

Engineer-to-Engineer Note EE-385

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Implementing the RSA Cryptosystem with the Public Key Accelerator

Contributed by G. Yi Rev 1 – October 14, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

Along with the full rich set of system peripherals, the ADSP-BF70x Blackfin+TM, ADSP-SC58x

SHARC+TM and ADSP-2158x SHARC+ processors include cryptographic hardware engines. This EE-Note

demonstrates the use of some of these engines through the implementation of the RSA cryptosystem.

This document describes:

 Overview of the RSA cryptosystem

 Setting up and using the cryptographic hardware accelerators

 Implementation of the RSA cryptosystem

 Performance of the cryptographic hardware accelerators

RSA Cryptosystem

RSA is a public-key cryptosystem defined in the PKCS #1 v2.2: RSA Cryptography Standard[1]. A public-

key crypto system consists of two keys, forming a key pair. When a user generates a key pair, one of the

keys is held private. The other key is public, which can be freely distributed.

Protection

The RSA cryptosystem can be used for both confidentiality protection, where information is protected from

unauthorized users, as well as guaranteeing authenticity and integrity of the information.

Confidentiality

To use RSA for confidentiality protection, the distributed public key is used to encrypt a message. The

encrypted message can then be transmitted via a non-secure communication channel, and only the user(s)

holding the private key will be able to decrypt the message and obtain the original content.

Authenticity and Integrity

RSA can also be used to help authenticate and ensure the integrity of a message. In this case, digital

signatures are employed. To generate a signature, the private key is to “sign” a message (or hash digest of

the message). The digital signature is then attached to the original message and sent to the destination. To

prove the authenticity and integrity of the message, the public key is then used to verify the signature. If the

signature can’t be validated, the user will know that either the signature and/or the message was corrupted

or the public key used for the signature verification was also incorrect.

http://www.analog.com/processors

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 2 of 11

Procedure

The following sections describe the methodology for using the RSA cryptosystem.

Generating a Prime Modulus

The first step of the RSA is to create the key pair. In order to do this, a prime modulus (𝑛) must be generated

It’s composed of two or more prime factors.

𝑛 = 𝑝0 ∙ 𝑝1 ∙ …

Equation 1. Calculating Prime Modulus

Equation 1 shows how to calculate 𝑛. As seen, it’s a multiplicative product of distinct odd primes, 𝑝0, 𝑝1,

etc.

In the code contained in the associated ZIP file[2], 𝑛 is calculated using only two primes, 𝑝 and 𝑞. The

security of RSA relies on the ability to factor 𝑛 into its prime factors. Therefore, the larger the value of 𝑛,

the harder it is to perform the factorization. A popular size of 𝑛 for today’s security needs is 1024 bits. The

size/bit length is ultimately the user’s decision based on the security requirements and threat models. For

this example code, 64 bits was chosen. This can be changed via the MOD_SIZE_BITS macro defined in the

RSAexample.h header file.

Generating Prime Numbers

In order to generate a large prime number, the example code uses the True Random Number Generator

(TRNG) to generate a random number of a specified bit length, and then that number is tested to see if it’s

prime. If it’s not prime, another number is generated.

Using the True Random Number Generator (TRNG)

The TRNG is comprised of eight free running oscillators (FRO) running at different frequencies. Bits are

sampled and stored in an internal buffer. Once the buffer is full and bits are ready, they can be read out via

output registers.

The TRNG also contains in-circuit testing for different patterns and runs. It will automatically start shutting

down FROs if the in-circuit testing results in patterns or runs, making the output non-random. Thresholds

can be configured to trigger alarms and generate an interrupt if too many FROs have been shut down. This

would allow the user to take appropriate action, such as disregarding collected bits that aren’t really random

and detuning/restarting an FRO. Further details can be obtained in the Processor Hardware Reference

Manuals[3][4].

In the example code, the TRNG is enabled, and the random numbers available in the output registers are

read out. Once all the registers are read and more bits are needed, an acknowledgement bit is set to tell the

TRNG to provide more random numbers in the output register. This is done in a loop until all the bits needed

are obtained. The example only needs random numbers with relatively small bit sizes, so no elaborate

scheme was implemented for error handling in case FROs started to shut down due to pattern-detection.

Primality Testing

There are different methods for primality testing, but a simple one was employed in the example code.

