (LoopSetup)

01 01 lsetupz (uimm10s2o4 Register Type) LC =
PREG Register Type

Hardware Loop Set Up (LoopSetup) 2.0

01 11 lsetupz (uimm10s2o4 Register Type) LC =
PREG Register Type >> 1

Hardware Loop Set Up (LoopSetup) 2.0

10 01 lsetuplez (uimm10s2o4 Register Type) LC =
PREG Register Type

Hardware Loop Set Up (LoopSetup) 2.0

10 11 lsetuplez (uimm10s2o4 Register Type) LC =
PREG Register Type >> 1

Hardware Loop Set Up (LoopSetup) 2.0

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–325

LC

LC Encode Table

C Syntax

0 lc0

1 lc1

64-bit Instruction Shell (Multi)

Multi Instruction Syntax

64-bit Instruction Shell (Multi)

63

0

62

0

61

0

60

0

59

0

58

0

57

0

56

0

55

0

54

0

53

0

52

0

51

0

50

0

49

0

48

0

IBUS[63:48] IBUS[63:48]

47

0

46

0

45

0

44

0

43

0

42

0

41

0

40

0

39

0

38

0

37

0

36

0

35

0

34

0

33

0

32

0

IBUS[47:32] IBUS[47:32]

31

0

30

0

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

IBUS[31:16] IBUS[31:16]

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

IBUS[15:0] IBUS[15:0]

Figure 8-111: Multi Instruction

The following table provides the opcode field values (IBUS[63:59]), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

IBUS[63:59] Syntax Rev

0---- MAIN16A;

10--- MAIN16B;

110-0 MAIN32A;

111-- MAIN32B;

11011 MAIN64; 2.0

11001 SLOTM || SLOT0 || SLOT1;

Virtually Zero Overhead Loop Mechanism (LoopSetup)

8–326 ADSP-BF7xx Blackfin+ Processor

16-bit Slot Nop (NOP16)

NOP16 Instruction Syntax

16-bit Slot Nop (NOP16)

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

Figure 8-112: NOP16 Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Syntax Instruction

nop NOP (NOP)

32-bit Slot Nop (NOP32)

NOP32 Instruction Syntax

32-bit Slot Nop (NOP32)

31

1

30

1

29

0

28

0

27

0

26

0

25

0

24

0

23

0

22

0

21

0

20

0

19

0

18

0

17

1

16

1

M

15

0

14

0

13

0

12

1

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

Figure 8-113: NOP32 Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Syntax Instruction

mnop 32-Bit No Operation (NOP32)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–327

Basic Program Sequencer Control Functions (ProgCtrl)

ProgCtrl Instruction Syntax

Basic Program Sequencer Control Functions (ProgCtrl)

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

REG[3:0]

OPC[3:0]

Figure 8-114: ProgCtrl Instruction

The following table provides the opcode field values (OPC, REG), the instruction syntax overview (Syntax), and a
link to the corresponding instruction reference page (Instruction)

OPC REG Syntax Instruction Rev

0001 0000 rts Return from Branch (Return)

0001 0001 rti Return from Branch (Return)

0001 0010 rtx Return from Branch (Return)

0001 0011 rtn Return from Branch (Return)

0001 0100 rte Return from Branch (Return)

0010 0000 idle Sync (Sync)

0010 0011 csync Sync (Sync)

0010 0100 ssync Sync (Sync)

0010 0101 emuexcpt Sequencer Mode (Mode)

0011 0--- cli DREG Register Type Interrupt Control (IMaskMv)

0100 0--- sti DREG Register Type Interrupt Control (IMaskMv)

0101 0--- jump (PREG Register Type) Jump (Jump)

0110 0--- call (PREG Register Type) Call (Call)

0111 0--- call (pc+PREG Register Type) Call (Call)

1000 0--- jump (pc+PREG Register Type) Jump (Jump)

1001 ---- raise uimm4 Register Type Raise Interrupt (Raise)

1010 ---- excpt uimm4 Register Type Raise Interrupt (Raise)

1011 0--- testset (PREGP Register Type) TestSet (TestSet)

1100 0--- sti idle DREG Register Type Sync (Sync) 2.1.1

Instruction Page Tables

8–328 ADSP-BF7xx Blackfin+ Processor

Pointer Arithmetic Operations (Ptr2op)

Ptr2op Instruction Syntax

Pointer Arithmetic Operations (Ptr2op)

15

0

14

1

13

0

12

0

11

0

10

1

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OPC[2:0] DST[2:0]

SRC[2:0]

OPC[2:0]

Figure 8-115: Ptr2op Instruction

The following table provides the opcode field values (OPC), the instruction syntax overview (Syntax), and a link to
the corresponding instruction reference page (Instruction)

OPC Syntax Instruction

000 PREG Register Type -= PREG Register Type 32-bit Add or Subtract (DagAdd32)

001 PREG Register Type = PREG Register Type
<< 2

Pointer Logical Shift (LShiftPtr)

010 PREG Register Type = PREG Register Type
<< 1

Pointer Logical Shift (LShiftPtr)

011 PREG Register Type = PREG Register Type
>> 2

Pointer Logical Shift (LShiftPtr)

100 PREG Register Type = PREG Register Type
>> 1

Pointer Logical Shift (LShiftPtr)

101 PREG Register Type += PREG Register
Type (brev)

32-bit Add or Subtract (DagAdd32)

110 PREG Register Type = (PREG Register Type
+ PREG Register Type) << 1

32-bit Add then Shift (DagAddSubShift)

111 PREG Register Type = (PREG Register Type
+ PREG Register Type) << 2

32-bit Add then Shift (DagAddSubShift)

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–329

Push or Pop Multiple contiguous registers (PushPopMult)

PushPopMult Instruction Syntax

Push or Pop Multiple contiguous registers (PushPopMult)

15

0

14

0

13

0

12

0

11

0

10

1

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

D PR[2:0]

DR[2:0]

W

P

Figure 8-116: PushPopMult Instruction

The following table provides the opcode field values (W, D, P), the instruction syntax overview (Syntax), and a link
to the corresponding instruction reference page (Instruction)

W D P Syntax Instruction

0 0 1 (PREG_RANGE Register Type) = [sp++] Stack Push/Pop Multiple Registers (Push-
PopMul16)

0 1 0 (DREG_RANGE Register Type) = [sp++] Stack Push/Pop Multiple Registers (Push-
PopMul16)

0 1 1 (DREG_RANGE Register Type,
PREG_RANGE Register Type) = [sp++]

Stack Push/Pop Multiple Registers (Push-
PopMul16)

1 0 1 [--sp] = (PREG_RANGE Register Type) Stack Push/Pop Multiple Registers (Push-
PopMul16)

1 1 0 [--sp] = (DREG_RANGE Register Type) Stack Push/Pop Multiple Registers (Push-
PopMul16)

1 1 1 [--sp] = (DREG_RANGE Register Type,
PREG_RANGE Register Type)

Stack Push/Pop Multiple Registers (Push-
PopMul16)

Instruction Page Tables

8–330 ADSP-BF7xx Blackfin+ Processor

Push or Pop register, to and from the stack pointed to by sp (PushPopReg)

PushPopReg Instruction Syntax

Push or Pop register, to and from the stack pointed to by sp (PushPopReg)

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

1

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

REG[2:0]

GRP[2:0]

W

Figure 8-117: PushPopReg Instruction

The following table provides the opcode field values (W), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

W Syntax Instruction

0 POPREG = [sp++] Stack Pop (Pop)

1 [--sp] = PUSHREG Stack Push (Push)

POPREG

POPREG Encode Table

GRP REG Syntax

010 0-- IREG Register Type

010 1-- MREG Register Type

011 0-- BREG Register Type

011 1-- LREG Register Type

100 000 a0.x

100 001 a0.w

100 010 a1.x

100 011 a1.w

100 110 astat

100 111 rets

110 --- SYSREG2 Register Type

111 --- SYSREG3 Register Type

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–331

PUSHREG

PUSHREG Encode Table

GRP REG Syntax

000 --- DREG Register Type

001 --- PREG Register Type

010 0-- IREG Register Type

010 1-- MREG Register Type

011 0-- BREG Register Type

011 1-- LREG Register Type

100 000 a0.x

100 001 a0.w

100 010 a1.x

100 011 a1.w

100 110 astat

100 111 rets

110 --- SYSREG2 Register Type

111 --- SYSREG3 Register Type

Register to register transfer operation (RegMv)

RegMv Instruction Syntax

Register to register transfer operation (RegMv)

15

0

14

0

13

1

12

1

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

GD[2:0]

GS[2:0]

SRC[2:0]

DST[2:0]

GS[2:0]

Figure 8-118: RegMv Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Syntax Instruction

GDST = GSRC Move Register to Register (MvRegToReg)

Push or Pop register, to and from the stack pointed to by sp (PushPopReg)

8–332 ADSP-BF7xx Blackfin+ Processor

GDST

GDST Encode Table

GD DST Syntax

000 --- DREG Register Type

001 --- PREG Register Type

010 0-- IREG Register Type

010 1-- MREG Register Type

011 0-- BREG Register Type

011 1-- LREG Register Type

100 000 a0.x

100 001 a0.w

100 010 a1.x

100 011 a1.w

100 110 astat

100 111 rets

110 --- SYSREG2 Register Type

111 --- SYSREG3 Register Type

GSRC

GSRC Encode Table

GS SRC Syntax

000 --- DREG Register Type

001 --- PREG Register Type

010 0-- IREG Register Type

010 1-- MREG Register Type

011 0-- BREG Register Type

011 1-- LREG Register Type

100 000 a0.x

100 001 a0.w

100 010 a1.x

100 011 a1.w

100 110 astat

Register to register transfer operation (RegMv)

ADSP-BF7xx Blackfin+ Processor 8–333

GS SRC Syntax

100 111 rets

110 --- SYSREG2 Register Type

111 --- SYSREG3 Register Type

Unconditional Branch PC relative with 12bit offset (UJump)

UJump Instruction Syntax

Unconditional Branch PC relative with 12bit offset (UJump)

15

0

14

0

13

1

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

OFF[11:0] OFF[11:0]

Figure 8-119: UJump Instruction

The following table provides the opcode field values (), the instruction syntax overview (Syntax), and a link to the
corresponding instruction reference page (Instruction)

Syntax Instruction

jump.s imm12nxs2 Register Type Jump Immediate (JumpAbs)

bimm32 Register Type

bimm32 Attributes

range allow_label

-0x80000000:0x7fffffff true

buimm32 Register Type

buimm32 Attributes

range allow_label

0x0:0xffffffff true

Instruction Page Tables

8–334 ADSP-BF7xx Blackfin+ Processor

huimm16 Register Type

huimm16 Attributes

range

0x0:0xffff

imm10s2 Register Type

imm10s2 Attributes

range allow_label

-0x400:0x3fe:2 true

imm12nxs2 Register Type

imm12nxs2 Attributes

range allow_label

-0x1000:0xffe:2 true

imm12s2 Register Type

imm12s2 Attributes

range allow_label

-0x1000:0xffe:2 true

imm12xs2 Register Type

imm12xs2 Attributes

range allow_label

-0x1000:0xffe:2 true

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–335

imm16 Register Type

imm16 Attributes

range

-0x8000:0x7fff

imm16negpos Register Type

imm16negpos Attributes

range negated

0x1:0x8000 true

imm16reloc Register Type

imm16reloc Attributes

range

-0x8000:0x7fff

imm16s2 Register Type

imm16s2 Attributes

range

-0x10000:0xfffe:2

imm16s2negpos Register Type

imm16s2negpos Attributes

range negated

0x2:0x10000:2 true

Instruction Page Tables

8–336 ADSP-BF7xx Blackfin+ Processor

imm16s4 Register Type

imm16s4 Attributes

range

-0x20000:0x1fffc:4

imm16s4negpos Register Type

imm16s4negpos Attributes

range negated

0x4:0x20000:4 true

imm24nxs2 Register Type

imm24nxs2 Attributes

range

-0x1000000:0xfffffe:2

imm24s2 Register Type

imm24s2 Attributes

range

-0x1000000:0xfffffe:2

imm24xs2 Register Type

imm24xs2 Attributes

range

-0x1000000:0xfffffe:2

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–337

imm3 Register Type

imm3 Attributes

range

-0x4:0x3

imm32 Register Type

imm32 Attributes

range

-0x80000000:0x7fffffff

imm5nzs4negpos Register Type

imm5nzs4negpos Attributes

range negated

0x4:0x80:4 true

imm6 Register Type

imm6 Attributes

range

-0x20:0x1f

imm7 Register Type

imm7 Attributes

range

-0x40:0x3f

Instruction Page Tables

8–338 ADSP-BF7xx Blackfin+ Processor

luimm16 Register Type

luimm16 Attributes

range

0x0:0xffff

negimm5s4 Register Type

negimm5s4 Attributes

range

-0x80:-0x4:4

rimm16 Register Type

rimm16 Attributes

range

0x0:0xffff

uimm10 Register Type

uimm10 Attributes

range iencode

0x1:0x3ff,0xffffffff 0xffffffff:0

uimm10s2o4 Register Type

uimm10s2o4 Attributes

range allow_label

0x4:0x7fe:2 true

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–339

uimm16s4 Register Type

uimm16s4 Attributes

range

0x0:0x3fffc:4

uimm3 Register Type

uimm3 Attributes

range

0x0:0x7

uimm32 Register Type

uimm32 Attributes

range allow_label

0x0:0xffffffff true

uimm4 Register Type

uimm4 Attributes

range

0x0:0xf

uimm4nz Register Type

uimm4nz Attributes

range

0x1:0xf

Instruction Page Tables

8–340 ADSP-BF7xx Blackfin+ Processor

uimm4nznegpos Register Type

uimm4nznegpos Attributes

range negated

0x1:0xf true

uimm4s2 Register Type

uimm4s2 Attributes

range

0x0:0x1e:2

uimm4s2o4 Register Type

uimm4s2o4 Attributes

range allow_label

0x4:0x1e:2 true

uimm4s4 Register Type

uimm4s4 Attributes

range

0x0:0x3c:4

uimm5 Register Type

uimm5 Attributes

range

0x0:0x1f

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–341

uimm5nz Register Type

uimm5nz Attributes

range

0x1:0x1f

uimm5nznegpos Register Type

uimm5nznegpos Attributes

range negated

0x1:0x1f true

BREG Register Type

BREG Syntax

Code Syntax

00 b0

01 b1

10 b2

11 b3

BREG_H Register Type

BREG_H Syntax

Code Syntax

00 b0.h

01 b1.h

10 b2.h

11 b3.h

Instruction Page Tables

8–342 ADSP-BF7xx Blackfin+ Processor

BREG_L Register Type

BREG_L Syntax

Code Syntax

00 b0.l

01 b1.l

10 b2.l

11 b3.l

DREG Register Type

DREG Syntax

Code Syntax

000 r0

001 r1

010 r2

011 r3

100 r4

101 r5

110 r6

111 r7

DREG_B Register Type

DREG_B Syntax

Code Syntax

000 r0.b

001 r1.b

010 r2.b

011 r3.b

100 r4.b

101 r5.b

110 r6.b

111 r7.b

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–343

DREG_E Register Type

DREG_E Syntax

Code Syntax

000 r0

010 r2

100 r4

110 r6

DREG_H Register Type

DREG_H Syntax

Code Syntax

000 r0.h

001 r1.h

010 r2.h

011 r3.h

100 r4.h

101 r5.h

110 r6.h

111 r7.h

DREG_L Register Type

DREG_L Syntax

Code Syntax

000 r0.l

001 r1.l

010 r2.l

011 r3.l

100 r4.l

101 r5.l

110 r6.l

111 r7.l

Instruction Page Tables

8–344 ADSP-BF7xx Blackfin+ Processor

DREG_O Register Type

DREG_O Syntax

Code Syntax

000 r1

010 r3

100 r5

110 r7

DREG_PAIR Register Type

DREG_PAIR Syntax

Code Syntax

000 r1:0

010 r3:2

100 r5:4

110 r7:6

DREG_RANGE Register Type

DREG_RANGE Syntax

Code Syntax

000 r7:0

001 r7:1

010 r7:2

011 r7:3

100 r7:4

101 r7:5

110 r7:6

111 r7:7

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–345

IREG Register Type

IREG Syntax

Code Syntax

00 i0

01 i1

10 i2

11 i3

IREG_H Register Type

IREG_H Syntax

Code Syntax

00 i0.h

01 i1.h

10 i2.h

11 i3.h

IREG_L Register Type

IREG_L Syntax

Code Syntax

00 i0.l

01 i1.l

10 i2.l

11 i3.l

LREG Register Type

LREG Syntax

Code Syntax

00 l0

01 l1

10 l2

Instruction Page Tables

8–346 ADSP-BF7xx Blackfin+ Processor

Code Syntax

11 l3

LREG_H Register Type

LREG_H Syntax

Code Syntax

00 l0.h

01 l1.h

10 l2.h

11 l3.h

LREG_L Register Type

LREG_L Syntax

Code Syntax

00 l0.l

01 l1.l

10 l2.l

11 l3.l

MREG Register Type

MREG Syntax

Code Syntax

00 m0

01 m1

10 m2

11 m3

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–347

MREG_H Register Type

MREG_H Syntax

Code Syntax

00 m0.h

01 m1.h

10 m2.h

11 m3.h

MREG_L Register Type

MREG_L Syntax

Code Syntax

00 m0.l

01 m1.l

10 m2.l

11 m3.l

PREG Register Type

PREG Syntax

Code Syntax

000 p0

001 p1

010 p2

011 p3

100 p4

101 p5

110 sp

111 fp

Instruction Page Tables

8–348 ADSP-BF7xx Blackfin+ Processor

PREGP Register Type

PREGP Syntax

Code Syntax

000 p0

001 p1

010 p2

011 p3

100 p4

101 p5

PREG_H Register Type

PREG_H Syntax

Code Syntax

000 p0.h

001 p1.h

010 p2.h

011 p3.h

100 p4.h

101 p5.h

110 sp.h

111 fp.h

PREG_L Register Type

PREG_L Syntax

Code Syntax

000 p0.l

001 p1.l

010 p2.l

011 p3.l

100 p4.l

101 p5.l

Instruction Page Tables

ADSP-BF7xx Blackfin+ Processor 8–349

Code Syntax

110 sp.l

111 fp.l

PREG_RANGE Register Type

PREG_RANGE Syntax

Code Syntax

000 p5:0

001 p5:1

010 p5:2

011 p5:3

100 p5:4

101 p5:5

SYSREG2 Register Type

SYSREG2 Syntax

Code Syntax

000 lc0

001 lt0

010 lb0

011 lc1

100 lt1

101 lb1

110 cycles

111 cycles2

SYSREG3 Register Type

SYSREG3 Syntax

Code Syntax

000 usp

Instruction Page Tables

8–350 ADSP-BF7xx Blackfin+ Processor

Code Syntax

001 seqstat

010 syscfg

011 reti

100 retx

101 retn

110 rete

111 emudat

Issuing Parallel Instructions
This chapter discusses the instructions that can be issued in parallel. It identifies supported combinations for parallel
issue, parallel issue syntax, 32-bit ALU/MAC instructions, 16-bit instructions, and examples.

The Blackfin processor is not superscalar; it does not execute multiple instructions at once. However, it does permit
up to three instructions to be issued in parallel with some limitations. A multi-issue instruction is 64-bits in length
and consists of one 32-bit instruction and two 16-bit instructions. All three instructions execute in the same amount
of time as the slowest of the three.

Sections in this chapter

• Supported Parallel Combinations

• Parallel Issue Syntax

• 32-Bit ALU/MAC Instructions

• 16-Bit Instructions

• Parallel Operation Examples

Supported Parallel Combinations

The diagram in Supported Parallel Combinations illustrates the combinations for parallel issue that the Blackfin
processor supports.

32-bit ALU/MAC instruction 16-bit Instruction 16-bit Instruction

Parallel Issue Syntax

The syntax of a parallel issue instruction is as follows.

• A 32-bit ALU/MAC instruction || A 16-bit instruction || A 16-bit instruction ;
The vertical bar (||) indicates the following instruction is to be issued in parallel with the previous instruction.
Note the terminating semicolon appears only at the end of the parallel issue instruction.

Issuing Parallel Instructions

ADSP-BF7xx Blackfin+ Processor 8–351

It is possible to issue a 32-bit ALU/MAC instruction in parallel with only one 16-bit instruction using the fol-
lowing syntax. The result is still a 64-bit instruction with a 16-bit NOP automatically inserted into the unused
16-bit slot.

• A 32-bit ALU/MAC instruction || A 16-bit instruction ;
Alternately, it is also possible to issue two 16-bit instructions in parallel with one another without an active 32-
bit ALU/MAC instruction by using the MNOP instruction, shown below. Again, the result is still a 64-bit in-
struction.

• MNOP || A 16-bit instruction || A 16-bit instruction ;

See the MNOP (32-bit NOP) instruction description in NOP (NOP). The MNOP instruction does not have
to be explicitly included by the programmer; the software tools prepend it automatically. The MNOP instruc-
tion will appear in disassembled parallel 16-bit instructions.

32-Bit ALU/MAC Instructions

The list of 32-bit instructions that can be in a parallel instruction are shown in the 32-Bit DSP Instructions table.

Table 8-33: 32-Bit DSP Instructions

Instruction Name (Description) Operation Type and Parallel Version Notes

Arithmetic Operations

32-bit Absolute Value (Abs32) (Absolute Value) ALU Operations (Dsp32Alu)

32-bit Add or Subtract (AddSub32) (Add or Subtract) ALU Operations (Dsp32Alu)

Note: Only permits parallelism for versions supporting saturation.