Testing if the number is divisible by 2 is simply testing the least significant bit. To test if the number is

divisible by 3, a state machine is employed. Transitions are made after analyzing every bit from the LSB to

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 3 of 11

the MSB. After 3, an iterator, 𝑖, starts at 5 and increments by 6 while the square of it remains less than the

random number. For every iteration, it’s tested to see if 𝑖 or 𝑖 + 2 divides the random number. If either does

divide the random number, then it is a factor and the random number is not prime. Once all the iterations

have completed - and none of the candidates divides the random number - then the random number can be

deemed prime.

As one can imagine, for larger modulus sizes, more iterations need to be done, which can be quite time

consuming. There are other optimized and probabilistic methods for primality testing and for prime number

generation, but that is outside the scope of this EE-Note. Also, depending on the application requirements

for the frequency of generating keys, a list of pre-generated large primes can be stored securely on the

processor, at which point choosing a large prime would just be a matter of selection.

Using the Public Key Accelerator (PKA)

The example code starts to use the PKA during the primality testing. The following math functions are used:

 Modulo – to test if 𝑖 or 𝑖 + 2 can divide the test number

 Comparison – to test if 𝑖2 is less than the test number

 Multiplication – to calculate 𝑖2

 Addition – to calculate 𝑖 + 2

 Subtraction – to help with manual division

Overview of PKA

The PKA is a big number arithmetic engine. Since the security of public key algorithms relies on the

difficulty of factoring large numbers, the use of these algorithms employ bit lengths ranging from hundreds

to thousands of bits. For RSA using 1024-bit modulus, a number would use 32 words (of width 32-bit).

Processing such large numbers would be time consuming if done by software running on the Blackfin+

core. The PKA helps offload this computational workload, as it offers support for basic mathematical

functions such as multiply, divide, add, subtract, shift, compare, copy, and modulo. It also offers support

for more complex functions like modular exponentiation and inversion. Finally, the PKA also offers support

for functions pertaining specifically to elliptic curve cryptography, which includes ECC addition and ECC

multiply.

Using the PKA is fairly straightforward. It contains a 4KB RAM, whose start address coincides with the

PKA0_RAM memory-mapped register (MMR). The input values are loaded into this memory, and the pointers

are configured to indicate to the PKA where the values are in the RAM. The size MMRs are also configured

to tell the PKA how big the inputs are. The output pointer MMR is also configured to tell the PKA engine

where to place the result in RAM. PKA0_APTR and PKA0_BPTR always point to inputs, while PKA0_CPTR and

PKA0_DPTR will point to inputs or results, depending on what operation the PKA is being configured to

execute, as shown in Figure 1.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 4 of 11

Figure 1- PKA Memory Space Usage

Next, the math function is configured, and the execution is started. A status bit is then polled for completion.

Listing 1 is a code snippet showing how to set up the PKA to perform multiplication. The input parameters

to the function are vectA and vectB, both pointers to buffers of unsigned 32-bit integers, which hold the

large numbers. The lowest addresses, vectA[0] and vectB[0], hold the least significant words of the large

numbers, while the highest addresses hold the most significant words. Additionally, the inputs vectAsz and

vectBsz indicate the size of the buffers in terms of unsigned 32-bit words.

These inputs lengths can be written directly to the PKA0_ALEN and PKA0_BLEN MMRs because the PKA

expects the lengths to be configured in terms of 32-bit words.

Next, the PKA RAM is partitioned to set up where the input will reside and where the PKA will place the

resulting output. This is accomplished by writing to the PKA0_APTR, PKA0_BPTR, and PKA0_CPTR pointer

MMRs, which are basically indices into the 32-bit buffers in the PKA RAM. For multiplication, the PKA

requires that the input and output buffers need to be 8-byte aligned. Therefore, the code sets the PKA_BPTR

and PKA_CPTR registers by first adding 1 to vectAsz to round up, and then clearing the least significant bit.

Once the lengths and pointers are set up, the inputs are copied from the buffers to the PKA RAM in their

allocated regions. Then, the PKA0_FUNC MMR is configured for the operation and set to let the PKA execute.

The ‘RUN’ bit in the PKA0_FUNC can be polled to determine if the PKA is finished processing. If it is, the

result can then be copied out of the PKA RAM. For a multiplication, the maximum output bit size is the

sum of the size of the multiplicand and the size of the multiplier. The result size may be less, depending on

the values of the multiplicand and the multiplier. For this reason, the PKA_MSW MMR will indicate where

APTR

APTR

BPTR

APTR

CPTR

APTR

DPTR

APTR

ALEN

APTR

BLEN

APTR

RAM

…

PKA

MMR

SPACE

Input

Input

Output

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 5 of 11

the most significant word that is non-zero is in PKA_RAM. This can also be used for the other basic arithmetic

operations that the PKA supports.

uint32_t *pka_mult(uint32_t *vectA, uint32_t vectAsz, uint32_t *vectB, uint32_t

 *vectBsz, uint32_t *result){

 .