32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12) (Add/
Subtract – Prescale Up)

ALU Operations (Dsp32Alu)

32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20) (Add/
Subtract – Prescale Down)

ALU Operations (Dsp32Alu)

Exponent Detection (Shift_ExpAdj32) (Exponent Detection) Shift (Dsp32Shf)

32-bit Maximum (Max32) (Maximum) ALU Operations (Dsp32Alu)

32-Bit Minimum (Min32) (Minimum) ALU Operations (Dsp32Alu)

Accumulator Add or Subtract (AddSubAcc) (Modify Increment/
Decrement)

ALU Operations (Dsp32Alu)

32-Bit Negate (Neg32) (Negate, Two’s-Complement) ALU Operations (Dsp32Alu)

Note: Only permits parallelism for the accumulator versions.

Fractional 32-bit to 16-Bit Conversion (Pass32Rnd16) (Round to
Half-Word)

ALU Operations (Dsp32Alu)

Accumulator0 32-Bit Saturate (ALU_SatAcc0) (Saturate A0) ALU Operations (Dsp32Alu)

Accumulator1 32-Bit Saturate (ALU_SatAcc1) (Saturate A1) ALU Operations (Dsp32Alu)

Issuing Parallel Instructions

8–352 ADSP-BF7xx Blackfin+ Processor

Table 8-33: 32-Bit DSP Instructions (Continued)

Instruction Name (Description) Operation Type and Parallel Version Notes

Dual Accumulator 32-Bit Saturate (ALU_SatAccDual) (Dual Satu-
rate)

ALU Operations (Dsp32Alu)

Redundant Sign Bits (Shift_SignBits32) Shift (Dsp32Shf)

Load Store

Accumulator Register Initialization (LdImmToAx) (Clear A0) ALU Operations (Dsp32Alu)

Accumulator Register Initialization (LdImmToAx) (Clear A1) ALU Operations (Dsp32Alu)

Dual Accumulator 0 and 1 Registers Initialization (LdImmToAxD-
ual) (Dual Clear)

ALU Operations (Dsp32Alu)

Bit Operations

Deposit Bits (Shift_Deposit) (Bit Field Deposit) Shift (Dsp32Shf)

Extract Bits (Shift_Extract) (Bit Field Extract) Shift (Dsp32Shf)

Bit Mux (BitMux) (Bit Multiplex) Shift (Dsp32Shf)

Ones Count (Shift_Ones) (Ones Count) Shift (Dsp32Shf)

Logical Operations

40-Bit BXORShift LSFR with Feedback to the Accumulator
(BXORShift_NF) ((Bitwise XOR with Feedback)

Shift (Dsp32Shf)

32-Bit BXOR or BXORShift LSFR without Feedback (BXOR_NF)
(Bitwise XOR without Feedback)

Shift (Dsp32Shf)

Move

Move Register to Accumulator1 (MvDregToAx) (Move Register to
A0)

ALU Operations (Dsp32Alu)

Move Register to Accumulator1 (MvDregToAx) (Move Register to
A1)

ALU Operations (Dsp32Alu)

Move 32-Bit Accumulator Section to Even Register (MvA0To-
DregE) (Move A0.X to Register Half)

ALU Operations (Dsp32Alu)

Move 32-Bit Accumulator Section to Odd Register (MvA1ToDre-
gO) (Move A1.X to Register Half)

ALU Operations (Dsp32Alu)

Move Register Half to 16-Bit Accumulator Section (MvDregHL-
ToAxHL) (Move Register Half to A0)

ALU Operations (Dsp32Alu)

Move Register Half to 16-Bit Accumulator Section (MvDregHL-
ToAxHL) (Move Register Half to A1)

ALU Operations (Dsp32Alu)

Shift / Rotate Operations*1

Accumulator Arithmetic Shift (AShiftAcc) (Arithmetic Shift A0/A1) Shift (Dsp32Shf)

Note: See footnote restrictions.

32-Bit Arithmetic Shift (AShift32) (Arithmetic Shift Register) Shift (Dsp32Shf)

Issuing Parallel Instructions

ADSP-BF7xx Blackfin+ Processor 8–353

Table 8-33: 32-Bit DSP Instructions (Continued)

Instruction Name (Description) Operation Type and Parallel Version Notes

Note: Only permits parallelism for saturating versions; see footnote
restrictions.

16-Bit Logical Shift (LShift16) (Logical Shift Half Register by Half
Register or Immediate)

Shift (Dsp32Shf) and Shift (Dsp32Shf)

Note See footnote restrictions.

32-Bit Rotate (Shift_Rot32) (Rotate Register) Shift (Dsp32Shf)

Note: See footnote restrictions.

Accumulator Rotate (Shift_RotAcc) (Rotate A0/A1) Shift (Dsp32Shf)

Note: See footnote restrictions.

External Event Management

32-Bit No Operation (NOP32) (No Operation) 32-Bit No Operation (NOP32)

Note: Only permits parallelism for 32-bit MNOP.

Vector Operations

16-Bit Modulo Maximum with History (Shift_VitMax) (Modulo
Maximum with History)

Shift (Dsp32Shf)

16-Bit Add on Sign (AddOnSign) (Add on Sign) ALU Operations (Dsp32Alu)

16 x 16-Bit MAC (Mac16) (Multiply to Accumulator) Multiply with 3 operands (Dsp32Mult)

16 x 16-Bit MAC (Mac16) (Multiply-Accumulate to Accumulator) Multiply with 3 operands (Dsp32Mult)

16 x 16-Bit Multiply (Mult16) (Multiply to Half Register) Multiply with 3 operands (Dsp32Mult)

16 x 16-Bit MAC (Mac16) (Multiply-Accumulate to Half Register) Multiply Accumulate (Dsp32Mac)

32 x 32-bit Multiply (Mult32) (Multiply to Register) Multiply with 3 operands (Dsp32Mult)

16 x 16-Bit MAC (Mac16) (Multiply-Accumulate to Register) Multiply with 3 operands (Dsp32Mult)

Vectored 16-Bit Absolute Value (Abs2x16) (Absolute Value, Vector) ALU Operations (Dsp32Alu)

Vectored 16-Bit Add or Subtract (AddSubVec16) (Add or Subtract,
Vector)

ALU Operations (Dsp32Alu)

Vectored 16-Bit Arithmetic (AShift16Vec) (Arithmetic Shift Regis-
ter, Vector)

Shift (Dsp32Shf)

Vectored 16-Bit Logical Shift (LShift16Vec) (Logical Shift Register
by Half Register or Immediate, Vector)

Shift (Dsp32Shf)

Vectored 16-Bit Maximum (Max16Vec) (Maximum, Vector) ALU Operations (Dsp32Alu)

Vectored 16-Bit Minimum (Min16Vec) (Minimum, Vector) ALU Operations (Dsp32Alu)

16 x 16-Bit Multiply (Mult16) (Multiply 16-Bit Operands) Multiply with 3 operands (Dsp32Mult)

Vectored 16-bit Negate (Neg16Vec) (Negate, Two’s-Complement,
Vector)

ALU Operations (Dsp32Alu)

Pack 16-Bit to 32-Bit (Pack16Vec) (Pack, Vector) Shift (Dsp32Shf)

Issuing Parallel Instructions

8–354 ADSP-BF7xx Blackfin+ Processor

Table 8-33: 32-Bit DSP Instructions (Continued)

Instruction Name (Description) Operation Type and Parallel Version Notes

Vectored 16-Bit Search (Search) (Search, Vector) ALU Operations (Dsp32Alu)

Video Pixel Operations

Byte Align (Shift_Align) (Byte Align 8, 16, and 24) Shift (Dsp32Shf)

Disable Alignment Exception (DisAlignExcept) (Disable Alignment
Exception for Load)

ALU Operations (Dsp32Alu)

Vectored 8-Bit Sum of Absolute Differences (SAD8Vec) (Sum of
Absolute Differences, Vector)

ALU Operations (Dsp32Alu)

Dual Accumulator Extraction with Addition (AddAccHalf) (Dual
Half Register Add to A0/A1)

ALU Operations (Dsp32Alu)

Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (Add-
Sub4x8) (Quad 8-Bit Add/Subtract)

ALU Operations (Dsp32Alu)

Vector Byte Average (Byteop1P) (Avg8Vec) (Quad 8-Bit Average -
Byte)

ALU Operations (Dsp32Alu)

Quad Byte Average (Byteop2P) (Avg4x8Vec) (Quad 8-Bit Average -
Half Word)

ALU Operations (Dsp32Alu)

Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (Add-
Clip) (Dual 16-Bit Add/Clip)

ALU Operations (Dsp32Alu)

Pack 8-Bit to 32-Bit (BytePack) (Quad 8-Bit Pack) ALU Operations (Dsp32Alu)

Spread 8-Bit to 16-Bit (ByteUnPack) (Quad 8-Bit Unpack) ALU Operations (Dsp32Alu)

*1 Multi-issue may not combine SHIFT/ROTATE with STORE using Preg + Offset operation.

16-Bit Instructions

The two 16-bit instructions in a multi-issue instruction must each be from the instructions shown in the Compati-
ble 16-Bit Instructions table.

The following additional restrictions also apply to the 16-bit instructions of the multi-issue instruction.

• Only one of the 16-bit instructions can be a store instruction.

• Only one of the 16-bit instructions may load a pointer register. This load must be encoded in DAG slot 0.

Table 8-34: Compatible 16-Bit Instructions

Instruction Name (Description) Operation Type and Parallel Version Notes

Arithmetic Operations

32-bit Add or Subtract Constant (DagAddImm) (DAG
Add/Subtract Immediate)

Destructive Binary Operations, preg with 7bit immediate
(CompI2opP)

Note: I-Register versions only.

Issuing Parallel Instructions

ADSP-BF7xx Blackfin+ Processor 8–355

Table 8-34: Compatible 16-Bit Instructions (Continued)

Instruction Name (Description) Operation Type and Parallel Version Notes

32-bit Add or Subtract (DagAdd32) (DAG Modify Incre-
ment/Decrement)

Pointer Arithmetic Operations (Ptr2op)

Note: I-Register versions only.

Load / Store

32-Bit Register Initialization (LdImmToReg) (Load Point-
er Register)

Load/Store (Ldp), Load/Store indexed with small immedi-
ate offset (LdpII), and Long Load/Store with indexed ad-
dressing (LdStIdxI)

32-Bit Load from Memory (LdM32bitToDreg) (Load Da-
ta Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), Load/Store (LdSt),
Load/Store indexed with small immediate offset FP
(LdStIIFP), Load/Store indexed with small immediate off-
set FP (LdpIIFP), Load/Store indexed with small immedi-
ate offset (LdStII), Long Load/Store with indexed address-
ing (LdStIdxI), and Load/Store 32-bit Absolute Address
(LdStAbs)

16-Bit Load from Memory to 32-Bit Register (LdM16bit-
ToDreg) (Load Half Word Sign/Zero Extended)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (LdSt), Load/Store indexed with
small immediate offset (LdStII), Long Load/Store with in-
dexed addressing (LdStIdxI), and Load/Store 32-bit Abso-
lute Address (LdStAbs)

16-Bit Load from Memory (LdM16bitToDregH) (Load
High Half Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), and Load/Store 32-
bit Absolute Address (LdStAbs)

16-Bit Load from Memory (LdM16bitToDregL) (Load
Low Half Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), and Load/Store 32-
bit Absolute Address (LdStAbs)

8-Bit Load from Memory to 32-bit Register (LdM08bit-
ToDreg) (Load Byte Sign/Zero Extended)

Load/Store (LdSt), Long Load/Store with indexed address-
ing (LdStIdxI), and Load/Store 32-bit Absolute Address
(LdStAbs)

Store Pointer (StPregToM32bit) (Store Pointer Register) Load/Store (LdSt)

32-Bit Store to Memory (StDregToM32bit) (Store Data
Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), Load/Store (LdSt),
Load/Store indexed with small immediate offset FP
(LdStIIFP), Load/Store indexed with small immediate off-
set (LdStII), Long Load/Store with indexed addressing
(LdStIdxI), and Load/Store 32-bit Absolute Address
(LdStAbs)

16-Bit Store to Memory (StDregHToM16bit) (Store High
Half Data Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), and Load/Store 32-
bit Absolute Address (LdStAbs)

Issuing Parallel Instructions

8–356 ADSP-BF7xx Blackfin+ Processor

Table 8-34: Compatible 16-Bit Instructions (Continued)

Instruction Name (Description) Operation Type and Parallel Version Notes

16-Bit Store to Memory (StDregLToM16bit) (Store Low
Half Data Register)

Load/Store postmodify addressing, pregister based
(LdStPmod), Load/Store (DspLdSt), Load/Store (LdSt),
Load/Store indexed with small immediate offset (LdStII),
Long Load/Store with indexed addressing (LdStIdxI), and
Load/Store 32-bit Absolute Address (LdStAbs)

8-Bit Store to Memory (StDregToM08bit) (Store Byte) Load/Store (LdSt), Long Load/Store with indexed address-
ing (LdStIdxI), and Load/Store 32-bit Absolute Address
(LdStAbs)

External Event Management

NOP (NOP) (No Operation) 16-bit Slot Nop (NOP16)

Note: 16-bit NOP only.

Parallel Operation Examples

● Two Parallel Memory Access Instructions

/* Subtract-Absolute-Accumulate issued in parallel with the memory access instructions that
fetch the data for the next SAA instruction. This sequence is executed in a loop to flip-
flop back and forth between the data in R1 and R3, then the data in R0 and R2. */
saa (r1:0, r3:2) || r0=[i0++] || r2=[i1++] ;
saa (r1:0, r3:2)(r) || r1=[i0++] || r3=[i1++] ;
mnop || r1 = [i0++] || r3 = [i1++] ;

● One Ireg and One Memory Access Instruction in Parallel

/* Add on Sign while incrementing an Ireg and loading a data register based on the previous
value of the Ireg. */
r7.h=r7.l=sign(r2.h)*r3.h + sign(r2.l)*r3.l || i0+=m3 || r0=[i0] ;
/* Add/subtract two vector values while incrementing an Ireg and loading a data register. */
R2 = R2 +|+ R4, R4 = R2 -|- R4 (ASR) || I0 += M0 (BREV) || R1 = [I0] ;
/* Multiply and accumulate to Accumulator while loading a data register and storing a data
register using an Ireg pointer. */
A1=R2.L*R1.L, A0=R2.H*R1.H || R2.H=W[I2++] || [I3++]=R3 ;
/* Multiply and accumulate while loading two data registers. One load uses an Ireg pointer.
*/
A1+=R0.L*R2.H,A0+=R0.L*R2.L || R2.L=W[I2++] || R0=[I1--] ;
R3.H=(A1+=R0.L*R1.H), R3.L=(A0+=R0.L*R1.L) || R0=[P0++] || R1=[I0] ;
/* Pack two vector values while storing a data register using an Ireg pointer and loading
another data register. */
R1=PACK(R1.H,R0.H) || [I0++]=R0 || R2.L=W[I2++] ;

● One Ireg Instruction in Parallel

/* Multiply-Accumulate to a Data register while incrementing an Ireg. */
r6=(a0+=r3.h*r2.h)(fu) || i2-=m0 ;

Issuing Parallel Instructions

ADSP-BF7xx Blackfin+ Processor 8–357

/* which the assembler expands into:
 r6=(a0+=r3.h*r2.h)(fu) || i2-=m0 || nop ; */

Issuing Parallel Instructions

8–358 ADSP-BF7xx Blackfin+ Processor

9 Debug

The Blackfin+ processor's debug functionality is used for software debugging. It also complements some services of-
ten found in an operating system (OS) kernel. The functionality is implemented in the processor hardware and is
grouped into multiple levels.

A summary of available debug features is shown in the Blackfin+ Debug Features table.

Table 9-1: Blackfin+ Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the process-
or when satisfied.

Cycle Count Provides functionality for all code profiling functions.

Performance

Monitoring

Allows internal resources to be monitored and measured
non-intrusively.

Watchpoint Unit
By monitoring the addresses on both the instruction bus and the data bus, the Watchpoint Unit provides several
mechanisms for examining program behavior. After counting the number of times a particular address is matched,
the unit schedules an event based on this count.

In addition, information that the Watchpoint Unit provides helps in the optimization of code. The unit also makes
it easier to maintain executables through code patching.

The Watchpoint Unit contains these memory-mapped registers (MMRs), which are accessible in Supervisor and
Emulator modes:

• Watchpoint Status register (WPSTAT)

• Six Instruction Watchpoint Address registers (WPIA[5:0])

• Six Instruction Watchpoint Address Count registers (WPIACNT[5:0])

• Instruction Watchpoint Address Control register (WPIACTL)

• Two Data Watchpoint Address registers (WPDA[1:0])

Debug

ADSP-BF7xx Blackfin+ Processor 9–1

• Two Data Watchpoint Address Count registers (WPDACNT[1:0])

• Data Watchpoint Address Control register (WPDACTL)

Two operations implement instruction watchpoints:

• The values in the six Instruction Watchpoint Address registers, WPIA[5:0], are compared to the address on
the instruction bus.

• Corresponding count values in the Instruction Watchpoint Address Count registers, WPIACNT[5:0], are de-
cremented each time a match occurs.

The six Instruction Watchpoint Address registers may be further grouped into three ranges of instruction-address-
range watchpoints, as defined in the WPIA0/WPIA1, WPIA2/WPIA3, and WPIA4/WPIA5 register pairs:

• WPIA0 <= WPIA1
• WPIA2 <= WPIA3
• WPIA4 <= WPIA5

Two operations implement data watchpoints:

• The values in the two Data Watchpoint Address registers, WPDA[1:0], are compared to the addresses on the
data buses.

• Corresponding count values in the Data Watchpoint Address Count registers, WPDACNT[1:0], are decrement-
ed each time a match occurs.

The two Data Watchpoint Address registers may be further grouped together into a single data-address-range watch-
point, WPDA[1: 0].

The instruction and data count value registers must be loaded with the number of times the watchpoint must match
minus one. After the count value reaches zero, the subsequent watchpoint match results in an exception or emula-
tion event.

An event can also be triggered on a combination of the instruction and data watchpoints. If the WPIACTL.WPAND
bit is set, then an event is triggered only when both an instruction address watchpoint matches and a data address
watchpoint matches. If the WPAND bit is 0, then an event is triggered when any of the enabled watchpoints or watch-
point ranges match.

To enable the Watchpoint Unit, the WPIACTL.PWR bit must be set. If WPIACTL.PWR = 1, then the individual
watchpoints and watchpoint ranges may be enabled using the specific enable bits in the WPIACTL and WPDACTL
MMRs. If WPIACTL.PWR = 0, then all watchpoint activity is disabled.

Instruction Watchpoints

Each instruction watchpoint is controlled by three bits in the WPIACTL register, as shown in the WPIACTL Control
Bits table.

Watchpoint Unit

9–2 ADSP-BF7xx Blackfin+ Processor

Table 9-2: WPIACTL Control Bits

Bit Name Description

EMUSWx Determines whether an instruction address match causes either an emulation event or
an exception event.

WPICNTENx Enables the 16-bit counter that counts the number of address matches. If the counter
is disabled, then every match causes an event.

WPIAENx Enables the address watchpoint activity.

When two watchpoints are associated to form a range, two additional bits are used, as shown in the WPIACTL
Watchpoint Range Control Bits table.

Table 9-3: WPIACTL Watchpoint Range Control Bits

Bit Name Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a range.

WPIRINVxy Determines whether an event is caused by an address within the range identified or
outside of the range identified.

Code patching allows software to replace sections of existing code with new code. The watchpoint registers are used
to trigger an exception at the start addresses of the earlier code. The exception routine then vectors to the location in
memory that contains the new code.

On the processor, code patching can be achieved by writing the start address of the earlier code to one of the WPIAx
registers and setting the corresponding EMUSWx bit to trigger an exception. In the exception service routine, the
WPSTAT register is read to determine which watchpoint triggered the exception. Next, the code writes the start ad-
dress of the new code in the RETX register and then returns from the exception to the new code. Because the excep-
tion mechanism is used for code patching, event service routines of the same or higher priority (exception, NMI,
and reset routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits, though the data value written is ignored.

WPIAx Registers

When the Watchpoint Unit is enabled, the values in the Instruction Watchpoint Address registers (WPIAx) are com-
pared to the address on the instruction bus. Corresponding count values in the Instruction Watchpoint Address
Count registers (WPIACNTx) are decremented each time a match is identified. For more information, see Watch-
point Instruction Address Register .

Register Name Memory-Mapped Address

WPIA0 0xFFE0 7040

WPIA1 0xFFE0 7044

WPIA2 0xFFE0 7048

WPIA3 0xFFE0 704C

Watchpoint Unit

ADSP-BF7xx Blackfin+ Processor 9–3

Register Name Memory-Mapped Address

WPIA4 0xFFE0 7050

WPIA5 0xFFE0 7054

WPIACNTx Registers

When the Watchpoint Unit is enabled, the count values in the Instruction Watchpoint Address Count registers
(WPIACNT[5:0]) are decremented each time the address or the address bus matches a value in the WPIAx registers.
Load the WPIACNTx register with a value that is one less than the number of times the watchpoint must match
before triggering an event. The WPIACNTx register will decrement to 0x0000 when the programmed count expires.
For more information, see the Watchpoint Instruction Address Count Register.

Register Name Memory-Mapped Address

WPIACNT0 0xFFE0 7080

WPIACNT1 0xFFE0 7084

WPIACNT2 0xFFE0 7088

WPIACNT3 0xFFE0 708C

WPIACNT4 0xFFE0 7090

WPIACNT5 0xFFE0 7094

WPIACTL Register

Three bits in the Instruction Watchpoint Address Control register (WPIACTL) control each instruction watchpoint.
For more information about the bits in this register, see Watchpoint Unit and Watchpoint Instruction Address Con-
trol Register.

Data Address Watchpoints

Each data watchpoint is controlled by four bits in the WPDACTL register, as shown in the Data Address Watchpoints
table.

Table 9-4: Data Address Watchpoints

Bit Name Description

WPDACCx Determines whether the match should be on a read or write access.

WPDSRCx Determines which DAG the unit should monitor.

WPDCNTENx Enables the counter that counts the number of address matches. If the counter is
disabled, then every match causes an event.

WPDAENx Enables the data watchpoint activity.

When the two watchpoints are associated to form a range, two additional bits are used. See the WPDACTL Watch-
point Control Bits table.

Watchpoint Unit

9–4 ADSP-BF7xx Blackfin+ Processor

Table 9-5: WPDACTL Watchpoint Control Bits

Bit Name Description

WPDREN01 Indicates the two watchpoints associated to form a range.

WPDRINV01 Determines whether an event is caused by an address within or outside the range
identified.

WPDAx Registers

When the Watchpoint Unit is enabled, the values in the Data Watchpoint Address registers (WPDAx) are compared
to the address on the data buses. Corresponding count values in the Data Watchpoint Address Count registers
(WPDACNTx) are decremented each time a match is identified. For more information, see the Watchpoint Data Ad-
dress Register.

WPDACNTx Registers

When the Watchpoint Unit is enabled, the count values in the Data Watchpoint Address Count Value registers
(WPDACNTx) are decremented each time the address or the address bus matches a value in the WPDAx registers. Load
this WPDACNTx register with a value that is one less than the number of times the watchpoint must match the ad-
dress bus before triggering an event. The WPDACNTx register will decrement to 0x0000 when the programmed count
expires. For more information, see the Watchpoint Data Address Count Value Register .

WPDACTL Register

For more information about the bits in the Data Watchpoint Address Control register (WPDACTL), see Data Address
Watchpoints and Watchpoint Data Address Control Register.

WPSTAT Register

The Watchpoint Status register (WPSTAT) monitors the status of the watchpoints. It may be read and written in
Supervisor or Emulator modes only. When a watchpoint or watchpoint range matches, this register reflects the
source of the watchpoint. The status bits in the WPSTAT register are sticky, and all of them are cleared when the
register is written (with any value). For more information, see the Watchpoint Status Register.

Performance Monitor Unit (PMU)
The Blackfin+ architecture provides a built-in performance monitor unit (PMU) to non-intrusively monitor the
processor's internal resources. The PMU includes a set of processor events that can be counted during program exe-
cution.

A subset of these processor events can be counted in terms of the number of stalls that occur while the event is active
or true. This stall measurement is in core clock cycles and provides an indication of the performance penalty associ-
ated with the event. The rest of the processor events can be counted in terms of the number of occurrences of the
event. This event measurement helps with program debugging and provides an aid to understanding the perform-
ance bottlenecks in an application.

Watchpoint Unit

ADSP-BF7xx Blackfin+ Processor 9–5

Developers can use the PMU to count pipeline and memory stalls. The stall information can be used iteratively to
quickly locate areas to focus on during the software optimization process. The highest level of debugging efficiency
is achieved when using the PMU while running applications directly on hardware as opposed to predicting these
events in a simulation environment.

For example, the PMU can help to detect whether the performance bottleneck is due to L1 data memory access
latencies. Using another PMU event, it can be concluded that the memory stall results from simultaneous access by
both the core and the DMA controller to the same region of L1 memory, which is not allowed by the architecture,
thus causing one access to stall. However, the processor core and the DMA controller can access different subbanks
of memory in the same cycle (refer to Overview of On-Chip Level 1 (L1) Memory in the Memory chapter for more
details on L1 memory arbitration stalls). After identifying an issue like this using the PMU, one of the buffers can be
moved to a non-conflicting bank of L1 memory to minimize core versus DMA access conflicts.

Functional Description

The PMU provides two sets of registers (PFCTRx and PFCTL), which permit non-intrusive monitoring of the pro-
cessor's internal resources during program execution.

The 32-bit Performance Monitor Counter (PFCNTR1-0) registers hold the number of occurrences of a selected
event from within a processor core. Each of the counters must be enabled prior to use.

The Performance Control (PFCTL) register provides:

• enable/disable capabilities for the PMU,

• selection of the event mode,

• configuration of the event type to be monitored, and

• selection of interrupt handling type for a counter overflow condition.

Together, these registers provide feedback indicating the measure of load-balancing between the various resources on
the chip. This feedback permits comparison and analysis of expected versus actual resource usage.

PFCNTRx Registers

The Performance Monitor Counter Registers figure shows the Performance Monitor Counter registers,
PFCNTR[1:0]. The PFCNTR0 register contains the count value of Performance Monitor Counter 0, while the
PFCNTR1 register contains the count value of Performance Counter 1. For more information, see Counter 0 Regis-
ter and Counter 1 Register .

The counter retains its value even after the module is disabled, so the programmer has to clear the counter before
using it again. The counter can also be programmed with a non-zero 32-bit value.

PFCTL Register

To enable the PMU, set the PFPWR bit in the Performance Monitor Control (PFCTL) register. After the unit is ena-
bled, individual Count Enable bits (PFCENx) take effect. Use the PFCENx bits to enable or disable the performance

Performance Monitor Unit (PMU)

9–6 ADSP-BF7xx Blackfin+ Processor

monitors in User mode, Supervisor mode, or both. Use the EVENTx bits to select the type of event triggered. For
more information, see the Control Register .

Count Event Mode

Setting the PFCTL.CNTx bits enables the events that are listed in the PFCTL.MONx Event Type (Occurrences) table
(see Monitor Event Types) to be counted as an "occurrence" of an event. Clearing these bits enables the events listed
in the PFCTL.MONx Event Type (Stalls) table (see Monitor Event Types) to be counted as "number of stalls" while
the event is active/true.

Monitor Event Types

Use the PFCTL.MONx[7:0] bits to select the type of event triggered. The PFCTL.MONx Event Type (Occurrences)
table identifies events that cause the Performance Monitor Counter (PFCTL.MON0 or PFCTL.MON1) fields to incre-
ment, based on the number of "occurrences" of that particular event. For the events listed in the PFCTL.MONx
Event Type (Occurrences) table, set the corresponding PFCTL.CNTx bit.

The PFCTL.MONx Event Type (Stalls) table identifies events that cause the Performance Monitor Counter
(PFCTL.MON0 or PFCTL.MON1) fields to increment based on the "number of stalls" until the event is true. For the
events listed in the PFCTL.MONx Event Type (Stalls) table, clear the corresponding PFCTL.CNTx bit.

EVENTx - Counter Overflow Condition

The PFCTL.EVENTx bit provides the flexibility for the PMU to generate either a hardware error or an emulation
event when it rolls over. When a hardware error is generated, the SEQSTAT.HWERRCAUSE[1:0] Sequencer status
bits are set to 0x12. The PMU can also be used to detect an instance of any of the events in the PFCTL.MONx
Event Type (Occurrences) table (see Monitor Event Types) by pre-loading the counter with the maximum value
0xFFFFFFFF. When configured this way, the first time the selected event happens, the counter rolls over and gener-
ates a hardware error.

Programming Example

The following code example demonstrates a possible use case of the PMU to track stalls in a particular application.

/* L1 data memory address */
I0.L = LO(0xFF801004);
I0.H = HI(0xFF801004);
/* L1 data memory address in same 4K sub-bank */
I1.L = LO(0xFF801244);
I1.H = HI(0xFF801244);
/* reset performance control register */
P0.L = LO(PFCTL);
P0.H = HI(PFCTL);
R0 = 0;
[P0] = R0;

/* reset performance counter 0 */
P0.L = LO(PFCNTR0);

PFCTL Register

ADSP-BF7xx Blackfin+ Processor 9–7

P0.H = HI(PFCNTR0);
R0 = 0;
[P0] = R0;

/* enable the monitor and counter 0 */
P0.L = LO(PFCTL);
P0.H = HI(PFCTL);
R0.L = 0x0019;
R0.H = 0x0000;

R1 = PFCEN_VALUE; /* load the event number (0x96) */
R0 = R0 | R1;
[P0] = R0; /* program performance control register */
/* parallel instruction accessing 2 data memory locations */
R1 = R4.L * R5.H (IS) || R3 = [I0++] || R4 = [I1++];

This results in the counter being incremented by one, as there is a one-cycle stall incurred due to a collision in the
data bank A sub-bank 1. A simultaneous access will only result in a stall if the accesses are to the same 32-bit word
alignment (address bit 2 matches), the same 4 KB sub-bank (address bits 13 and 12 match), the same 16 KB half-
bank (address bit 16 matches), and the same bank (address bits 21 and 20 match).

The Hardware Error interrupt can be used in cases where the application needs to be notified of a specific PMU
event. To support this, the EVENTx bit has to be cleared, and the counter has to be pre-loaded with a value of
0xFFFFFFFF, as follows:
P0.L = LO(PFCNTR0);
P0.H = HI(PFCNTR0);
R0.L = 0xFFFF;
R0.H = 0xFFFF;
[P0] = R0;

Because the EVENT0 bit is cleared, the counter overflow that occurs the first time the programmed event occurs
results in a hardware error interrupt being generated The Hardware Error interrupt service routine could be set up
and populated as follows to enable custom handling of any PMU event:
/* LOAD IMASK ADDRESS */
P0.L = LO(IMASK);
P0.H = HI(IMASK);
R0 = [P0];
R1 = IVHW; /* ENABLE HARDWARE ERROR INTERRUPT */
R0 = R0 | R1;
[P0] = R0;
/* STORE ISR HANDLER ADDRESS */
P0.L = LO(EVT5);
P0.H = HI(EVT5);
R0.L = LO(IVHW_ISR);
R0.H = HI(IVHW_ISR);
[P0] = R0;
/* HARDWARE ERROR INTERRUPT SERVICE ROUTINE */
IVHW_ISR:

Performance Monitor Unit (PMU)

9–8 ADSP-BF7xx Blackfin+ Processor

 P0 = SEQSTAT;
 R0 = [P0]; /* READ SEQUENCER STATUS REGISTER */
 R1 = 0x12; /* CHECK FOR PMU EVENT (HWERRCAUSE 0x12) */
 R1 <<= 14;
 CC = R1 == R0;
 IF !CC JUMP HWERR_EXIT;

PFMON_OVERFLOW:
 /* PERFORMANCE MONITOR OVERFLOW HAS BEEN DETECTED */
 /* Add handling code here */
HWERR_EXIT:
 RTI;

Cycle Counters
The cycle counter counts CCLK cycles while the program is executing. All cycles- including execution, wait state,
interrupts, and events - are counted while the processor is in User or Supervisor mode, but the cycle counter stops
counting in Emulator mode.

The 64-bit cycle counter increments every core clock cycle and is tracked in two 32-bit registers, CYCLES and CY-
CLES2. The least significant 32 bits (LSBs) are stored in CYCLES, and the most significant 32 bits (MSBs) are stor-
ed in CYCLES2.

The CYCLES and CYCLES2 registers are read/write in all modes (User, Supervisor, and Emulator) for all Blackfin+
processors. For more information, see Cycle Count (32 LSBs) Register and Cycle Count (32 MSBs) Register .

To enable the cycle counters, set the SYSCFG.CCEN bit. The following example shows how to use the cycle counter
to benchmark a piece of code:

R2 = 0; /* Clear the cycle counters */
CYCLES = R2;
CYCLES2 = R2;

R2 = SYSCFG;
BITSET(R2,1);
SYSCFG = R2; /* Enable the cycle counters */

/* Insert code to be benchmarked here */
R2 = CYCLES2;
R1 = CYCLES; /* R2:1 contain 64-bit CYCLES2/CYCLES cycle count */

CYCLES and CYCLES2 Registers

The Execution Cycle Count registers (CYCLES and CYCLES2) form a 64-bit counter that increments every CCLK
cycle. The CYCLES register contains the least significant 32 bits of the cycle counter's 64-bit count value, while the
CYCLES2 register contains the most significant 32 bits. For more information, see Cycle Count (32 LSBs) Register
and Cycle Count (32 MSBs) Register .

Cycle Counters

ADSP-BF7xx Blackfin+ Processor 9–9

NOTE: When single-stepping through instructions in a debug environment, the CYCLES register is incremented
in a non-uniform fashion due to interaction with the debugger over JTAG.

SYSCFG Register

The System Configuration register (SYSCFG) controls the configuration of the processor. This register is accessible
only from Supervisor mode. For more information, see the System Configuration Register .

Product Identification Register
The 32-bit Product Identification register (DSPID) is a core MMR that contains core identification and revision
fields for the core.

DSPID Register

The Product Identification register (DSPID) is a read-only register and is part of the processor core. This register
format differs depending on whether the processor is a single or dual-core processor. For more information, see the
DSP Identification Register .

Blackfin+ DBG Register Descriptions
Debug (DBG) contains the following registers.

Table 9-6: Blackfin+ DBG Register List

Name Description

DSPID DSP Identification Register

Cycle Counters

9–10 ADSP-BF7xx Blackfin+ Processor

DSP Identification Register

Core ID

Major Architectural ChangeAnalog Devices, Inc.

COREID (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MAJOR (R)COMPANY (R)

1
31

1
30

1
29

0
28

0
27

1
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

1
18

0
17

1
16

Figure 9-1: DSPID Register Diagram

Table 9-7: DSPID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/NW)

COMPANY Analog Devices, Inc..

229 Analog Devices, Inc.

23:16

(R/NW)

MAJOR Major Architectural Change.

4 Blackfin

5 Blackfin+

7:0

(R/NW)

COREID Core ID.

Blackfin+ WP Register Descriptions
Watchpoint Unit (WP) contains the following registers.

Table 9-8: Blackfin+ WP Register List

Name Description

WPDACNTN[n] Watchpoint Data Address Count Register

WPDACTL Watchpoint Data Address Control Register

WPDAN[n] Watchpoint Data Address Register

WPIACNTN[n] Watchpoint Instruction Address Count Register

WPIACTL Watchpoint Instruction Address Control Register

WPIAN[n] Watchpoint Instruction Address Register

WPSTAT Watchpoint Status Register

Blackfin+ DBG Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–11

Watchpoint Data Address Count Register

Count Value
CNT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-2: WPDACNTN[n] Register Diagram

Table 9-9: WPDACNTN[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

CNT Count Value.

Blackfin+ WP Register Descriptions

9–12 ADSP-BF7xx Blackfin+ Processor

Watchpoint Data Address Control Register

Enable WPDA0 CounterEnable WPDA1 Counter

Enable WPDA1DAG Source for WPDA0

Enable WPDA0Access type for WPDA0

Invert Range ComparisionDAG Source for WPDA1

Enable Range ComparisonAccess type for WPDA1

ENCNT0 (R/W)ENCNT1 (R/W)

ENDA1 (R/W)SRC0 (R/W)

ENDA0 (R/W)ACC0 (R/W)

INVR (R/W)SRC1 (R/W)

ENR (R/W)ACC1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-3: WPDACTL Register Diagram

Table 9-10: WPDACTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

13:12

(R/W)

ACC1 Access type for WPDA1.

0 Reserved

1 Watch Writes only

2 Watch Reads only

3 Watch Reads and Writes

11:10

(R/W)

SRC1 DAG Source for WPDA1.

0 Reserved

1 Watch DAG0

2 Watch DAG1

3 Watch Both DAGs

9:8

(R/W)

ACC0 Access type for WPDA0.

0 Reserved

1 Watch Writes only

2 Watch Reads only

3 Watch Reads and Writes

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–13

Table 9-10: WPDACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

SRC0 DAG Source for WPDA0.

0 Reserved

1 Watch DAG0

2 Watch DAG1

3 Watch Both DAGs

5

(R/W)

ENCNT1 Enable WPDA1 Counter.

4

(R/W)

ENCNT0 Enable WPDA0 Counter.

3

(R/W)

ENDA1 Enable WPDA1.

2

(R/W)

ENDA0 Enable WPDA0.

1

(R/W)

INVR Invert Range Comparision.

0

(R/W)

ENR Enable Range Comparison.

Address matches if it satisfies this equation WPDA0 < ADDRESS <= WPDA1

Blackfin+ WP Register Descriptions

9–14 ADSP-BF7xx Blackfin+ Processor

Watchpoint Data Address Register

Data Address

Data Address

ADDR[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-4: WPDAN[n] Register Diagram

Table 9-11: WPDAN[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Data Address.

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–15

Watchpoint Instruction Address Count Register

Count Value
CNT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-5: WPIACNTN[n] Register Diagram

Table 9-12: WPIACNTN[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

CNT Count Value.

Blackfin+ WP Register Descriptions

9–16 ADSP-BF7xx Blackfin+ Processor

Watchpoint Instruction Address Control Register

The WPIACTL register configures up to six instruction watchpoints to monitor individual addresses (up to six), ad-
dress ranges (up to three), or a combination of both.

WPIA0 ActionWPIA1 Action

WPIA1 Counter EnableInstruction Range 23 Enable

WPIA0 Counter EnableInstruction Range 23 Invert Enable

WPIA1 EnableWPIA2 Enable

WPIA0 EnableWPIA3 Enable

Instruction Range 01 Invert EnableWPIA2 Counter Enable

Instruction Range 01 EnableWPIA3 Counter Enable

Watchpoint Unit EnableWPIA2 Action

WPIA5 EnableWPIA4 Counter Enable

WPIA4 EnableWPIA5 Counter Enable

Instruction Range 45 Invert EnableWPIA4 Action

Instruction Range 45 EnableWPIA5 Action

WPIA3 ActionWPI AND WPD Trigger

ACT0 (R/W)ACT1 (R/W)

ENCNT1 (R/W)ENIR23 (R/W)

ENCNT0 (R/W)INVIR23 (R/W)

ENIA1 (R/W)ENIA2 (R/W)

ENIA0 (R/W)ENIA3 (R/W)

INVIR01 (R/W)ENCNT2 (R/W)

ENIR01 (R/W)ENCNT3 (R/W)

PWR (R/W)ACT2 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ENIA5 (R/W)ENCNT4 (R/W)

ENIA4 (R/W)ENCNT5 (R/W)

INVIR45 (R/W)ACT4 (R/W)

ENIR45 (R/W)ACT5 (R/W)

ACT3 (R/W)WPAND (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-6: WPIACTL Register Diagram

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–17

Table 9-13: WPIACTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

WPAND WPI AND WPD Trigger.

The WPIACTL.WPAND bit determines whether a watchpoint hit has to occur in either
or both of the instruction and data watchpoint units for an event to be triggered.

0 Trigger an event on every watchpoint match (instruction
or data)

1 Trigger event only if there is both an instruction watch-
point match and a data watchpoint match

24

(R/W)

ACT5 WPIA5 Action.

The WPIACTL.ACT5 bit determines whether an exception or emulation event occurs
upon an instruction watchpoint 5 match.

0 Exception event

1 Emulation event

23

(R/W)

ACT4 WPIA4 Action.

The WPIACTL.ACT4 bit determines whether an exception or emulation event occurs
upon either an instruction watchpoint 4 match or an instruction watchpoint 4/5 range
pair match.

0 Exception event

1 Emulation event

22

(R/W)

ENCNT5 WPIA5 Counter Enable.

The WPIACTL.ENCNT5 bit determines whether the WPIA5 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT5 register).

0 Event on every match

1 Event controlled by WPIACNT5

21

(R/W)

ENCNT4 WPIA4 Counter Enable.

The WPIACTL.ENCNT4 bit determines whether the WPIA4 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT4 register). When WPIACTL.ENIR45 is set to enable the 4/5 range pair,
this bit is used for the same function for the range.

0 Event on every match

1 Event controlled by WPIACNT4

Blackfin+ WP Register Descriptions

9–18 ADSP-BF7xx Blackfin+ Processor

Table 9-13: WPIACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W)

ENIA5 WPIA5 Enable.

The WPIACTL.ENIA5 bit determines whether or not the WPIA5 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR45 is not set.

0 Disabled

1 Enabled

19

(R/W)

ENIA4 WPIA4 Enable.

The WPIACTL.ENIA4 bit determines whether or not the WPIA4 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR45 is not set.

0 Disabled

1 Enabled

18

(R/W)

INVIR45 Instruction Range 45 Invert Enable.

The WPIACTL.INVIR45 bit determines whether the watchpoint event occurs when
the instruction address is within or outside of the range defined by the WPIA4/WPIA5
register pair.

0 Event generated when WPIA4 < ADDRESS <= WPIA5

1 Event generated when ADDRESS <= WPIA4 or AD-
DRESS > WPIA5

17

(R/W)

ENIR45 Instruction Range 45 Enable.

When the WPIACTL.ENIR45 bit is set, the WPIA4/WPIA5 instruction watchpoint
pair define a range of addresses for comparisons, and the individual watchpoint enable
bits WPIACTL.ENIA4 and WPIACTL.ENIA5 become invalid. When defined to be a
range, the start address of the range is in WPIA4 and the end address is in WPIA5.

0 Disable Range

1 Enable Range

16

(R/W)

ACT3 WPIA3 Action.

The WPIACTL.ACT3 bit determines whether an exception or emulation event occurs
upon an instruction watchpoint 3 match.