 /* configure lengths of input */

 *pREG_PKA0_ALEN = vectAsz ;

 *pREG_PKA0_BLEN = vectBsz ;

 /* configure pointers to where input and output will be in PKA RAM */

 *pREG_PKA0_APTR = 0 ;

 *pREG_PKA0_BPTR = *pREG_PKA0_APTR + ((vectAsz+1)&(0xfffffffe)) ;

 *pREG_PKA0_CPTR = *pREG_PKA0_BPTR + ((vectBsz+1)&(0xfffffffe)) ;

 /* copy input vectors into PKA RAM */

 for(i=0; i<vectAsz; i++)

 pREG_PKA0_RAM[*pREG_PKA0_APTR + i] = vectA[i];

 for(i=0; i<vectBsz; i++)

 pREG_PKA0_RAM[*pREG_PKA0_BPTR + i] = vectB[i];

 /* configure operation and start */

 *pREG_PKA0_FUNC = BITM_PKA_FUNC_MULT | BITM_PKA_FUNC_RUN;

 /* poll ’run’ bit in function register and wait for completion */

 .

 .

 <wait for operation to complete>

 .

 .

 /* copy result from PKA ram to output buffer */

 for(i=0; i<(vectAsz+vectBsz); i++)

 result[i] = pREG_PKA0_RAM[*pREG_PKA0_CPTR + i];

 return result;

}

Listing 1 - Example Code to Setup PKA for Multiplication

For the associated example RSA code, a simple API was created to use the PKA for the various large number

math functions, which can be found in the pka_functions.c source file. The functions are blocking,

meaning they wait until the operation is completed and no interrupts are used. One can envision a more

involved and complex usage of the PKA, depending on the application, involving pre-loading multiple

inputs, using interrupts, overlapping inputs and outputs, automatically setting the pointers to use output as

input, etc.

For more detailed information on the PKA, refer to the hardware reference manual.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 6 of 11

Generating the Encryption Key

At this point, the TRNG and PKA have been used to two generate prime numbers, which are multiplied to

produce the prime modulus.

Next, Euler’s phi function is calculated for the prime modulus 𝑛. For an input number, Euler’s phi function

provides the count of the number of values which are less than or equal to the input and are relatively prime

to the input value. Since Euler’s phi function is multiplicative, it can be found by (𝑛) = 𝜑(𝑝0)𝜑(𝑝1) … ,

etc. Since prime numbers are the function’s inputs, the results are 𝜑(𝑝0) = 𝑝0 − 1, 𝜑(𝑝1) = 𝑝1 − 1, etc.

Therefore, 𝜑(𝑛) = (𝑝0 − 1)(𝑝1 − 1) = (𝑝 − 1)(𝑞 − 1), since the example code uses only two primes to

generate the prime modulus.

Again, since all the numbers being used are large numbers, the PKA is used to perform the subtractions and

multiplication.

For a sanity check, Euler’s phi function can alternatively be calculated with:

(𝑝 − 1)(𝑞 − 1) = 𝑝𝑞 − 𝑝 − 𝑞 + 1 = 𝑛 − (𝑝 + 𝑞 − 1)

Once Euler’s phi function is calculated, another random number, 𝑒 (the public key exponent), is generated

satisfying the following properties:

1. 1 < 𝑒 < 𝜑(𝑛), and

2. 𝐺𝐶𝐷(𝑒, 𝜑(𝑛)) = 1

The PKA is used to perform the comparison in #1 above and the greatest common divisor (GCD) test in #2

above. The modular inversion function will return an error indication for two reasons:

 If the modulus is an even number.

 If the GCD of the number to invert and the modulus is not equal to one.

Therefore, the modular inversion function is set up with:

𝜑(𝑛) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡𝑜 𝑖𝑛𝑣𝑒𝑟𝑡

and

𝑒 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

This setup is important because the modulus cannot be an even number; and since, in this case, Euler’s phi

function is a product of even numbers, it will also be an even number.

Numbers are generated in a loop until one is found that satisfies the conditions listed above. Once one is

found, this encryption key (also known as the public key) is the pair consisting of the public key exponent

and the prime modulus, (𝑒, 𝑛).

Generating the Decryption Key

Once the public key exponent is found, the decryption key, 𝑑, is calculated by taking the inverse of 𝑒.