0 Exception event

1 Emulation event

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–19

Table 9-13: WPIACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

ACT2 WPIA2 Action.

The WPIACTL.ACT2 bit determines whether an exception or emulation event occurs
upon either an instruction watchpoint 2 match or an instruction watchpoint 2/3 range
pair match.

0 Exception event

1 Emulation event

14

(R/W)

ENCNT3 WPIA3 Counter Enable.

The WPIACTL.ENCNT3 bit determines whether the WPIA3 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT3 register).

0 Event on every match

1 Event controlled by WPIACNT3

13

(R/W)

ENCNT2 WPIA2 Counter Enable.

The WPIACTL.ENCNT2 bit determines whether the WPIA2 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT2 register).

0 Event on every match

1 Event controlled by WPIACNT2

12

(R/W)

ENIA3 WPIA3 Enable.

The WPIACTL.ENIA3 bit determines whether or not the WPIA3 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR23 is not set.

0 Diabled

1 Enabled

11

(R/W)

ENIA2 WPIA2 Enable.

The WPIACTL.ENIA2 bit determines whether or not the WPIA2 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR23 is not set.

0 Disabled

1 Enabled

Blackfin+ WP Register Descriptions

9–20 ADSP-BF7xx Blackfin+ Processor

Table 9-13: WPIACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W)

INVIR23 Instruction Range 23 Invert Enable.

The WPIACTL.INVIR23 bit determines whether the watchpoint event occurs when
the instruction address is within or outside of the range defined by the WPIA2/WPIA3
register pair.

0 Event generated when WPIA2 < ADDRESS <= WPIA3

1 Event generated when ADDRESS <= WPIA3 or AD-
DRESS > WPIA3

9

(R/W)

ENIR23 Instruction Range 23 Enable.

When the WPIACTL.ENIR23 bit is set, the WPIA2/WPIA3 instruction watchpoint
pair define a range of addresses for comparisons, and the individual watchpoint enable
bits WPIACTL.ENIA2 and WPIACTL.ENIA3 become invalid. When defined to be a
range, the start address of the range is in WPIA2 and the end address is in WPIA3.

0 Disable Range

1 Enable Range

8

(R/W)

ACT1 WPIA1 Action.

The WPIACTL.ACT1 bit determines whether an exception or emulation event occurs
upon an instruction watchpoint 1 match.

0 Exception event

1 Emulation event

7

(R/W)

ACT0 WPIA0 Action.

The WPIACTL.ACT0 bit determines whether an exception or emulation event occurs
upon either an instruction watchpoint 0 match or an instruction watchpoint 0/1 range
pair match.

0 Exception event

1 Emulation event

6

(R/W)

ENCNT1 WPIA1 Counter Enable.

The WPIACTL.ENCNT1 bit determines whether the WPIA1 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT1 register).

0 Event on every match

1 Event controlled by WPIACNT1

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–21

Table 9-13: WPIACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

ENCNT0 WPIA0 Counter Enable.

The WPIACTL.ENCNT0 bit determines whether the WPIA0 event is generated on ev-
ery match or only after a specified number of matches occur (as set in the associated
WPIACNT0 register).

0 Event on every match

1 Event controlled by WPIACNT0

4

(R/W)

ENIA1 WPIA1 Enable.

The WPIACTL.ENIA1 bit determines whether or not the WPIA1 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR01 is not set.

0 Disabled

1 Enabled

3

(R/W)

ENIA0 WPIA0 Enable.

The WPIACTL.ENIA0 bit determines whether or not the WPIA0 watchpoint is ena-
bled to monitor an individual address. As such, this bit is only valid when
WPIACTL.ENIR01 is not set.

0 Disabled

1 Enabled

2

(R/W)

INVIR01 Instruction Range 01 Invert Enable.

The WPIACTL.INVIR01 bit determines whether the watchpoint event occurs when
the instruction address is within or outside of the range defined by the WPIA0/WPIA1
register pair.

0 Event generated when WPIA0 < ADDRESS <= WPIA1

1 Event generated when ADDRESS <= WPIA0 or AD-
DRESS > WPIA1

1

(R/W)

ENIR01 Instruction Range 01 Enable.

When the WPIACTL.ENIR01 bit is set, the WPIA0/WPIA1 instruction watchpoint
pair define a range of addresses for comparisons, and the individual watchpoint enable
bits WPIACTL.ENIA0 and WPIACTL.ENIA1 become invalid. When defined to be a
range, the start address of the range is in WPIA0 and the end address is in WPIA1.

0 Disable Range

1 Enable Range

Blackfin+ WP Register Descriptions

9–22 ADSP-BF7xx Blackfin+ Processor

Table 9-13: WPIACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

PWR Watchpoint Unit Enable.

The WPIACTL.PWR bit determines whether or not the instruction watchpoint unit is
enabled.

0 Disabled

1 Enabled

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–23

Watchpoint Instruction Address Register

Instruction Address

Instruction Address

ADDR[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-7: WPIAN[n] Register Diagram

Table 9-14: WPIAN[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Instruction Address.

Blackfin+ WP Register Descriptions

9–24 ADSP-BF7xx Blackfin+ Processor

Watchpoint Status Register

The Watchpoint Status register (WPSTAT) monitors the status of all of the data and instruction watchpoints. It may
be read and written in Supervisor or Emulator modes only. When a watchpoint or watchpoint range match occurs,
the associated status bit is set and remains set until explicitly cleared by software.

Any write to the WPSTAT register will clear any and all set status bits.

WPIA3 matchWPIA4 or WPIA4:5 range match

WPIA2 or WPIA2:3 range matchWPIA5 match

WPIA1 matchWPDA0 or WPDA0:1 range match

WPIA0 or WPIA0:1 range matchWPDA1 match

IA3 (R/W)IA4 (R/W)

IA2 (R/W)IA5 (R/W)

IA1 (R/W)DA0 (R/W)

IA0 (R/W)DA1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-8: WPSTAT Register Diagram

Table 9-15: WPSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

DA1 WPDA1 match.

6

(R/W)

DA0 WPDA0 or WPDA0:1 range match.

5

(R/W)

IA5 WPIA5 match.

4

(R/W)

IA4 WPIA4 or WPIA4:5 range match.

3

(R/W)

IA3 WPIA3 match.

2

(R/W)

IA2 WPIA2 or WPIA2:3 range match.

1

(R/W)

IA1 WPIA1 match.

Blackfin+ WP Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–25

Table 9-15: WPSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

IA0 WPIA0 or WPIA0:1 range match.

Blackfin+ PF Register Descriptions
Performance Monitor (PF) contains the following registers.

Table 9-16: Blackfin+ PF Register List

Name Description

PFCNTR0 Counter 0 Register

PFCNTR1 Counter 1 Register

PFCTL Control Register

Blackfin+ PF Register Descriptions

9–26 ADSP-BF7xx Blackfin+ Processor

Counter 0 Register

The PFCNTR0 register holds the count value for performance monitor counter 0. Depending on the configuration
of the PFCTL register, this count decrements based on monitored occurrences of events or stall cycles related to
events. When this count decrements to zero (expires), the PF issues an exception or an emulation event.

The PFCNTR0 counter retains its value even after the PF is disabled, so the counter must be cleared before it may be
used again.

Event Count 0

Event Count 0

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-9: PFCNTR0 Register Diagram

Table 9-17: PFCNTR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT Event Count 0.

The PFCNTR0.CNT bits hold the count value for performance monitor counter 0.

Blackfin+ PF Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–27

Counter 1 Register

The PFCNTR1 register holds the count value for performance monitor counter 1. Depending on the configuration
of the PFCTL register, this count decrements based on monitored occurrences of events or stall cycles related to
events. When this count decrements to zero (expires), the PF issues an exception or an emulation event.

The PFCNTR1 counter retains its value even after the PF is disabled, so the counter must be cleared before it may be
used again.

Event Count 1

Event Count 1

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-10: PFCNTR1 Register Diagram

Table 9-18: PFCNTR1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT Event Count 1.

The PFCNTR1.CNT bits hold the count value for performance monitor counter 1.

Blackfin+ PF Register Descriptions

9–28 ADSP-BF7xx Blackfin+ Processor

Control Register

The PFCTL register enables the performance monitor unit PF, selects whether event count expirations generate em-
ulator or exception events, select the processor modes in which monitoring is enabled, and select the event type oc-
currences or stalls that the monitor counts.

Enable Monitor 0Monitor 0 Events

Emulator or Exception Event 0Emulator or Exception Event 1

PowerEnable Monitor 1

Count Occurrences or Stalls 0

Monitor 1 EventsCount Occurrences or Stalls 1

ENA0 (R/W)MON0 (R/W)

EVENT0 (R/W)EVENT1 (R/W)

PWR (R/W)ENA1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT0 (R/W)

MON1 (R/W)CNT1 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-11: PFCTL Register Diagram

Table 9-19: PFCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

CNT1 Count Occurrences or Stalls 1.

The PFCTL.CNT1 bit selects whether monitor 1 counts the number of event type oc-
currences or event type related stall cycles for the event type selected with the
PFCTL.MON1 bits.

0 Count stall cycles due to event type 1

1 Count occurrences of event type 1

24

(R/W)

CNT0 Count Occurrences or Stalls 0.

The PFCTL.CNT0 bit selects whether monitor 1 counts the number of event type oc-
currences or event type related stall cycles for the event type selected with the
PFCTL.MON0 bits.

0 Count stall cycles due to event type 0

1 Count occurrences of event type 0

23:16

(R/W)

MON1 Monitor 1 Events.

The PFCTL.MON1 bits select the event type that is monitored, causing the PFCNTR1
count to decrement. The PFCTL.CNT1 bit selects whether it is occurrences of this type
of event or stall cycles related to this type of event that affect the count. For

Blackfin+ PF Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–29

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

information about event type values for the PFCTL.MON1 bit field, see the functional
description of the PF unit.

0 Loop 0 iterations: count each time we iterate for loop 0

1 Loop 1 iterations: count each time we iterate for loop 1

2 Loop buffer 0 not optimized: count once each time
there is a stall when the loop is not initialized efficiently

3 Loop buffer 1 not optimized: count once each time
there is a stall when the loop is not initialized efficiently

4 PC invariant branches: Count number of PC invariant
branches

5 Reserved

6 Conditional branches: Count number of conditional
branches (not number of stalls)

7 Reserved

8 Reserved

9 Total branches including calls, returns, branches, but
not interrupts

10 Stalls due to CSYNC, SSYNC

11 EXCPT instructions: Count number EXCPT instruc-
tions that are executed

12 CSYNC, SSYNC instructions: 1 count for each that
counts number of each instruction that are executed

13 Committed instructions: count total number of com-
mitted instructions

14 Interrupts taken: Count total number of interrupts that
are taken. Optionally count total interrupts and inter-
rupts at a given IVG level

15 Misaligned address violation exceptions

16 DAG register read-after-write stall

17 Reserved

18 Reserved

19 Stall cycles due to compute register read-after-write haz-
ards

20-31 Reserved

Blackfin+ PF Register Descriptions

9–30 ADSP-BF7xx Blackfin+ Processor

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

32 BRCC Static learn request

33 BRCC Dynamic learn request

34 BRCC Static or Dynamic learn request

35 BRCC Mispredict (Static or Dynamic)

36 BRCC Taken correctly

37 BRCC Prediction commited

38 BRCC learn request written to table

39 BRCC Prediction from Branch Predictor

40 JUMP learn request written to table

41 JUMP Prediction from Branch Predictor

42 RTS learn request written to table

43 RTS Prediction from Branch Predictor

44 JDI learn request written to table (does not exist)

45 JDI Prediction from Branch Predictor (does not exist)

46 CALL learn request written to table

47 CALL Prediction from Branch Predictor

48 BRCC Update written to table

49 Update written to table

50 Prediction from Branch Predictor

51 Prediction per entry

52 Prediction Taken per entry

53 Pending Store Buffer Overwritten

54 Branch Predictor timeouts

55-127 Reserved

128 Stall due to DAG to DAG Bank Collision

129 Cache Hit

130 Cache Miss

131 Stall due to Fill Buffer Unavailable

132-143 Reserved

144 Stall due to Write Buffer unavailable

Blackfin+ PF Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–31

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

145 Stall due to Fill Buffer Unavailable

146 Stall due to DAG to DAG Bank Collision

147 Stall due to DAG to DMA Bank Collision

148 Stall due to MMU Stall to Core

149 Reserved

150 Reserved

151 Reserved

152 Cache Fill Completed

153 Cache Line Replacement

154 Cache Hit (counted in pairs)

155 Cache Miss (counted in pairs)

156 DMA Read

157 DMA Write

158-255 Reserved

15:14

(R/W)

ENA1 Enable Monitor 1.

The PFCTL.ENA1 bits select in which processor modes (user, supervisor, or both) the
performance monitor 1 is enabled.

0 Disable monitor 1

1 Enable monitor 1 in user mode only

2 Enable monitor 1 in supervisor mode only

3 Enable monitor 1 in user and supervisor mode

13

(R/W)

EVENT1 Emulator or Exception Event 1.

The PFCTL.EVENT1 bit selects whether expiration of the PFCNTR1 count down caus-
es an emulation event or an exception.

0 Exception on expired count 1

1 Emulation event on expired count 1

12:5

(R/W)

MON0 Monitor 0 Events.

The PFCTL.MON0 bits select the event type that is monitored, causing the PFCNTR0
count to decrement. The PFCTL.CNT0 bit selects whether it is occurrences of this type
of event or stall cycles related to this type of event that affect the count. For informa-
tion about event type values for the PFCTL.MON0 bit field, see the functional descrip-
tion of the PF unit.

0 Loop 0 iterations: count each time we iterate for loop 0

Blackfin+ PF Register Descriptions

9–32 ADSP-BF7xx Blackfin+ Processor

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1 Loop 1 iterations: count each time we iterate for loop 1

2 Loop buffer 0 not optimized: count once each time
there is a stall when the loop is not initialized efficiently

3 Loop buffer 1 not optimized: count once each time
there is a stall when the loop is not initialized efficiently

4 PC invariant branches: Count number of PC invariant
branches

5 Reserved

6 Conditional branches: Count number of conditional
branches (not number of stalls)

7 Reserved

8 Reserved

9 Total branches including calls, returns, branches, but
not interrupts

10 Stalls due to CSYNC, SSYNC

11 EXCPT instructions: Count number EXCPT instruc-
tions that are executed

12 CSYNC, SSYNC instructions: 1 count for each that
counts number of each instruction that are executed

13 Committed instructions: count total number of com-
mitted instructions

14 Interrupts taken: Count total number of interrupts that
are taken. Optionally count total interrupts and inter-
rupts at a given IVG level

15 Misaligned address violation exceptions

16 DAG register read-after-write stall

17 Reserved

18 Reserved

19 Stall cycles due to compute register read-after-write haz-
ards

20-31 Reserved

32 BRCC Static learn request

33 BRCC Dynamic learn request

34 BRCC Static or Dynamic learn request

Blackfin+ PF Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–33

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

35 BRCC Mispredict (Static or Dynamic)

36 BRCC Taken correctly

37 BRCC Prediction commited

38 BRCC learn request written to table

39 BRCC Prediction from Branch Predictor

40 JUMP learn request written to table

41 JUMP Prediction from Branch Predictor

42 RTS learn request written to table

43 RTS Prediction from Branch Predictor

44 JDI learn request written to table (does not exist)

45 JDI Prediction from Branch Predictor (does not exist)

46 CALL learn request written to table

47 CALL Prediction from Branch Predictor

48 BRCC Update written to table

49 Update written to table

50 Prediction from Branch Predictor

51 Prediction per entry

52 Prediction Taken per entry

53 Pending Store Buffer Overwritten

54 Branch Predictor timeouts

55-127 Reserved

128 Stall due to DAG to DAG Bank Collision

129 Cache Hit

130 Cache Miss

131 Stall due to Fill Buffer Unavailable

132-143 Reserved

144 Stall due to Write Buffer unavailable

145 Stall due to Fill Buffer Unavailable

146 Stall due to DAG to DAG Bank Collision

147 Stall due to DAG to DMA Bank Collision

Blackfin+ PF Register Descriptions

9–34 ADSP-BF7xx Blackfin+ Processor

Table 9-19: PFCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

148 Stall due to MMU Stall to Core

149 Reserved

150 Reserved

151 Reserved

152 Cache Fill Completed

153 Cache Line Replacement

154 Cache Hit (counted in pairs)

155 Cache Miss (counted in pairs)

156 DMA Read

157 DMA Write

158-255 Reserved

4:3

(R/W)

ENA0 Enable Monitor 0.

The PFCTL.ENA0 bits select in which processor modes (user, supervisor, or both) the
performance monitor 0 is enabled.

0 Disable monitor 0

1 Enable monitor 0 in user mode only

2 Enable monitor 0 in supervisor mode only

3 Enable monitor 0 in user and supervisor mode

2

(R/W)

EVENT0 Emulator or Exception Event 0.

The PFCTL.EVENT0 bit selects whether expiration of the PFCNTR0 count down caus-
es an emulation event or an exception.

0 Exception on expired count 0

1 Emulation event on expired count 0

0

(R/W)

PWR Power.

The PFCTL.PWR bit enables the PF.

0 Disable

1 Enable

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions
The Debug-Related Register File (REGFILE) contains the following registers.

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–35

Table 9-20: ADSP-BF70x Debug-Related (REGFILE) Register List

Name Description

CYCLES Cycle Counter Register

CYCLES2 Cycle Counter 2 Register

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions

9–36 ADSP-BF7xx Blackfin+ Processor

Cycle Count (32 LSBs) Register

The CYCLES register holds the least significant 32 bits of the 64-bit cycle count. The counter is enabled by setting
the SYSCFG.CCEN bit. Once enabled, the CYCLES register increments once per core clock (CCLK) cycle, including
wait states. As the CYCLES register is in an unknown state after reset, it should be set to 0 prior to every use.

32 MSBs of Cycle Count

32 MSBs of Cycle Count

CNT[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

CNT[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 9-12: CYCLES Register Diagram

Table 9-21: CYCLES Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT 32 MSBs of Cycle Count.

The CYCLES.CNT bits hold the most significant 32 bits of the 64-bit cycle count val-
ue.

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–37

Cycle Count (32 MSBs) Register

The CYCLES2 register holds the most significant 32 bits of the 64-bit cycle count. The counter is enabled by setting
the SYSCFG.CCEN bit. Once enabled, CYCLES2 increments every time the 32-bit CYCLES register wraps back to
zero. As the CYCLES2 register is in an unknown state after reset, it should be set to 0 prior to each use.

32 MSBs of Cycle Count

32 MSBs of Cycle Count

CNT[47:32] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

CNT[63:48] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 9-13: CYCLES2 Register Diagram

Table 9-22: CYCLES2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT 32 MSBs of Cycle Count.

The CYCLES2.CNT bits hold the most significant 32 bits of the 64-bit cycle count val-
ue.

Blackfin+ OPT Register Descriptions
Optional Core Features (OPT) contains the following registers.

Table 9-23: Blackfin+ OPT Register List

Name Description

OPT_FEATURE0 Feature Core 0 Register

ADSP-BF70x Debug-Related (REGFILE) Register Descriptions

9–38 ADSP-BF7xx Blackfin+ Processor

Feature Core 0 Register

The OPT_FEATURE0 register is a status register that indicates the presence of optional core features and resources.
The status reported in this register only indicates the presence of the feature or resource. The information in this
register does NOT indicate whether or not the feature or resource is enabled (if applicable) or has been configured
(if applicable).

Data Cache 1

Instruction CacheData Cache 2

Branch PredictorL1 Parity

DCACHE1 (R)

ICACHE (R)DCACHE2 (R)

BPRED (R)L1PARITY (R)

0
15

0
14

0
13

0
12

1
11

1
10

1
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-14: OPT_FEATURE0 Register Diagram

Table 9-24: OPT_FEATURE0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/NW)

L1PARITY L1 Parity.

The OPT_FEATURE0.L1PARITY bit indicates whether or not the processor core has
L1 parity error detection. If =1, the core has this feature.

10

(R/NW)

DCACHE2 Data Cache 2.

The OPT_FEATURE0.DCACHE2 bit indicates whether or not the processor core has at
least two data caches. If =1, the core has this feature.

9

(R/NW)

DCACHE1 Data Cache 1.

The OPT_FEATURE0.DCACHE1 bit indicates whether or not the processor core has at
least one data cache. If =1, the core has this feature.

8

(R/NW)

ICACHE Instruction Cache.

The OPT_FEATURE0.ICACHE bit indicates whether or not the processor core has
branch predictor. If =1, the core has this feature.

0

(R/NW)

BPRED Branch Predictor.

The OPT_FEATURE0.BPRED bit indicates whether or not the processor core has
branch predictor. If =1, the core has this feature.

Blackfin+ OPT Register Descriptions

ADSP-BF7xx Blackfin+ Processor 9–39

10 Program Trace Macrocell (PTM)

The processor core implements Program Trace Macrocell (PTM) which implements a subset of Coresight Program
Flow Trace Architecture (CSPFT) specification by ARM and provides instruction trace capability. For Cortex A5
trace unit features refer to the Embedded Trace Macrocell (ETM) chapter the hardware reference manual.

Features
The trace module has the following features

• Address comparators and Context ID comparators for filtering trace data and use as event resources.

• External inputs and outputs for use as event resources.

• Events can be created using address comparators, context ID comparators and external inputs.

• Counters to count events occurrences.

Functional Description
The following section describes the features available in the trace module.

Address Comparators

The trace module provides 4 address comparators. Program the Address Comparator Value register with the address
to be matched and the corresponding Address Comparator Access Type register with additional information about
the required comparison shown in the following list.

• Include or exclude range

• Linking the address comparison with Context ID comparator

Address comparators can be used

• Individually, as single address comparators (SACs)

• In pairs, as address range comparators (ARCs), in which case two adjacent address comparators form an ARC.

Program Trace Macrocell (PTM)

ADSP-BF7xx Blackfin+ Processor 10–1

Context ID Comparators

The trace module provides 1 Context ID comparator.

Context ID comparator consists of a Context ID Comparator Value Register which can hold a Context ID value,
for comparison with the current Context ID and a Context ID Comparator Mask Register which can hold a mask
value, which is used to mask all Context ID comparisons. If Context ID Comparator Mask Register is programmed
to zero then no mask is applied to the Context ID comparisons.

Events

The trace module includes a number of event resources, address comparators, context ID comparators and external
inputs.

Event resources can be used to define events. Event register can be programmed to define the corresponding event as
the result of a logical operation involving one or two event resources.

Each event resource is either active or inactive, active event resource generates a logical TRUE signal and an inactive
event resource generates a logic FALSE signal. An event is logical combinational of event resources, therefore at any
given time each event is either TRUE or FALSE.

Counters

The trace module provides 2 counters that are controlled using events. Each 16-bit counter can count from 0 to
65535. Counter behavior is controlled by the following registers.

Counter Enable Event Register

Enables the counter and counts down while the counter enable event is TRUE.

Counter Reload Event Register

Reloades the counter from the Counter Reload Value Register when a counter reload event occurs.

Counter Reload Value Register

Holds the value that is loaded into the counter when the counter reload event is TRUE.

Counter Value Register

Finds the current value of the counter at any time through a read and writes a new value into the counter
when programming the trace module.

Functional Description

10–2 ADSP-BF7xx Blackfin+ Processor

Trace Security

The trace module supports that is controlled by the Debug Enable input signal. It controls whether the trace mod-
ule is allowed to trace instructions. If this signal is de-asserted, all tracing will stop, all internal resources are disabled
and trace module’s state is held.

Programming Model
The trace module registers are memory-mapped in a 4KB region as per CoreSight programmers model

References
• CoreSight™ Program Flow Trace™ Architecture Specification - ARM IHI 0035B – Available at http://infocen-

ter.arm.com

• CoreSight™ Architecture Specification - ARM IHI 0029B – Available at http://infocenter.arm.com

Functional Description

ADSP-BF7xx Blackfin+ Processor 10–3

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

11 Numeric Formats

The Blackfin+ family processors support 8-, 16-, 32-, and 40-bit fixed-point data in hardware. Special features in the
computation units allow support of other formats in software. This appendix describes various aspects of these data
formats. It also describes how to implement a block floating-point format in software.

Unsigned or Signed: Two's-complement Format
Unsigned integer numbers are positive, and no sign information is contained in the bits. Therefore, the value of an
unsigned integer is interpreted in the usual binary sense. The least significant words of multiple-precision numbers
are treated as unsigned numbers.

Signed numbers supported by the Blackfin+ family are in two's-complement format. Signed-magnitude, one's-com-
plement, binary-coded decimal (BCD) or excess-n formats are not supported.

Integer or Fractional Data Formats
The Blackfin+ family supports both fractional and integer data formats. In an integer, the radix point is assumed to
lie to the right of the least significant bit (LSB), so that all magnitude bits have a weight of 1 or greater. This format
is shown in the Integer Format figure. Note in two's-complement format, the sign bit has a negative weight.

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215

Figure 11-1: Integer Format

In a fractional format, the assumed radix point lies within the number, so that some or all of the magnitude bits
have a weight of less than 1. In the format shown in the Example of Fractional Format figure, the assumed radix
point lies to the left of the three LSBs, and the bits have the weights indicated.

Numeric Formats

ADSP-BF7xx Blackfin+ Processor 11–1

The native formats for the Blackfin processor family are a signed fractional 1.M format and an unsigned fractional
0.N format, where N is the number of bits in the data word and M = N - 1.

The notation used to describe a format consists of two numbers separated by a period (.); the first number is the
number of bits to the left of the radix point, the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the radix point. The format in the Example of
Fractional Format figure is 13.3.

Signed Fractional (13.3)

Bi t

Weight

Sign Bit

Ra dix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Frac tional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021

Figure 11-2: Example of Fractional Format

The Fractional Formats and Their Ranges table shows the ranges of signed numbers representable in the fractional
formats that are possible with 16 bits.

Table 11-1: Fractional Formats and Their Ranges

Format
of Integer
Bits

of Frac-
tional Bits

Max Positive Value (0x7FFF) In
Decimal

Max Negative Value
(0x8000) In Decimal

Value of 1 LSB (0x0001) In Deci-
mal

1.15 1 15 0.999969482421875 -1.0 0.000030517578125

2.14 2 14 1.999938964843750 -2.0 0.000061035156250

3.13 3 13 3.999877929687500 -4.0 0.000122070312500

4.12 4 12 7.999755859375000 -8.0 0.000244140625000

5.11 5 11 15.999511718750000 -16.0 0.000488281250000

6.10 6 10 31.999023437500000 -32.0 0.000976562500000

7.9 7 9 63.998046875000000 -64.0 0.001953125000000

8.8 8 8 127.996093750000000 -128.0 0.003906250000000

9.7 9 7 255.992187500000000 -256.0 0.007812500000000

10.6 10 6 511.984375000000000 -512.0 0.015625000000000

11.5 11 5 1023.968750000000000 -1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 -2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 -4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 -8192.0 0.250000000000000

Integer or Fractional Data Formats

11–2 ADSP-BF7xx Blackfin+ Processor

Table 11-1: Fractional Formats and Their Ranges (Continued)

Format
of Integer
Bits

of Frac-
tional Bits

Max Positive Value (0x7FFF) In
Decimal

Max Negative Value
(0x8000) In Decimal

Value of 1 LSB (0x0001) In Deci-
mal

15.1 15 1 16383.500000000000000 -16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 -32768.0 1.000000000000000

Binary Multiplication
In addition and subtraction, both operands must be in the same format (signed or unsigned, radix point in the same
location), and the result format is the same as the input format. Addition and subtraction are performed the same
way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the result depends on their formats. The
Blackfin+ family assembly language allows you to specify whether the inputs are both signed, both unsigned, or one
of each (mixed-mode). The location of the radix point in the result can be derived from its location in each of the
inputs. This is shown in the Format of Multiplier Result figure. The product of two 16-bit numbers is a 32-bit
number. If the inputs' formats are M.N and P.Q, the product has the format (M + P).(N + Q). For example, the
product of two 13.3 numbers is a 26.6 number. The product of two 1.15 numbers is a 2.30 number.

General Rule 4-bit Example 16-bit Examples

M.N
x P.Q

(M + P).(N + Q)

1.111 (1.3 Format)
x 11.11 (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1 + 2).(2 + 3))

5.3
x 5.3

10.6

1.15
x 1.15

2.30

Figure 11-3: Format of Multiplier Result

Fractional Mode And Integer Mode

A product of 2 two's-complement numbers has two sign bits. Since one of these bits is redundant, you can shift the
entire result left one bit. Additionally, if one of the inputs was a 1.15 number, the left shift causes the result to have
the same format as the other input (with 16 bits of additional precision). For example, multiplying a 1.15 number
by a 5.11 number yields a 6.26 number. When shifted left one bit, the result is a 5.27 number, or a 5.11 number
plus 16 LSBs.

The Blackfin+ family provides a means (a signed fractional mode) by which the multiplier result is always shifted left
one bit before being written to the result register. This left shift eliminates the extra sign bit when both operands are
signed, yielding a result that is correctly formatted.

When both operands are in 1.15 format, the result is 2.30 (30 fractional bits). A left shift causes the multiplier result
to be 1.31 which can be rounded to 1.15. Thus, if you use a signed fractional data format, it is most convenient to
use the 1.15 format.

Binary Multiplication

ADSP-BF7xx Blackfin+ Processor 11–3

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some of the increased dynamic range of a float-
ing-point format without the overhead needed to do floating-point arithmetic. However, some additional program-
ming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the radix point in the actual value. In block
floating-point format, a set (block) of data values share a common exponent. A block of fixed-point values can be
converted to block floating-point format by shifting each value left by the same amount and storing the shift value
as the block exponent.

Typically, block floating-point format allows you to shift out non-significant MSBs (most significant bits), increas-
ing the precision available in each value. Block floating-point format can also be used to eliminate the possibility of a
data value overflowing. See the Data With Guard Bits figure. Each of the three data samples shown has at least two
non-significant, redundant sign bits. Each data value can grow by these two bits (two orders of magnitude) before
overflowing. These bits are called guard bits.

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

To detect bit growth into two guard bits, set SB = ‚Äì2

Figure 11-4: Data With Guard Bits

If it is known that a process will not cause any value to grow by more than the two guard bits, then the process can
be run without loss of data. Later, however, the block must be adjusted to replace the guard bits before the next
process.

The Block Floating-point Adjustment figure shows the data after processing but before adjustment. The block float-
ing-point adjustment is performed as follows.

• Assume the output of the SIGNBITS instruction is SB and SB is used as an argument in the EXPADJ instruc-
tion. Initially, the value of SB is +2, corresponding to the two guard bits. During processing, each resulting data
value is inspected by the EXPADJ instruction, which counts the number of redundant sign bits and adjusts SB
if the number of redundant sign bits is less than two. In this example, SB = +1 after processing, indicating the
block of data must be shifted right one bit to maintain the two guard bits.

• If SB were 0 after processing, the block would have to be shifted two bits right. In either case, the block expo-
nent is updated to reflect the shift.

Block Floating-Point Format

11–4 ADSP-BF7xx Blackfin+ Processor

Sign Bit

One Guard Bit

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x3FFF = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

2. Shift right to restore guard bits

Sign Bit

Two Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x03FF = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1. Check for bit growth

Exponent = +2, SB = +2

Exponent = +1, SB = +1

Exponent = +4, SB = +1

EXPADJ instruction checks
exponent, adjusts SB

Figure 11-5: Block Floating-point Adjustment

Block Floating-Point Format

ADSP-BF7xx Blackfin+ Processor 11–5

Index

Symbols

pointer registers (P.. 1–7,3–3
length registers (L... 1–8,1–13
index registers (I..1–12,3–8
length registers (L... 1–8,1–13
base registers (B... 1–13
pointer registers (P.. 1–7,3–3
modify registers (M..3–8
index registers (I..1–12,3–8

A

A0 (Accumulator 0 Register, REGFILE)........................ 2–43
A0X (Accumulator 0 Extension Register, REGFILE)..... 2–45
A1/0 (accumulator) registers.. 1–7
A1 (Accumulator 1 Register, REGFILE)........................ 2–44
A1X (Accumulator 1 Extension Register, REGFILE)..... 2–46
instructions..8–355

see also specific instruction
AAU (address arithmetic unit).................................. 1–2,6–1

data flow...6–1
absolute address... 4–8
absolute call (CALL.A) instruction.................................. 4–8
absolute jump (JUMP.A) instruction................................4–7
AC (address calculation) stage..4–4
AC0_COPY (ALU0 carry, copy) bit................................ 1–8
AC0 (ALU0 carry) bit..1–8
AC1 (ALU1 carry) bit..1–8
access restrictions, resource...3–5
accumulator (A1/0) registers

corresponding to MACs... 1–8
description..1–7
overflow status..1–9
overflow status, sticky... 1–9

Accumulator 0 Extension Register, REGFILE (A0X)..... 2–45
Accumulator 0 Register, REGFILE (A0)........................ 2–43
Accumulator 1 Extension Register, REGFILE (A1X)..... 2–46
Accumulator 1 Register, REGFILE (A1)........................ 2–44
accumulators..4–5
AC stage

branch address.. 4–14
stalls... 4–6

AddAccExt instruction...8–12
add and subtract operations

AddAccExt instruction... 8–12
AddImm instruction...8–7
AddSub16 instruction.. 8–4
AddSub32Dual instruction.......................................8–9
AddSub32 instruction.. 8–8
AddSubAC0 instruction... 8–10
AddSubAccExt instruction......................................8–14
AddSubAcc instruction...8–13
AddSubShift instruction... 8–15
AddSubVec16 instruction... 8–6
DagAddSub32 instruction............................. 8–97,8–99

AddImm instruction.. 8–7
address, direct/indirect branch... 4–7
address, instruction watchpoints...................................... 9–2
address, symbolic (label)... 4–7,4–8
address arithmetic unit (AAU)... 1–2
address calculation (AC).. 4–4
addresses, absolute... 4–8
addresses, interrupt vector..4–34
addressing.. 6–1

see also auto-decrementauto-decrement[addressing:aaa]
circular (restrictions)...1–12

AddSub16 instruction..8–4
AddSub32Dual instruction.. 8–9
AddSub32 instruction..8–8
AddSubAC0 instruction.. 8–10
AddSubAccExt instruction...8–14
AddSubAcc instruction.. 8–13
AddSubShift instruction.. 8–15
AddSubVec16 instruction.. 8–6
adjacent registers..1–6
alignment (mod), immediate data....................................1–6
ALU (arithmetic logic unit)... 1–8
AN (ALU negative) bit.. 1–8
Analog Devices, Inc... 1–1
AQ (quotient) bit.. 1–8
architecture

Blackfin processors... 8–351
architecture, data flow..1–2
arguments, function...4–10

ADSP-BF7xx Blackfin+ Processor

arguments, passing...4–10
arithmetic instructions... 8–2
arithmetic logic unit, see ALU
arithmetic status...1–8

AC0_COPY (ALU0 carry, copy) bit......................... 1–8
AC0 (ALU0 carry) bit...1–8
AC1 (ALU1 carry) bit...1–8
AN (ALU negative) bit... 1–8
AQ (quotient) bit... 1–8
AV0 (ALU0 overflow) bit... 1–9
AV1 (ALU1 overflow) bit... 1–9
AV1S (ALU1 overflow, sticky) bit.............................1–9
AVS0 (ALU0 overflow, sticky) bit.............................1–9
AZ (ALU zero) bit.. 1–9
CC (control code) bit... 1–9
move CC bit...4–12
V_COPY (Dreg overflow, copy) bit..........................1–9
V(Dreg overflow) bit.. 1–9
VS (Dreg overflow, sticky) bit...................................1–9

Arithmetic Status Register, REGFILE (ASTAT).............2–47
ASL (arithmetic shift left).. 8–6
ASTAT (arithmetic status) register................... 1–8,1–9,1–12
ASTAT (Arithmetic Status Register, REGFILE).............2–47
auto-increment.. 6–1
AV0 (ALU0 overflow) bit...1–9
AV0 (ALU1 overflow) bit...1–9
AV0S (ALU0 overflow, sticky) bit.................................... 1–9
AV1S (ALU1 overflow, sticky) bit.................................... 1–9
AZ (ALU zero) bit... 1–9

B

B[n] (Base (Circular Buffer) Register, REGFILE)...........6–24
Base (Circular Buffer) Register, REGFILE (B[n])...........6–24
binal point placement.. 1–9
bit clear, see bit operations
bit field deposit, see bit operations
bit field extract, see bit operations
BitMux instruction.. 8–19
bit operations

BitMux instruction... 8–19
Shift_BitMod instruction....................................... 8–21
Shift_BitTst instruction.. 8–22
Shift_Deposit instruction....................................... 8–24
Shift_Extract instruction.. 8–27
Shift_Ones instruction... 8–16
Shift_SignBits32 instruction...................................8–17

Shift_SignBitsAcc instruction................................. 8–18
bit-reversed.. 6–1
bits, sign/extension/fractional...1–9
bit set, see bit operations
bit stream merge, see bit operations
bit test, see bit operations
bit toggle, see bit operations
BITTST (bit test) instruction

CC bit.. 4–12
Blackfin 2.0 instructions

AddSubAC0 instruction... 8–10
Blackfin 2 Architecture.. 1–1
Blackfin processors

computational units..1–1
debug facilities..9–1
instruction set introduced...1–3
memory architecture...1–3
memory structure of... 1–3
native formats...11–2
parallel instructions.. 8–351

block floating-point format..11–4
BP_CFG (BP Configuration Register, BP).....................4–81
BP_STAT (BP Status Register, BP)................................ 4–83
BP Configuration Register, BP (BP_CFG).....................4–81
BP Status Register, BP (BP_STAT)................................ 4–83
branch

address (target), unconditional branch....................4–14
conditional.. 4–13,4–14
latency, conditional branches.................................. 4–14
latency, reducing...4–7
latency, unconditional...4–14
prediction, dynamic..4–13
prediction, static.. 4–13,4–14
starting a...4–6
target... 4–8,4–14
types... 4–7

branch address, direct/indirect... 4–7
branching.. 4–6
branch latency..4–14
branch prediction...4–7
Breg (base registers)

reset state..3–8
bus parity errors... 4–47
bus time-out errors.. 4–47

ADSP-BF7xx Blackfin+ Processor

C

C/C++ compiler, calling conventions............................. 4–10
cache

reset state..3–8
CALL.A (absolute call) instruction.................................. 4–8
CALL.L (long call) instruction...4–8
CALL.XL (extra long call) instruction..............................4–8
calling conventions, compiler...4–10
calling function..4–10
CALL instruction

absolute address.. 4–8
direct address..4–8
indirect... 4–8
range, dynamic... 4–8
subroutines... 4–8
unknown length direct address................................. 4–8
versus JUMP.. 4–6

CC (condition code) bit, see CC (control code) bit
CC (control code) bit... 1–9,4–12

branching... 4–7
CEC_SID (System ID Register, ICU)............................4–68
CEC (core event controller)........................... 1–4,4–32,4–40
circular addressing..1–12

enable/disable... 1–12
circular-buffer.. 6–1
circular buffer addressing

restrictions..1–12
clearing interrupt requests..4–45
CLI (disable interrupts) instruction

protected mode...3–4
CO (cross output)..8–6
code examples

exception related... 4–52-4–54
idle state entry.. 3–8
instruction fetch, speculative...................................4–26
interrupt service routine related............4–31,4–42-4–44
JUMP instruction...4–7
LINK/UNLINK related................................ 4–10,4–11
loop related...4–27,4–30,4–31
loop unrolling...4–30
loop unrolling related... 4–30
parameter passing... 4–10
sequencer related.. 4–3
subroutine related... 4–8
supervisor mode after reset..3–6
user mode entry..3–4

code patching.. 9–3
comma delimiters.. 1–5
computation stalls..4–6
compute instructions, specialized................................. 8–204
compute register file...1–2
conditional instructions........................ 4–2,4–13,4–14,4–27
condition code (CC) bit, see CC (control code) bit
constants..1–6
Context ID Register, ICU (ICU_CID)..........................4–69
control code (CC) bit... 1–9,4–12
controlling program flow... 4–13
Control Register, PF (PFCTL).......................................9–29
conventions, C/C++ function call.................................. 4–10
core

architecture...1–1
core architecture, contents of... 1–1
core event

in EVT... 4–34
MMR location...4–34,4–35

core event controller (CEC) , see CEC
data flow...4–2

core event vector table (table)...4–34
core interrupt latch (ILAT) register , see ILAT
core interrupt mask (IMASK) register , see IMASK
core interrupts pending (IPEND) register , see IPEND
Core Timer Control Register (TCNTL), TMR (TCNTL).....

...5–4
Core Timer Count Register (TCOUNT), TMR

(TCOUNT)...5–5
core timer interrupt (IVTMR) bit..................................4–39
Core Timer Period Register (TPERIOD), TMR (TPER-

IOD)..5–6
Core Timer Scale Register (TSCALE), TMR (TSCALE).5–7
counter, cycle.. 4–4,9–9
Counter 0 Register, PF (PFCNTR0)..............................9–27
Counter 1 Register, PF (PFCNTR1)..............................9–28
CPLB miss...4–52
CPLBs (cacheability protection lookaside buffers)..........4–48

hits (multiple) exception...4–49
miss exception... 4–48-4–50
protection violation exception....................... 4–49,4–50
reset state..3–8

CSYNC (core synchronize) instruction
instruction fetch, speculative...................................4–26

Cycle Count (32 LSBs) Register, REGFILE (CYCLES). 9–37

ADSP-BF7xx Blackfin+ Processor

Cycle Count (32 MSBs) Register, REGFILE (CYCLES2)......
...9–38

cycle counter (CYCLES/2) registers................................. 9–9
sequencer usage.. 4–4

CYCLES/2 (cycle counter) registers
reset state..3–8

CYCLES (Cycle Count (32 LSBs) Register, REGFILE). 9–37
CYCLES (execution cycle count) register.........................9–9
CYCLES2 (Cycle Count (32 MSBs) Register, REGFILE)......

...9–38
CYCLES2 (execution cycle count) register.......................9–9

D

DAG (data address generator)..6–1
DAG (data address generator) registers............................ 1–8

branches, indirect... 4–2
stalls, pipeline... 4–6

DAG (data address generators)
registers, reset state..3–8

DagAddImm instruction..8–99
DagAddSub32 instruction... 8–97
DAG CPLB hit/miss..4–51
DAG misaligned access..4–51
DAG misalign ed acc ess..4–51
DAG protection violation..4–51
data

memory stalls... 4–6
watchpoints.. 9–2

data (Dreg) registers
user mode...3–3

data address generator (DAG), see DAG
data alignment (mod).. 1–6
data arithmetic unit... 1–2
data fetch 1 (DF1) stage...4–5
data fetch 2 (DF2) stage...4–5
data flow architecture...1–2
data formats...11–3
Data Memory Control Register, L1DM (L1DM_DCTL).....

...7–66
Data Memory CPLB Address Registers, L1DM

(L1DM_DCPLB_ADDR[n]).................................7–58
Data Memory CPLB Data Registers, L1DM

(L1DM_DCPLB_DATA[n])..................................7–59
Data Memory CPLB Default Settings Register, L1DM

(L1DM_DCPLB_DFLT).......................................7–62

Data Memory CPLB Fault Address Register, L1DM
(L1DM_DCPLB_FAULT_ADDR)....................... 7–65

Data Memory CPLB Status Register, L1DM
(L1DM_DSTAT)... 7–70

Data Memory Parity Error Status Register, L1DM
(L1DM_DPERR_STAT)....................................... 7–68

data register file
reads... 4–5
writes..4–5

Data Registers, REGFILE (R[n])................................... 2–42
data signed/unsigned... 1–6
data size supported...1–1
data watchpoint address (WPDAx) registers.....................9–5
data watchpoint address control (WPDACTL) register....9–5
data watchpoint address count value (WPDACNTx) regis-

ters... 9–5
debug features..9–1
DEC (instruction decode) stage....................................... 4–4

multi-cycle instructions.. 4–6
stalls... 4–6

decimal point placement..1–9
multi-issue instructions:|| (multi-issue delimiter) opera-

tor[multi-issue]...1–5
DF1 (data fetch 1) stage...4–5
DF2 (data fetch 2) stage...4–5

stalls... 4–6
DF2 stage.. 4–5
direct... 6–1
direct branch address... 4–7
double fault condition... 4–48
double fault system interrupt................................ 4–38,4–51
Dreg (data registers)...1–7
DSP (digital signal processor).. 6–1
DSPID (DSP Identification Register, DBG)..................9–11
DSPID (product identification) register.........................9–10
DSP Identification Register, DBG (DSPID)..................9–11
dynamic branch prediction..................................... 4–7,4–13
dynamic branch predictor.. 4–5
dynamic range (branch), effective.................................... 4–7
dynamic range (call), effective.. 4–8
dynamic range (conditional branch), effective................4–13

E

EMU (emulation) event...4–33

ADSP-BF7xx Blackfin+ Processor

EMUEXCPT (force emulation) instruction.....................3–7
emulation

events... 1–4,3–1,4–37
IPEND register...3–2

emulation mode..1–3,3–1,3–7,4–37
emulation watchpoint match exception......................... 4–49
environments, non-OS.. 3–6
errors

bus parity..4–47
bus time-out... 4–47
hardware...4–47
internal core... 4–47
peripheral... 4–47

error type exception... 4–48
event controller

activities managed...4–32
MMRs..4–33
processor mode...3–1
sequencer..4–2
tasks...1–4,4–2

event handling
activities managed...4–32

events..1–4,4–2
asynchronous..1–4
emulation... 1–4,3–1,4–37
exception... 1–4,4–48
interrupt...1–4
IPEND register..3–1,3–2
latency.. 4–46
nested.. 1–4,4–33
NMI...1–4
prioritization.. 1–4
priority... 1–4,3–8,4–32
reset..1–4
synchronous... 1–4
triggering..9–2
user mode, ending.. 3–5

event system priority...3–8,4–32
event vector table (EVT) , see EVT
Event Vector Table Override Register, ICU (EVT_OVER-

RIDE).. 4–71
Event Vector Table Registers, ICU (EVT[n])................. 4–70
EVENTx (EMU event on PFCNTRx 0) bits...................9–7
EVT_OVERRIDE (Event Vector Table Override Register,

ICU).. 4–71
EVT (event vector table)..4–34

EVT[n] (Event Vector Table Registers, ICU)................. 4–70
EVT1.. 4–38
EVX (exception) event... 4–33
EX1/2 stages.. 4–5
EX1 (execute 1) stage...4–5

stalls... 4–6
EX2 (execute 2) stage...4–5

static branch prediction.. 4–14
EX 2 stage..4–5
EXCAUSE (exception cause) field..................................4–51
exception... 1–4

DAG CPLB hit/miss.. 4–51
DAG misaligned access...4–51
DAG protection violation.......................................4–51
deferring...4–53
error type..4–48
events... 3–3,4–48-4–50
forced (EXCPT) instruction................................... 4–51
handler... 4–51
I-fetch related... 4–50
illegal combination... 4–51
illegal use protected resource...................................4–51
IPEND register...3–1
pipeline handling..4–52
priority... 4–50
processing...4–53
program flow.. 4–1
routine..4–54
service type... 4–48
single step... 4–51
undefined instruction... 4–51
unrecoverable event.. 4–50
watchpoint match...4–51

exception handler...4–52
EXCPT (force exception) instruction....................4–49,4–51
execute 1 (EX1) stage...4–5
execute 2 (EX2) stage...4–5
execution cycle count (CYCLES/2) registers.................... 9–9
extension bits...1–9
external memory..1–4
extra long call (CALL.XL) instruction..............................4–8
extra long jump (JUMP.XL) instruction...........................4–7

F

FEATURE0 (Optional Feature Register)......................... 1–1
Feature Core 0 Register, OPT (OPT_FEATURE0)....... 9–39

ADSP-BF7xx Blackfin+ Processor

fetch address... 4–2,4–5
fetch instruction, speculative..4–26
flags

arithmetic status, summarized...................................1–8
FP (frame pointer), see frame pointer (FP) register
FP (Frame Pointer Register, REGFILE)......................... 6–19
fractional, signed format.. 1–9
fractional, unsigned format.. 1–9
fractional bits...1–9
fractional data

format.. 11–1
saturation... 1–10

fractional mode..11–3
fractions

binal point..1–9
binary convention...1–9

frame pointer (FP) register... 1–7
sequencer usage.. 4–4

Frame Pointer Register, REGFILE (FP)......................... 6–19
FU (fractional unsigned)..

.......8–53-8–56,8–58,8–69,8–71,8–73,8–75,8–84,8–85
function arguments..4–10
function call...4–10
function return.. 4–10
functions, leaf.. 4–9

G

general-purpose interrupts... 4–32
see interrupts

global subroutines
hardware loops..4–31

H

hardware
loops...4–27

hardware error
interrupt (HWE).. 4–47
multiple..4–47

Harvard architecture.. 1–3
hierarchical memory structure..1–3
high half-register..1–6
high-half register..1–7
HWE (hardware error interrupt)....................................4–47

I

I/O memory space... 1–4
I[n] (Index (Circular Buffer) Register, REGFILE)..........6–22
ICU_CID (Context ID Register, ICU)..........................4–69
IDLE (idle) instruction..3–7

protected mode...3–4
IDLE instruction

idle... 3–3
idle state

code example.. 3–8
processor mode...3–2
program flow.. 4–1
real-time clock (RTC)...3–7
SPORT operation...3–7
transition to..3–8

idle state: defined... 3–7
IF1 (instruction fetch 1) stage..4–4
IF2 (instruction fetch 2) stage..4–4
IF3 (instruction fetch 3) stage..4–4

multi-cycle instructions.. 4–6
I-fetch

access exception.. 4–50
CPLB hit/miss..4–50
misaligned access.. 4–50
protection violation.. 4–50

IH (integer high word)....................... 8–54,8–55,8–71,8–84
ILAT..4–45
ILAT (interrupt latch) register..4–34

diagram.. 4–33
reset state..3–8

ILAT (Interrupt Latch Register, ICU)............................4–73
illegal instruction combination exception..............4–49,4–51
illegal instructions..4–48
illegal register combinations... 4–48
illegal supervisor resource use exception......................... 4–50
illegal use, protected resource... 4–51
IMASK (interrupt mask) register................................... 4–34

reset state..3–8
IMASK (Interrupt Mask Register, ICU)........................ 4–76
imm (immediate data) constant....................................... 1–6
Index (Circular Buffer) Register, REGFILE (I[n])..........6–22
indexed.. 6–1
indirect.. 6–1
indirect branch address.. 4–7
input/output loop performance..................................... 1–12
instruction address... 4–2

ADSP-BF7xx Blackfin+ Processor

instruction alignment unit... 4–5
instruction decode , see DEC (instruction decode) stage
instruction fetch... 4–5,4–29
instruction fetch, speculative..4–26
instruction fetch 1 (IF1) stage..4–4
instruction fetch 2 (IF2) stage..4–4
instruction fetch 3 (IF3) stage..4–4
instruction loop buffer...4–29
Instruction Memory Control Register, L1IM (L1IM_ICTL).

...7–52
Instruction Memory CPLB Address Registers, L1IM

(L1IM_ICPLB_ADDR[n]).................................... 7–46
Instruction Memory CPLB Data Registers, L1IM

(L1IM_ICPLB_DATA[n])..................................... 7–47
Instruction Memory CPLB Default Settings Register, L1IM

(L1IM_ICPLB_DFLT).. 7–49
Instruction Memory CPLB Fault Address Register, L1IM

(L1IM_ICPLB_FAULT_ADDR)........................... 7–51
Instruction Memory CPLB Status Register, L1IM

(L1IM_ISTAT).. 7–56
instruction memory unit..4–5
Instruction Parity Error Status Register, L1IM

(L1IM_IPERR_STAT)...7–54
instruction pipeline...4–2,4–4

latency, resuming loops...4–31
length/latency...4–7

instructions
32-bit ALU/MAC...8–352
16-bit parallel... 8–355
conditional... 4–2
in pipeline when interrupt occurs........................... 4–52
issuing in parallel.. 8–351
multi-cycle..4–6
multi-issue...............................4–6,8–351,8–352,8–355
protected.. 3–3
return... 3–5
store..8–355
width..4–5

instruction set.. 1–3
instruction watchpoint address (WPIAx) registers............9–3
instruction watchpoint address control (WPIACTL) register.

...9–4
instruction watchpoint address count (WPIACNTx) regis-

ters.. 9–3,9–4

instruction watchpoints... 9–2
integer

data format...11–1
mode.. 11–3

Intel Corporation...1–1
internal core errors...4–47
internal memory.. 1–3
interrupt handling... 4–41
Interrupt Latch Register, ICU (ILAT)............................4–73
Interrupt Mask Register, ICU (IMASK)........................ 4–76
Interrupt Pending Register, ICU (IPEND).................... 4–78
interrupts..4–32,4–33

clearing requests..4–45
emulation... 4–37
general-purpose.. 4–39
handling... 4–42
hardware error.. 4–47
IPEND register..3–1,4–33
latching requests... 4–34
low priority...4–45
mapping... 4–34
nested.. 4–33,4–41
non-nested..4–41
processing..4–2,4–52
program flow.. 4–1
RAISE instruction.. 4–39
SEC...4–32,4–43
self-nesting... 4–43
sources..1–4
user mode, ending.. 3–5

IPEND (interrupt pending) register...............................4–33
reset state..3–8

IPEND (Interrupt Pending Register, ICU).................... 4–78
Ireg (index registers), see index registers (Ix)
IS (integer signed)..

......8–53-8–56,8–58,8–69,8–71,8–73,8–75,8–77,8–79,
8–82,8–84,8–85

ISR (interrupt service routine)
hardware loops..4–31
interrupt handling.. 4–41
user mode, ending.. 3–5

ISS2 (integer signded, scaled).....8–53,8–55,8–56,8–71,8–84
ISS2 (integer signed, scaled)..................................8–54,8–75
IU (integer unsigned)...

................8–53-8–56,8–58,8–71,8–73,8–75,8–84,8–85
IVHW (hardware error) bit..4–47

ADSP-BF7xx Blackfin+ Processor

IVHW (hardware error) event..4–33
IVTMR (core timer) event...4–33
IVTMR (core timer interrupt) bit..................................4–39

J

JTAG interface...4–37
JUMP.A (absolute jump) instruction................................4–7
JUMP.L (long jump) instruction......................................4–7
JUMP.S (short jump) instruction..................................... 4–7
JUMP.XL (extra long jump) instruction...........................4–7
JUMP (unknown length jump) instruction......................4–7
JUMP instruction

absolute address.. 4–8
conditional... 4–7
indirect... 4–8
program flow.. 4–1
range.. 4–7
versus CALL...4–6

jumps, short/long/extra long..4–7

L

L[n] (Length (Circular Buffer) Register, REGFILE).......6–25
L1 (level 1) memory.. 1–3

instruction memory configuration (IMC) bit........... 1–3
reset state..3–8

L1DM_DCPLB_ADDR[n] (Data Memory CPLB Address
Registers, L1DM)...7–58

L1DM_DCPLB_DATA[n] (Data Memory CPLB Data Reg-
isters, L1DM)...7–59

L1DM_DCPLB_DFLT (Data Memory CPLB Default Set-
tings Register, L1DM).. 7–62

L1DM_DCPLB_FAULT_ADDR (Data Memory CPLB
Fault Address Register, L1DM)...............................7–65

L1DM_DCTL (Data Memory Control Register, L1DM).....
...7–66

L1DM_DPERR_STAT (Data Memory Parity Error Status
Register, L1DM).. 7–68

L1DM_DSTAT (Data Memory CPLB Status Register,
L1DM)...7–70

L1DM_SRAM_BASE_ADDR (SRAM Base Address Regis-
ter, L1DM)...7–72

L1IM_ICPLB_ADDR[n] (Instruction Memory CPLB Ad-
dress Registers, L1IM).. 7–46

L1IM_ICPLB_DATA[n] (Instruction Memory CPLB Data
Registers, L1IM)...7–47

L1IM_ICPLB_DFLT (Instruction Memory CPLB Default
Settings Register, L1IM)... 7–49

L1IM_ICPLB_FAULT_ADDR (Instruction Memory CPLB
Fault Address Register, L1IM)................................ 7–51

L1IM_ICTL (Instruction Memory Control Register, L1IM).
...7–52

L1IM_IPERR_STAT (Instruction Parity Error Status Regis-
ter, L1IM).. 7–54

L1IM_ISTAT (Instruction Memory CPLB Status Register,
L1IM).. 7–56

L2 (level 2) memory.. 1–4
label (symbolic address).. 4–7,4–8
latched interrupt request.. 4–34
latency

loops, resuming.. 4–31
servicing events...4–46
when servicing interrupts..4–40

latency, branch...4–14
LB[n] (Loop Bottom Register, REGFILE)..................... 4–66
LBx (loop bottom) registers.................................. 4–28,4–29

loop resume latency.. 4–31
sequencer usage.. 4–4

LC[n] (Loop Count Register, REGFILE).......................4–67
LCx (loop counter) registers..................................4–28,4–29

loop resume latency.. 4–31
sequencer usage.. 4–4

leaf functions... 4–9
Length (Circular Buffer) Register, REGFILE (L[n]).......6–25
length registers (length), see length registers (Lx)
load operations,... 6–1
long call (CALL.L) instruction...4–8
long jump (JUMP.L) instruction......................................4–7
look-ahead address...4–4
LOOP_END pseudo-instruction...................................4–27
loop bottom (LB0, LB1) registers........................... 1–7,4–28
Loop Bottom Register, REGFILE (LB[n])..................... 4–66
loop conditions, evaluation.. 4–28
loop count (LC0, LC1) registers............................. 1–7,4–28
Loop Count Register, REGFILE (LC[n]).......................4–67
LOOP instruction (alternate LSETUP syntax)...............4–27
LOOPLEZ instruction (alternate LSETUPLEZ syntax) 4–27
loop PC -relative constant..1–6
loop registers

zero-overhead... 4–4
loops

buffer..4–29

ADSP-BF7xx Blackfin+ Processor

conditions, evaluation...4–28
disabling... 4–28
hardware...4–27
instruction fetch time... 4–29
interrupted... 4–30
LB register... 4–4,4–28
LC register...4–4,4–28
LT register... 4–4,4–28
program flow.. 4–1
restoring... 4–30
saving... 4–30
termination conditions... 4–2
unrolling...4–30

loop top (LT0, LT1) registers.................................. 1–7,4–28
Loop Top Register, REGFILE (LT[n])........................... 4–65
LOOPZ instruction (alternate LSETUPZ syntax)......... 4–27
low-half register.. 1–6,1–7
low priority interrupts..4–45
Lreg, see length registers (Lx)
Lreg (length registers)

reset state..3–8
LSETUP (loop setup) instruction.................................. 4–28

alternate syntax...4–27
LSETUPLEZ (zero trip loop setup) instruction............. 4–28

alternate syntax...4–27
LSETUPZ (zero trip loop setup) instruction..................4–28

alternate syntax...4–27
LT[n] (Loop Top Register, REGFILE)........................... 4–65
LTx (loop top) registers...4–28,4–29

loop resume latency.. 4–31
sequencer usage.. 4–4

M

M (mixed mode)..
.......8–55,8–56,8–58,8–69,8–71,8–73,8–75,8–84,8–85

M[n] (Modify (Circular Buffer) Register, REGFILE).....6–23
MAC (multiplier-accumulator).................................1–2,1–8
mapping interrupts.. 4–34
media access control, see MAC
memory

architecture...1–3
DMA controller..1–3
off-chip...1–4
on-chip...1–3
protected.. 3–4

memory load/store instructions....................................8–163

micro signal architecture (MSA)...................................... 1–1
misaligned address violation exception...........................4–49
MMR (memory-mapped register)

I/O devices... 1–4
interrupt service routines.. 4–2
location of core events................................... 4–34,4–35

MMU (memory management unit)
purpose...1–3

MNOP (32-bit NOP) instruction............................... 8–352
modes.. 1–3

emulation... 1–3,3–1,4–37
identifying.. 3–1
non-processing states.. 3–2
operation.. 1–3
supervisor.. 1–3,3–1
transition.. 3–2
user..1–3,3–1

mode transition.. 3–4,3–5
emulation mode... 3–7
supervisor mode... 3–6

modified post-increment..6–1
modifier, circular addressing restrictions.........................1–12
Modify (Circular Buffer) Register, REGFILE (M[n]).....6–23
modify registers (M

modify operations...1–13
modulo addressing...1–12
move register instruction..4–27
multi-cycle instructions..4–6

DEC stage.. 4–6
|| (multi-issue delimiter) operator.....................................1–5
multi-issue instructions..............................4–6,8–351,8–355

delimiting...1–5
MNOP...8–352

multiple error codes... 4–47
multiplication, binary.. 11–3

N

NMI..4–38
NMI (nonmaskable interrupt)

IPEND register...3–2
user mode, ending.. 3–5

NMI (nonmaskable interrupt) bit.............................1–4,3–1
NMI (nonmaskable interrupt) event.......................1–4,4–33
nonmaskable interrupt (NMI) , see NMI
non-nested interrupts...4–41

ADSP-BF7xx Blackfin+ Processor

non-OS environments... 3–6
nonsequential program

operation.. 4–6
structures..4–1

no operation (MNOP) instruction...............................8–352
notation

constants.. 1–6
fractions..1–9
range of registers/bits.. 1–6
register pairs... 1–6
register portions..1–6
register selection... 1–6

NS (no saturate)............................ 8–4,8–9-8–11,8–14,8–43
NS (no saturation)....................................... 8–73,8–75,8–85
NSPECABT field.. 4–39
numeric formats...11–1

binary multiplication.. 11–3
block floating-point..11–4
integer mode...11–3
two's-complement.. 11–1

O

off-chip memory..1–4
on-chip memory.. 1–3
ones population count, see bit operations
operands... 4–5,6–1
operating modes.. 3–1
operators

== (compare)... 4–12,4–13
OPT_FEATURE0 (Feature Core 0 Register, OPT)....... 9–39
options, instruction

ASL (arithmetic shift left)... 8–6
ASR (arithmetic shift right)...................................... 8–6
CO (cross output).. 8–6
FU (fractional unsigned)...

....... 8–53-8–56,8–58,8–69,8–71,8–73,8–75,8–84,
8–85

IH (integer high word)......................... 8–55,8–71,8–84
IS (integer signed)...

....... 8–53-8–56,8–58,8–69,8–71,8–73,8–75,8–77,
8–79,8–82,8–84,8–85

ISS2 (integer high word)...8–54
ISS2 (integer signded, scaled)........................ 8–71,8–84
ISS2 (integer signed, scaled)................. 8–53-8–56,8–75
IU (integer unsigned)...

........ 8–53-8–56,8–58,8–71,8–73,8–75,8–84,8–85

M (mixed mode)..
8–55,8–56,8–58,8–69,8–71,8–73,8–75,8–84,8–85

NS (no saturate).....................8–4,8–9-8–11,8–14,8–43
NS (no saturation)................................8–73,8–75,8–85
S (saturate)...................... 8–4,8–6,8–9-8–11,8–14,8–43
S2RND (signed fraction, scaled).....................................

................................... 8–53-8–56,8–71,8–75,8–84
SCO (saturate and cross output)...............................8–6
T (fractional signed, truncated)............ 8–71,8–75,8–84
T (signed fractional, truncated).............................. 8–82
T (truncated)...8–55,8–58
TFU (fractional unsigned, truncated)... 8–71,8–75,8–84
TFU (signed fraction, truncated)...................8–55,8–58
W32 (fractional, saturated).....................................8–69
W32 (saturate 32, sign extended)........................... 8–13
x (sign extend)... 8–25,8–28
z (zero extend).. 8–28

overflow
arithmetic status... 1–9
saturation... 1–10

P

P[n] (Pointer Register, REGFILE)................................. 6–18
parallel instructions..8–351

see multi-issue instructions
parallel operations..6–1
parameter passing.. 4–10
parity error...4–38
parity error handler..4–52
parity errors, bus.. 4–47
passing arguments..4–10
passing arguments/parameters, example......................... 4–10
PC (program counter) register

sequencer usage.. 4–4
PC-relative

constant..1–6
offset... 4–7,4–8

PEDC field..4–38
PEDX field.. 4–38
PEIC field..4–38
PEIX field..4–38
pending event requests, coordinating............................. 4–33
performance

loop resume latency.. 4–31
multi-issue instructions...4–6

performance monitor control (PFCTL) register............... 9–6

ADSP-BF7xx Blackfin+ Processor

performance monitor counter (PFCNTRx) registers........9–6
performance monitor unit.. 9–5-9–9
performance monitor unit (PMU)

overflow..4–47
overflow error... 4–48

peripheral errors...4–47
peripheral interrupts... 4–32,4–43

clearing...4–45
PFCNTR0 (Counter 0 Register, PF)..............................9–27
PFCNTR1 (Counter 1 Register, PF)..............................9–28
PFCTL (Control Register, PF).......................................9–29
PFCTL (performance monitor control) register............... 9–6
pipeline, instruction..4–2,4–4

interrupts..4–52
stage diagram..4–5
stages.. 4–4

pipeline length, latency.. 4–7
pipelining errors...4–47
pointer arithmetic instructions.....................................8–163
Pointer Register, REGFILE (P[n])................................. 6–18
popping stack, manually.. 4–3
post-modify... 6–1
PRCENx (performance monitor enable, modes) bits....... 9–6
prediction branch

static branch... 4–7
pre-modify...6–1
prioritization of events

see events, priority
prioritizing errors...4–47
priority

event system.. 3–8,4–32
low (interrupts)...4–45

processor mode
determination...3–1
emulation... 3–7
figure.. 3–2
identifying.. 3–1
IPEND interrogation..3–1
SACC interrogation..3–1
supervisor... 3–5
user...3–3

processor state
idle... 3–7
on reset...3–8

reset..3–8
product identification (DSPID) register, see DSPID (product

identification) register
program counter (PC) register

PC-relative offset... 4–7,4–8
sequencer usage.. 4–4

program flow... 4–1
control instructions...4–13
sequencer tasks for.. 1–2

program identifiers...1–6
program label (symbolic address).............................. 4–7,4–8
program sequencer..4–1-4–3

code examples...4–3
nonsequential operation... 4–6
tasks performed.. 1–2

program structures, nonsequential................................... 4–1
protected

instructions...3–3
memory..3–4
resources...3–3

pushing stack, manually...4–3
PWR (watchpoints active) bit.. 9–2

Q

queuing errors..4–47

R

R[n] (Data Registers, REGFILE)................................... 2–42
RAB (register access bus)..1–2
radix point... 11–1
RAISE (force interrupt/reset) instruction....... 3–8,4–39,4–45

hardware error.. 4–48
protected mode...3–4
supervisor mode... 3–6

RAISE 1.. 3–8,4–35,4–38
range

CALL instruction... 4–8
circular buffers..1–12
conditional branches...4–13
instruction watchpoints.. 9–2
JUMP instruction...4–7
signed numbers...11–2

RCU
Reset Control Unit... 3–8

real-time clock (RTC).. 3–7
register access bus (RAB)..1–2

ADSP-BF7xx Blackfin+ Processor

sequencer usage.. 4–4
register file... 1–2

reads... 4–5
stalls... 4–6

register move, conditional.. 4–27
register names.. 1–7
registers

adjacent.. 1–6
diagram conventions.. xxxi
high/low half.. 1–7
names... 1–7
product identification... 9–10
range of sequential, notation convention.................. 1–6
selection, notation.. 1–6
user mode...3–3

reserved words... 1–6
reset

event...1–4
IPEND register...3–2
processor state on reset..3–8
state...3–2,3–8
user mode...3–4
user mode, ending.. 3–5

Reset Control Unit
RCU...3–8

Reset control unit (RCU)...4–38
Reset Control Unit (RCU)...4–35
reset signal

reset state..3–8
resources

access restrictions..3–5
memory..1–3
processor...1–1
protected.. 3–3

restoring loops... 4–30
results.. 6–1
resuming loops...4–30
RETE (return from emulation) register

sequencer usage.. 4–4
RETE (Return from Emulator Register, REGFILE).......4–64
RETI... 3–6
RETI (return from interrupt) register.............................. 3–5

sequencer usage.. 4–4
RETI (Return from Interrupt Register, REGFILE)........4–61
RETN (return from NMI) register

sequencer usage.. 4–3

RETN (Return from NMI Register, REGFILE)............ 4–63
RETS (return from subroutine) register.................... 3–5,4–8

code example.. 4–9
sequencer usage.. 4–4

RETS (Return from Subroutine Register, REGFILE).... 4–60
return, function... 4–10
return address

CALL instruction... 4–6
registers.. 4–3
storage.. 4–2

return from emulation (RTE) instruction , see RTE
Return from Emulator Register, REGFILE (RETE).......4–64
return from exception (RTX) instruction , see RTX
Return from Exception Register, REGFILE (RETX)..... 4–62
return from interrupt (RTI) instruction , see RTI
Return from Interrupt Register, REGFILE (RETI)........4–61
Return from NMI Register, REGFILE (RETN)............ 4–63
return from nonmaskable interrupt (RTN) instruction , see

RTN
return from subroutine (RTS) instruction , see RTS
Return from Subroutine Register, REGFILE (RETS).... 4–60
return instructions... 4–6

supervisor mode... 3–6
user mode...3–5

RETx (return) registers.. 4–2
RETX (return from exception) register.......................... 4–51

sequencer usage.. 4–3
RETX (Return from Exception Register, REGFILE)..... 4–62
RISC (reduced instruction set computer)..................1–1,6–1
RND_MOD (rounding mode) bit

ASTAT register... 1–12
rounding

reset state..3–8
rounding:rounding

behavior..1–12
RST (reset) event... 4–33
RST (reset interrupt)... 4–38
RTE (return from emulation) instruction...................... 4–37

protected mode...3–4
RTI..3–6
RTI (return from interrupt) instruction....... 4–35,4–37,4–45

protected mode...3–4
RTN (return from NMI) instruction............................. 4–37

protected mode...3–4
RTX (return from exception) instruction....................... 4–37

protected mode...3–4

ADSP-BF7xx Blackfin+ Processor

S

S (saturate)............................. 8–4,8–6,8–9-8–11,8–14,8–43
S2RND (signed fraction, scaled)8–53-8–56,8–71,8–75,8–84
SAA , see subtract-absolute-accumulate (SAA) instruction
SACC bit

supervisor access..3–1-3–4
Supervisor Access..3–2,3–5-3–7

saturation...1–10
16-bit register range..1–10
32-bit register range..1–10
40-bit register range..1–10
64-bit register pair range...1–10
80-bit accumulator pair range.................................1–11

SCO (saturate and cross output)......................................8–6
SEC (system event controller)........................1–4,4–32,4–43
self-nesting interrupts.. 4–43
SEQSTAT (sequencer status) regester............................ 4–51
SEQSTAT (sequencer status) register...........4–38,4–39,4–47

sequencer usage.. 4–3
SEQSTAT (Sequencer Status Register, REGFILE).........4–56
sequencer... 1–2

registers.. 3–3
stalls... 4–6

sequencer instructions..8–123
sequencer status (SEQSTAT) register, see SEQSTAT
Sequencer Status Register, REGFILE (SEQSTAT).........4–56
service type exception.. 4–48
servicing interrupts.. 4–40
Shift_BitClr instruction... 8–21
Shift_BitSet instruction... 8–21
Shift_BitTgl instruction...8–21
Shift_BitTst instruction... 8–22
Shift_Deposit instruction...8–24
Shift_Extract instruction..8–27
Shift_Ones instruction...8–16
Shift_SignBits32 instruction.. 8–17
Shift_SignBitsAcc instruction.. 8–18
shifter

tasks..1–2
short jump (JUMP.S) instruction.....................................4–7
sign bit...1–9
sign bits count, see bit operations
signed data...1–6
signed fractional format... 1–9
signed numbers

ranges... 11–2

supported... 11–1
SIMD (single instruction, multiple data)......................... 1–1
single step exception.................................... 4–48,4–49,4–51
SNEN (self-nesting interrupt enable) bit....................... 4–43
software interrupt handlers.. 4–32
software reset... 4–38
SP (stack pointer) register.. 1–7

sequencer usage.. 4–4
supervisor stack...3–5

SP (Stack Pointer Register, REGFILE)...........................6–20
specialized compute instructions.................................. 8–204
speculative instruction fetch...4–26
SPORT (serial port) during idle.......................................3–7
SP register

stack pointer... 3–5
SRAM Base Address Register, L1DM

(L1DM_SRAM_BASE_ADDR)............................ 7–72
stack

frame pointer..1–7
parameter passing example......................................4–10
pointer register..1–7
variables..4–10

stack:stack
manipulation.. 1–3

stack manipulation, C-style indexed.................................1–3
stack pointer (SP) register.. 1–7

sequencer usage.. 4–4
Stack Pointer Register, REGFILE (SP)...........................6–20
stages, pipeline...4–4
stalls

computation...4–6
DAG.. 4–6
data memory.. 4–6
register file.. 4–6
sequencer..4–6

states
idle... 3–2
reset..3–2

static branch prediction..................................4–7,4–13,4–14
status, arithmetic..1–8
status registers

user mode...3–3
STI (enable interrupts) instruction

protected mode...3–4

ADSP-BF7xx Blackfin+ Processor

sticky overflow arithmetic status bits................................1–9
STI IDLE (enable interrupts and idle) instruction

protected mode...3–4
STI IDLE instruction

idle... 3–7
Store-exclusive instruction... 4–12
store instructions... 4–5
store operations,...6–1
STRICT bit

Strict Supervisor Access..................................... 3–2-3–4
subroutines.. 4–8

hardware loops (global)...4–31
program flow.. 4–1

subtract, see add and subtract operations
subtract-absolute-accumulate (SAA), quad 8-bit instruction..

...1–2
superscalar architecture.. 8–351
supervisor mode...1–3,3–1,3–5

entry following reset... 3–6
stack... 4–41

supervisor stack
allocating.. 4–52
switching.. 4–52

supply addressing...6–1
symbolic address (label).. 4–7,4–8
symbols (tokens).. 1–5
SYNCEXCL (syncronize excluseive state) instruction.... 4–12
syntax

comment indicators..1–5
constant notation..1–6
immediate values.. 1–6
instruction delimiters..1–5
multi-issue (parallel) instructions.......................... 8–351

SYSCFG (system configuration) register............... 4–43,9–10
sequencer usage.. 4–4

SYSCFG (System Configuration Register, REGFILE)... 3–10
SYSNMI field..4–38
system and core

MMRs..3–3
system configuration (SYSCFG) register........................ 9–10
System Configurationregister

SYSCFG...3–3
System Configuration register

SYSCFG... 3–2-3–7

System Configuration Register, REGFILE (SYSCFG)... 3–10
System Congiguration register

SYSCFG...3–5
system event controller (SEC)......................4–38,4–45,4–51

see SEC
System Event Controller (SEC)......................................4–35
system events

controlling..1–4
prioritizing... 1–4

System ID Register, ICU (CEC_SID)............................4–68
system interrupts...4–32,4–43
Systen Configuration register

SYSCFG...3–1

T

T (fractional signed, truncated).............................8–71,8–75
T (fractiona signed, truncated).......................................8–84
T (signed fractional, truncated)......................................8–82
T (truncated).. 8–55,8–58
TCNTL (Core Timer Control Register (TCNTL), TMR).....

...5–4
TCOUNT (Core Timer Count Register (TCOUNT),

TMR)...5–5
TESTSET (test and set byte, atomic) instruction

CC bit.. 4–13
TFU (fractional unsigned, truncated).......... 8–71,8–75,8–84
TFU (signed fraction, truncated).......................... 8–55,8–58
time-out errors, bus... 4–47
timer, core, see TMR
TMR

block diagram...5–2
event control...5–3
features... 5–1
functional description...5–1
interface..5–2
operation.. 5–2
overview... 5–1

token, assembly language... 1–5
top of a frame.. 1–7
TPERIOD (Core Timer Period Register (TPERIOD),

TMR)...5–6
transition, mode... 3–4,3–5

emulation mode... 3–7
supervisor mode... 3–6

truncation operations...1–12
TSCALE (Core Timer Scale Register (TSCALE), TMR). 5–7

ADSP-BF7xx Blackfin+ Processor

two's complement format.. 11–1

U

unconditional branches
branch latency.. 4–14
branch target address.. 4–14

undefined instruction.. 4–51
undefined instruction exception.....................................4–49
Unhandled NM error system interrupt.......................... 4–38
unknown length jump (JUMP) instruction..................... 4–7
UNLINK instruction...4–10
unrecoverable event..4–50
unrecoverable event exception...............................4–49,4–51
unrolling loops...4–30
unsigned data...1–6
unsigned fractional format... 1–9
unsigned integer.. 11–1
user mode.. 3–1

accessible registers...3–3
access restriction... 1–3
entering.. 3–4
leaving.. 3–5
protected instructions... 3–3

user stack pointer (USP) register. See USP....................... 3–5
User Stack Pointer Register, REGFILE (USP)................6–21
USP (user stack pointer) register...................................... 3–5
USP (User Stack Pointer Register, REGFILE)................6–21

V

V_COPY (Dreg overflow, copy) bit................................. 1–9
V (Dreg overflow) bit...1–9
vector addresses, interrupt..4–34
VS (Dreg overflow, sticky) bit.. 1–9

W

W32 (fractional, saturated).. 8–69
W32 (saturate 32, sign extended)...................................8–13
Watchpoint Data Address Control Register, WP

(WPDACTL)... 9–13
Watchpoint Data Address Count Register, WP

(WPDACNTN[n]).. 9–12
Watchpoint Data Address Register, WP (WPDAN[n]).. 9–15
Watchpoint Instruction Address Control Register, WP

(WPIACTL)...9–17

Watchpoint Instruction Address Count Register, WP
(WPIACNTN[n]).. 9–16

Watchpoint Instruction Address Register, WP (WPIAN[n])..
...9–24

watchpoint match.. 4–51
watchpoint status (WPSTAT) register..............................9–5
Watchpoint Status Register, WP (WPSTAT)................. 9–25
watchpoint unit.. 9–1,9–2

code patching... 9–3
data address watchpoints................................... 9–2,9–4
event triggering...9–2
instruction watchpoints.. 9–2
memory-mapped registers...9–1
WPIACTL watchpoint ranges.................................. 9–3

WB (write back) stage
branch prediction... 4–14
register writes..4–5

WB stage... 4–5
white space, using.. 1–5
width, instruction.. 4–5
WPAND (watchpoint AND test) bit............................... 9–2
WPDACNTN[n] (Watchpoint Data Address Count Regis-

ter, WP)..9–12
WPDACNTx (registers data watchpoint address count val-

ue) registers...9–5
WPDACTL (data watchpoint address control) register....9–5
WPDACTL (Watchpoint Data Address Control Register,

WP)..9–13
WPDAN[n] (Watchpoint Data Address Register, WP).. 9–15
WPDAx (data watchpoint address) registers.....................9–5
WPIACNTN[n] (Watchpoint Instruction Address Count

Register, WP)... 9–16
WPIACNTx (instruction watchpoint address count) registers

..9–3,9–4
WPIACTL (instruction watchpoint address control) register.

...9–4
WPIACTL (Watchpoint Instruction Address Control Regis-

ter, WP)..9–17
WPIAN[n] (Watchpoint Instruction Address Register, WP)..

...9–24
WPIAx (instruction watchpoint address) registers............ 9–3
WPSTAT (watchpoint status) register.............................. 9–5
WPSTAT (Watchpoint Status Register, WP)................. 9–25
write-back (WB)

instruction pipeline stage.. 4–5

ADSP-BF7xx Blackfin+ Processor

X

x (sign extend).. 8–25,8–28

Z

z (zero extend)... 8–28
zero-overhead loops

registers.. 1–7,4–4,4–28

ADSP-BF7xx Blackfin+ Processor

	Notices
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What's New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Documentation Conventions

	Introduction
	Core Architecture
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	Event Handling
	Syntax Conventions
	Case Sensitivity
	Free Format
	Instruction Delimiting
	Comments

	Notation Conventions
	Glossary
	Register Names
	Functional Units
	Arithmetic Status Bits
	Fractional Convention
	Saturation
	Rounding and Truncating
	Automatic Circular Addressing

	Computational Units
	Using Data Formats
	Binary String
	Unsigned Numbers
	Signed Numbers: Two's-Complement
	Fractional Representation: 1.15 and 1.31
	Complex Numbers

	Register Files
	Data Register File
	Accumulator Registers
	Register File Instruction Summary

	Data Types
	Endianness
	ALU Data Types
	MAC Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Rounding MAC Results
	Unbiased Rounding
	Biased Rounding
	Truncation

	Special Rounding Instructions

	Using Computational Status
	ASTAT Register
	Arithmetic Logic Unit (ALU)
	ALU Operations
	Single 16-Bit Operations
	Dual 16-Bit Operations
	Quad 16-Bit Operations
	Single 32-Bit Operations
	Dual 32-Bit Operations
	ALU Division Support Features
	Special SIMD Video ALU Operations

	ALU Instruction Summary

	Multiply Accumulators (MACs)
	MAC Operation
	Placing MAC Results in Accumulator Registers
	Rounding or Saturating MAC Results
	Saturating MAC Results on Overflow
	32-bit MAC Data Flow Details
	32-bit Multiply Without Accumulate
	16-bit MAC Data Flow Details
	16-bit Multiply Without Accumulate
	Dual 16-bit MAC Operations

	MAC Instruction Summary
	MAC Instruction Options

	Barrel Shifter (Shifter)
	Shifter Operations
	Two-Operand Shifts
	Three-Operand Shifts
	Bit Test, Set, Clear, and Toggle
	Field Extract and Field Deposit
	Packing Operation

	Shifter Instruction Summary

	ADSP-BF70x Computational Unit Register Descriptions
	Data Registers
	Accumulator 0 Register
	Accumulator 1 Register
	Accumulator 0 Extension Register
	Accumulator 1 Extension Register
	Arithmetic Status Register

	Operating Modes and States
	User Mode
	Protected Resources and Instructions
	Protected Memory
	Entering User Mode
	Example Code to Enter User Mode Upon Reset
	Return Instructions That Invoke User Mode

	Supervisor Mode
	Non-OS Environments
	Example Code for Supervisor Mode Coming Out of Reset

	Emulation Mode
	Idle State
	Example Code for Transition to Idle State

	Reset State
	System Reset and Power Up
	ADSP-BF70x Mode-Related Register Descriptions
	System Configuration Register

	Program Sequencer
	Introduction
	Sequencer-Related Registers

	Instruction Pipeline
	Branches
	Direct Jumps (Short, Long and Extra-Long)
	Direct Call (Long and Extra-Long)
	Indirect Jump and Call (Absolute)
	Indirect Jump and Call (PC-Relative)
	Subroutines
	Stack Variables and Parameter Passing

	Conditional Processing
	Conditional Code Status Bit
	Conditional Branches
	Branch Prediction
	Dynamic Branch Prediction
	Speculative Instruction Fetches
	Conditional Register Move

	Hardware Loops
	Two-Dimensional Loops
	Loop Unrolling
	Saving and Resuming Loops
	Example Code for Using Hardware Loops in an ISR

	Events and Interrupts
	Core Event Controller Registers
	Interrupt Pending Register (IPEND)
	Interrupt Latch Register (ILAT)
	Interrupt Mask Register (IMASK)

	Event Vector Table (EVT)
	Return Registers and Instructions
	Executing RTX, RTN, or RTE in a Lower-Priority Event

	Emulation Interrupt
	Reset Interrupt
	Non-Maskable Interrupt (NMI)
	Exceptions
	Hardware Error Interrupt
	Core Timer Interrupt
	General-Purpose Core Interrupts (IVG7-IVG15)

	Interrupt Processing
	Globally Enabling/Disabling Interrupts
	Servicing Interrupts
	Interrupt Nesting
	Non-Nested Interrupts
	Nested Interrupts
	Self-Nesting of Core Interrupts

	Servicing System Interrupts
	Clearing Interrupt Requests
	Software Interrupts
	Latency in Servicing Events

	Hardware Errors and Exception Handling
	SEQSTAT Register
	Hardware Error Interrupt
	Exceptions (Events)
	Exceptions While Executing an Exception Handler
	Allocating the System Stack
	Exceptions and the Pipeline
	Deferring Exception Processing
	Example Code for an Exception Handler
	Example Code for an Exception Routine

	ADSP-BF70x Sequencer-Related Register Descriptions
	Sequencer Status Register
	Return from Subroutine Register
	Return from Interrupt Register
	Return from Exception Register
	Return from NMI Register
	Return from Emulator Register
	Loop Top Register
	Loop Bottom Register
	Loop Count Register

	Blackfin+ ICU Register Descriptions
	System ID Register
	Context ID Register
	Event Vector Table Registers
	Event Vector Table Override Register
	Interrupt Latch Register
	Interrupt Mask Register
	Interrupt Pending Register

	Blackfin+ BP Register Descriptions
	BP Configuration Register
	BP Status Register

	Core Timer (TMR)
	TMR Features
	TMR Functional Description
	Blackfin+ TMR Register List
	TMR Block Diagram
	External Interfaces
	Internal Interfaces

	TMR Operation
	Interrupt Processing

	Blackfin+ TMR Register Descriptions
	Core Timer Control Register (TCNTL)
	Core Timer Count Register (TCOUNT)
	Core Timer Period Register (TPERIOD)
	Core Timer Scale Register (TSCALE)

	Address Arithmetic Unit
	Addressing with the AAU
	Pointer Register File
	Frame and Stack Pointers

	DAG Register Set
	Indexed Addressing with Index and Pointer Registers
	Loads with Zero- or Sign-Extension
	Indexed Addressing with Immediate Offset

	Auto-increment and Auto-decrement Addressing
	Pre-modify Stack Pointer Addressing
	Post-modify Addressing
	Direct Addressing
	Addressing Circular Buffers
	Addressing with Bit-reversed Addresses
	Modifying Index and Pointer Registers
	Addressing Mode Summary
	AAU Instruction Summary

	ADSP-BF70x Address Arithmetic Unit Register Descriptions
	Pointer Register
	Frame Pointer Register
	Stack Pointer Register
	User Stack Pointer Register
	Index (Circular Buffer) Register
	Modify (Circular Buffer) Register
	Base (Circular Buffer) Register
	Length (Circular Buffer) Register

	Memory
	Memory Architecture
	Overview of On-Chip Level-1 (L1) Memory
	Overview of Other On-Chip (L2) and Off-Chip (L3) Memories

	L1 Instruction Memory
	L1 Instruction SRAM
	L1 Instruction Cache
	Enabling L1 Instruction Cache
	Cache Lines
	Cache Hits and Misses
	Instruction Cache Management

	L1 Data Memory
	L1 Data SRAM
	L1 Data Cache
	Enabling L1 Data Cache
	Data Cache Access
	Cache Write Method
	Data Cache Block Select
	Data Cache Bypass Mode
	Data Cache Control Instructions
	Data Cache Invalidation

	Extended Data Access
	Memory Protection and Properties
	Memory Management Unit (MMU)
	Instruction CPLB
	Data CPLB
	CPLB Page Descriptors
	Memory Page Properties
	Default Memory Properties
	CPLB Status Registers
	DCPLB and ICPLB Fault Address Registers

	CPLB Management
	CPLB Exception Cause

	L1 Parity Protection
	Parity Protection Coverage
	Parity Error Detection and Notification
	Parity Error Recovery
	Parity Errors Simultaneous with Exceptions and Interrupts
	Direct Access To Parity Bits for L1 SRAM
	L1 Initialization Requirements
	Additional Notes on Parity Errors
	Example Parity Handler

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Alignment
	Ordering of Loads and Stores
	Speculative Load Execution
	Interruptible Load Behavior
	Hazards of the High-Performance Memory Architecture
	Synchronizing Instructions
	Cache Coherency
	I/O Device Space
	Memory-Mapped Registers
	Non-Speculative, Non-Interruptible Loads
	Exclusive Load, Store, and Sync (Spin Lock Example)
	Atomic TESTSET Instruction (Spin Lock Example)

	L1 Memory Microarchitecture
	L1 Memory Access
	Memory Logical Sub-Bank Arrangement
	Misaligned Data Access to L1
	L1 Data Stores
	System Slave Interface

	Core MMR Access
	System Memory Access
	System Memory Interface
	System MMR Interface

	L1 Cache Details
	Extended Data Access to L1 Caches
	Cache Fills and Victims

	Terminology
	Blackfin+ L1IM Register Descriptions
	Instruction Memory CPLB Address Registers
	Instruction Memory CPLB Data Registers
	Instruction Memory CPLB Default Settings Register
	Instruction Memory CPLB Fault Address Register
	Instruction Memory Control Register
	Instruction Parity Error Status Register
	Instruction Memory CPLB Status Register

	Blackfin+ L1DM Register Descriptions
	Data Memory CPLB Address Registers
	Data Memory CPLB Data Registers
	Data Memory CPLB Default Settings Register
	Data Memory CPLB Fault Address Register
	Data Memory Control Register
	Data Memory Parity Error Status Register
	Data Memory CPLB Status Register
	SRAM Base Address Register

	Instruction Reference Pages
	Arithmetic Instructions
	Add and Subtract Operations
	16-Bit Add or Subtract (AddSub16)
	Vectored 16-Bit Add or Subtract (AddSubVec16)
	32-bit Add Constant (AddImm)
	32-bit Add or Subtract (AddSub32)
	32-bit Add and Subtract (AddSub32Dual)
	32-Bit Add or Subtract with Carry (AddSubAC0)
	Accumulator Add and Extract (AddAccExt)
	Accumulator Add or Subtract (AddSubAcc)
	Dual Accumulator Add and Subtract to Registers (AddSubAccExt)
	32-bit Add then Shift (AddSubShift)

	Bit Operations
	Ones Count (Shift_Ones)
	Redundant Sign Bits (Shift_SignBits32)
	Redundant Sign Bits (Shift_SignBitsAcc)
	Bit Mux (BitMux)
	Bit Modify (Shift_BitMod)
	Bit Test (Shift_BitTst)
	Deposit Bits (Shift_Deposit)
	Extract Bits (Shift_Extract)

	Comparison Operations
	Vectored 16-Bit Maximum (Max16Vec)
	Vectored 16-Bit Minimum (Min16Vec)
	32-bit Maximum (Max32)
	32-Bit Minimum (Min32)
	Vectored 16-Bit Search (Search)

	Conversion Operations
	Vectored 16-Bit Absolute Value (Abs2x16)
	32-bit Absolute Value (Abs32)
	Accumulator0 Absolute Value (AbsAcc0)
	Accumulator Absolute Value (AbsAcc1)
	Accumulator Absolute Value (AbsAccDual)
	Vectored 16-bit Negate (Neg16Vec)
	32-Bit Negate (Neg32)
	Accumulator0 Negate (NegAcc0)
	Accumulator1 Negate (NegAcc1)
	Dual Accumulator Negate (NegAccDual)
	Fractional 32-bit to 16-Bit Conversion (Pass32Rnd16)
	Accumulator0 32-Bit Saturate (ALU_SatAcc0)
	Accumulator1 32-Bit Saturate (ALU_SatAcc1)
	Dual Accumulator 32-Bit Saturate (ALU_SatAccDual)

	Logic Operations
	32-Bit Logic Operations (Logic32)
	32-Bit One's Complement (Not32)

	Move Operations
	Move 32-Bit Accumulator Section to Even Register (MvA0ToDregE)
	Move 16-Bit Accumulator Section to Low Half Register (MvA0ToDregL)
	Move 16-Bit Accumulator Section to High Half Register (MvA1ToDregH)
	Move 32-Bit Accumulator Section to Odd Register (MvA1ToDregO)
	Move Register to Accumulator0 (MvAxToAx)
	Move Accumulator to Register (MvAxToDreg)
	Move 8-Bit Accumulator Section to Register Half (MvAxXToDregL)
	Pass 8-Bit to 32-Bit Register Expansion (MvDregBToDreg)
	Move Register Half to 16-Bit Accumulator Section (MvDregHLToAxHL)
	Move Register Half (LSBs) to 8-Bit Accumulator Section (MvDregLToAxX)
	Pass 16-Bit to 32-Bit Register Expansion (MvDregLToDreg)
	Move Register to Accumulator1 (MvDregToAx)
	Move Register to Accumulator0 & Accumulator1 (MvDregToAxDual)
	Move Register to Register (MvRegToReg)
	Conditional Move Register to Register (MvRegToRegCond)
	Dual Move Accumulators to Half Registers (ParaMvA1ToDregHwithMvA0ToDregL)
	Dual Move Accumulators to Register (ParaMvA1ToDregOwithMvA0ToDregE)

	Multiplication Operations
	16 x 16-Bit MAC (Mac16)
	16 x 16-Bit MAC with Move to Register (Mac16WithMv)
	32 x 32-Bit MAC (Mac32)
	32 x 32-Bit MAC with Move to Register (Mac32WithMv)
	Complex Multiply to Accumulator (Mac32Cmplx)
	Complex Multiply to Register (Mac32CmplxWithMv)
	Complex Multiply to Register with Narrowing (Mac32CmplxWithMvN)
	16 x 16-Bit Multiply (Mult16)
	32 x 32-bit Multiply (Mult32)
	32 x 32-Bit Multiply, Integer (MultInt)
	Dual 16 x 16-Bit MAC (ParaMac16AndMac16)
	Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMac16WithMv)
	Dual 16 x 16-Bit MAC with Move to Register (ParaMac16WithMvAndMac16)
	Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMac16WithMv)
	Dual 16 x 16-Bit MAC with Move to Register (ParaMac16AndMv)
	Dual 16 x 16-Bit MAC with Moves to Registers (ParaMac16WithMvAndMv)
	Dual 16 x 16-Bit Multiply (ParaMult16AndMult16)
	Dual Move to Register and 16 x 16-Bit MAC (ParaMvAndMac16)
	Dual Move to Register and 16 x 16-Bit MAC with Move to Register (ParaMvAndMac16WithMv)

	Pointer Math Operations
	32-bit Add or Subtract (DagAdd32)
	32-bit Add or Subtract Constant (DagAddImm)
	32-bit Add then Shift (DagAddSubShift)
	32-bit Add Shifted Pointer (PtrOp)
	Pointer Logical Shift (LShiftPtr)

	Rotate Operations
	32-Bit Rotate (Shift_Rot32)
	Accumulator Rotate (Shift_RotAcc)

	Shift Operations
	16-Bit Arithmetic Shift (AShift16)
	Vectored 16-Bit Arithmetic (AShift16Vec)
	32-Bit Arithmetic Shift (AShift32)
	Accumulator Arithmetic Shift (AShiftAcc)
	16-Bit Logical Shift (LShift16)
	Vectored 16-Bit Logical Shift (LShift16Vec)
	32-Bit Logical Shift (LShift)
	Accumulator Logical Shift (LShiftA)

	Sequencer Instructions
	Branch Operations
	Conditional Jump Immediate (BrCC)
	Jump (Jump)
	Jump Immediate (JumpAbs)
	Call (Call)
	Return from Branch (Return)
	Hardware Loop Set Up (LoopSetup)

	Control Code Bit Management Operations
	Compute Move CC to a D Register (CCToDreg)
	Move CC To/From ASTAT (CCToStat16)
	Move Status to CC (MvToCC)
	Move Status to CC (MvToCC_STAT)
	32-Bit Pointer Register Compare and Set CC (CCFlagP)
	Accumulator Compare and Set CC (CompAccumulators)
	32-Bit Register Compare and Set CC (CompRegisters)

	Event Management Operations
	Interrupt Control (IMaskMv)
	Sequencer Mode (Mode)
	Raise Interrupt (Raise)

	Stack Operations
	Linkage (Linkage)
	Stack Pop (Pop)
	Stack Push (Push)
	Stack Push/Pop Multiple Registers (PushPopMul16)

	Synchronization Operations
	Cache Control (CacheCtrl)
	Sync (Sync)
	SyncExcl (SyncExcl)
	NOP (NOP)
	32-Bit No Operation (NOP32)
	TestSet (TestSet)

	Memory or Pointer Instructions
	Load from Immediate (Value) Operations
	Accumulator Register Initialization (LdImmToAx)
	32-Bit Accumulator Register (.w) Initialization (LdImmToAxW)
	32-Bit Accumulator Register (.x) Initialization (LdImmToAxX)
	16-Bit Register Initialization (LdImmToDregHL)
	32-Bit Register Initialization (LdImmToReg)
	Dual Accumulator 0 and 1 Registers Initialization (LdImmToAxDual)

	Memory Load Operations
	8-Bit Load from Memory to 32-bit Register (LdM08bitToDreg)
	16-Bit Load from Memory to 32-Bit Register (LdM16bitToDreg)
	16-Bit Load from Memory (LdM16bitToDregH)
	16-Bit Load from Memory (LdM16bitToDregL)
	32-Bit Load from Memory (LdM32bitToDreg)
	32-Bit Pointer Load from Memory (LdM32bitToPreg)

	Memory Load (Exclusive) Operations
	8-Bit Load from Memory to 32-bit Register (LdX08bitToDreg)
	16-Bit Load from Memory to 32-Bit Register (LdX16bitToDreg)
	16-Bit Load from Memory (LdX16bitToDregH)
	16-Bit Load from Memory (LdX16bitToDregL)
	32-Bit Load from Memory (LdX32bitToDreg)

	Pack Operations
	Pack 8-Bit to 32-Bit (BytePack)
	Spread 8-Bit to 16-Bit (ByteUnPack)
	Pack 16-Bit to 32-Bit (Pack16Vec)

	Memory Store Operations
	16-Bit Store to Memory (StDregHToM16bit)
	16-Bit Store to Memory (StDregLToM16bit)
	8-Bit Store to Memory (StDregToM08bit)
	32-Bit Store to Memory (StDregToM32bit)
	Store Pointer (StPregToM32bit)

	Memory Store (Exclusive) Operations
	16-Bit Store to Memory (StDregHToX16bit)
	16-Bit Store to Memory (StDregLToX16bit)
	8-Bit Store to Memory (StDregToX08bit)
	32-Bit Store to Memory (StDregToX32bit)

	Specialized Compute Instructions
	Block Floating Point Operations
	Exponent Detection (Shift_ExpAdj32)

	DCT Operations
	32-Bit Prescale Up Add/Sub to 16-bit (AddSubRnd12)
	32-Bit Prescale Down Add/Sub to 16-Bit (AddSubRnd20)

	Divide Operations
	DIVS and DIVQ Divide Primitives (Divide)

	Linear Feedback Shift Register LFSR Operations
	40-Bit BXOR LSFR with Feedback to a Register (BXOR)
	40-Bit BXORShift LSFR with Feedback to the Accumulator (BXORShift_NF)
	32-Bit BXOR or BXORShift LSFR without Feedback (BXOR_NF)

	Video Operations
	Vectored 8-Bit to 16-Bit Add then Clip to 8-Bit (Byteop3P) (AddClip)
	Vectored 8-Bit Add or Subtract to 16-Bit (Byteop16P/M) (AddSub4x8)
	Disable Alignment Exception (DisAlignExcept)
	Byte Align (Shift_Align)
	Quad Byte Average (Byteop2P) (Avg4x8Vec)
	Vector Byte Average (Byteop1P) (Avg8Vec)
	Dual Accumulator Extraction with Addition (AddAccHalf)
	Vectored 8-Bit Sum of Absolute Differences (SAD8Vec)

	Viterbi Operations
	16-Bit Add on Sign (AddOnSign)
	Dual 16-Bit Modulo Maximum with History (Shift_DualVitMax)
	16-Bit Modulo Maximum with History (Shift_VitMax)

	Instruction Page Tables
	ALU Binary Operations (ALU2op)
	Conditional Branch PC relative on CC (BrCC)
	Move CC conditional bit, to and from dreg (CC2Dreg)
	Copy CC conditional bit, from status (CC2Stat)
	CBIT

	Set CC conditional bit (CCFlag)
	Conditional Move (CCMV)
	GDST
	GSRC

	Cache Control (CacheCtrl)
	PREGA

	Call function with pcrel address (CallA)
	Compute with 3 operands (Comp3op)
	Destructive Binary Operations, dreg with 7bit immediate (CompI2opD)
	Destructive Binary Operations, preg with 7bit immediate (CompI2opP)
	DAG Arithmetic (DAGModIk)
	DAG Arithmetic (DAGModIm)
	ALU Operations (Dsp32Alu)
	A0_HL
	A1_HL
	AOPL
	DDST0_HL
	DSRC0_HL
	NSAT
	PAIR0
	PAIR1
	RS
	RSC
	SAT
	SAT2
	SMODE
	SX
	SXA
	XMODE

	Multiply Accumulate (Dsp32Mac)
	CMODE
	CMPLXMAC
	CMPLXOP
	MAC0
	MAC0S
	MAC1
	MAC1S
	MML
	MMLMMOD0
	MMLMMOD1
	MMLMMODE
	MMOD0
	MMOD1
	MMODE
	NARROWING_CMODE
	TRADMAC

	Multiply with 3 operands (Dsp32Mult)
	M32MMOD
	M32MMOD1
	M32MMOD2
	MML
	MMLMMOD1
	MMLMMODE
	MMOD1
	MMODE
	MUL0
	MUL1

	Shift (Dsp32Shf)
	Shift Immediate (Dsp32ShfImm)
	AHSH4
	AHSH4S
	AHSH4VS
	ASH5
	ASH5S
	LHSH4
	LSH5

	Load/Store (DspLdSt)
	Jump/Call to 32-bit Immediate (Jump32)
	Load Immediate Word (LdImm)
	Load Immediate Half Word (LdImmHalf)
	DST
	DST_H
	DST_L

	Load/Store (LdSt)
	Load/Store 32-bit Absolute Address (LdStAbs)
	Long Load/Store with indexed addressing (LdStExcl)
	Load/Store indexed with small immediate offset (LdStII)
	Load/Store indexed with small immediate offset FP (LdStIIFP)
	Long Load/Store with indexed addressing (LdStIdxI)
	Load/Store postmodify addressing, pregister based (LdStPmod)
	Load/Store (Ldp)
	Load/Store indexed with small immediate offset (LdpII)
	Load/Store indexed with small immediate offset FP (LdpIIFP)
	Save/restore registers and link/unlink frame, multiple cycles (Linkage)
	Logic Binary Operations (Logi2Op)
	Virtually Zero Overhead Loop Mechanism (LoopSetup)
	LC

	64-bit Instruction Shell (Multi)
	16-bit Slot Nop (NOP16)
	32-bit Slot Nop (NOP32)
	Basic Program Sequencer Control Functions (ProgCtrl)
	Pointer Arithmetic Operations (Ptr2op)
	Push or Pop Multiple contiguous registers (PushPopMult)
	Push or Pop register, to and from the stack pointed to by sp (PushPopReg)
	POPREG
	PUSHREG

	Register to register transfer operation (RegMv)
	GDST
	GSRC

	Unconditional Branch PC relative with 12bit offset (UJump)
	bimm32 Register Type
	buimm32 Register Type
	huimm16 Register Type
	imm10s2 Register Type
	imm12nxs2 Register Type
	imm12s2 Register Type
	imm12xs2 Register Type
	imm16 Register Type
	imm16negpos Register Type
	imm16reloc Register Type
	imm16s2 Register Type
	imm16s2negpos Register Type
	imm16s4 Register Type
	imm16s4negpos Register Type
	imm24nxs2 Register Type
	imm24s2 Register Type
	imm24xs2 Register Type
	imm3 Register Type
	imm32 Register Type
	imm5nzs4negpos Register Type
	imm6 Register Type
	imm7 Register Type
	luimm16 Register Type
	negimm5s4 Register Type
	rimm16 Register Type
	uimm10 Register Type
	uimm10s2o4 Register Type
	uimm16s4 Register Type
	uimm3 Register Type
	uimm32 Register Type
	uimm4 Register Type
	uimm4nz Register Type
	uimm4nznegpos Register Type
	uimm4s2 Register Type
	uimm4s2o4 Register Type
	uimm4s4 Register Type
	uimm5 Register Type
	uimm5nz Register Type
	uimm5nznegpos Register Type
	BREG Register Type
	BREG_H Register Type
	BREG_L Register Type
	DREG Register Type
	DREG_B Register Type
	DREG_E Register Type
	DREG_H Register Type
	DREG_L Register Type
	DREG_O Register Type
	DREG_PAIR Register Type
	DREG_RANGE Register Type
	IREG Register Type
	IREG_H Register Type
	IREG_L Register Type
	LREG Register Type
	LREG_H Register Type
	LREG_L Register Type
	MREG Register Type
	MREG_H Register Type
	MREG_L Register Type
	PREG Register Type
	PREGP Register Type
	PREG_H Register Type
	PREG_L Register Type
	PREG_RANGE Register Type
	SYSREG2 Register Type
	SYSREG3 Register Type

	Issuing Parallel Instructions
	Supported Parallel Combinations
	Parallel Issue Syntax
	32-Bit ALU/MAC Instructions
	16-Bit Instructions
	Parallel Operation Examples

	Debug
	Watchpoint Unit
	Instruction Watchpoints
	WPIAx Registers
	WPIACNTx Registers
	WPIACTL Register
	Data Address Watchpoints
	WPDAx Registers
	WPDACNTx Registers
	WPDACTL Register
	WPSTAT Register

	Performance Monitor Unit (PMU)
	Functional Description
	PFCNTRx Registers
	PFCTL Register
	Count Event Mode
	Monitor Event Types
	EVENTx - Counter Overflow Condition

	Programming Example

	Cycle Counters
	CYCLES and CYCLES2 Registers
	SYSCFG Register

	Product Identification Register
	DSPID Register

	Blackfin+ DBG Register Descriptions
	DSP Identification Register

	Blackfin+ WP Register Descriptions
	Watchpoint Data Address Count Register
	Watchpoint Data Address Control Register
	Watchpoint Data Address Register
	Watchpoint Instruction Address Count Register
	Watchpoint Instruction Address Control Register
	Watchpoint Instruction Address Register
	Watchpoint Status Register

	Blackfin+ PF Register Descriptions
	Counter 0 Register
	Counter 1 Register
	Control Register

	ADSP-BF70x Debug-Related (REGFILE) Register Descriptions
	Cycle Count (32 LSBs) Register
	Cycle Count (32 MSBs) Register

	Blackfin+ OPT Register Descriptions
	Feature Core 0 Register

	Program Trace Macrocell (PTM)
	Features
	Functional Description
	Address Comparators
	Context ID Comparators
	Events
	Counters
	Trace Security

	Programming Model
	References

	Numeric Formats
	Unsigned or Signed: Two's-complement Format
	Integer or Fractional Data Formats
	Binary Multiplication
	Fractional Mode And Integer Mode

	Block Floating-Point Format

	indexlist