𝑑 ≡ 𝑒−1𝑚𝑜𝑑 (𝜑(𝑛)) or 𝑑𝑒 ≡ 1 𝑚𝑜𝑑(𝜑(𝑛))

The problem here is that 𝜑(𝑛)is an even number because 𝑝 and 𝑞 are odd prime numbers. When the modular

inversion function in the PKA is set with an even number for the modulus, an error results.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 7 of 11

To solve this, an alternative calculation is used:

𝑑 ≡ 𝑀𝑜𝑑𝐼𝑛𝑣 (𝑒, 𝜑(𝑛)) ≡ (1 + (𝜑(𝑛) ∗ (𝑒 − 𝑀𝑜𝑑𝐼𝑛𝑣(𝜑(𝑛), 𝑒)))/𝑒

So, with the PKA, in order to find the decryption key, the modular inversion operation is still used, but the

operands are reversed and a few more operations are required.

When the modular inverse of 𝑒 is found, the decryption key is the pair (𝑑, 𝑛).

The alternate form of the decryption key is a 5-tuple of (𝑝, 𝑞, 𝑑𝑃, 𝑑𝑄, 𝑞𝐼𝑛𝑣) where:

𝑑𝑃 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1),

𝑑𝑄 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1), and

𝑞𝐼𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝.

With this form, the Chinese Remainder Theorem (CRT) is used to optimize the calculation. Details and

proof of the CRT is outside the scope of this EE-Note.

Encryption/Decryption

Now that the keys have been generated, the public key is distributed and is available for anyone to use.

To encrypt a message, it’s just a matter of modular exponentiation. Let 𝑚 be the message, and let 𝑐 be the

encrypted message 𝑚𝑒𝑚𝑜𝑑 𝑛.

Again, the PKA can be used to calculate this. The constraints on 𝑚 are:

1. 0 ≤ 𝑚 < 𝑛
2. GCD(m,n)=1

For the example code, 𝑚 is just a generated random number, and again the modular inversion function from

the PKA is used to test if the GCD between the message and the prime modulus is 1.

The encrypted message, or ciphertext, can then be transmitted to the receiver, who holds the private

key, (𝑑, 𝑛). Decrypting the message is also a matter of modular exponentiation:

𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑛

Therefore, if the prime modulus and keys were generated correctly, the original message will be the result.

If the alternate form of the private key (the 5-tuple) is used, the original message would be obtained by

calculating:

𝑚1 = 𝑐𝑑𝑃,

𝑚2 = 𝑐𝑑𝑄 ,

ℎ = (𝑚1 − 𝑚2) ∙ 𝑞𝐼𝑛𝑣 𝑚𝑜𝑑 𝑝,

and then finally 𝑚 = 𝑚2 + 𝑞 ∙ ℎ.

This might seem to be a lot of calculations and preparation for the PKA engine; but, as the example code

also demonstrates, the PKA engine natively supports the use of this alternative form of the private key. This

is done by loading the elements from the 5-tuple and the ciphertext into the appropriate locations, and then

trigger it to start calculating.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 8 of 11

Signature Generation and Verification

For confidentiality, the public key is used to encrypt, and then the private key is used to decrypt. For integrity

and authenticity, the keys are used in reverse. Also, as is the case with encryption and decryption, it’s a

matter of modular exponentiation. The sender uses the private key to encrypt what is typically a hash digest

of the message to create a digital signature.

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = (ℎ𝑎𝑠ℎ(𝑚𝑒𝑠𝑠𝑎𝑔𝑒))𝑑𝑚𝑜𝑑 𝑛

This signature is sent along with the message to the receiver. The receiver, who has the public key, then

uses it to verify the signature by raising the signature to the power of the private key exponent, mod n.

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑒 𝑚𝑜𝑑 𝑛 =? ℎ𝑎𝑠ℎ(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

The receiver also computes the hash digest of the message. This hash digest is then compared against the

result of the modular exponentiation. If the two values match, then the signature is verified. If they don’t

match, then either the signature or message was changed during transmission, or the public key is invalid.

RSA Example Project

Throughout this EE-Note, the example project in the associated ZIP file has been referenced. The source

code can be found in the RSAexample\src directory, comprised of the following files:

1. RSAexample.c/h – contains the main application and functions directly associated with the RSA

cryptosystem (i.e., genKeyPair(), genPrimNum(), rsaEncrypt(), rsaDecrypt(), etc.

2. math_utilities.c/h – contains math helper functions such as aDivB() to handle large number

division when the divisor is a 32-bit number. This is used because the PKA only performs large

number division when the divisor is greater than 32-bits. It also contains the functions to test if a

number is prime, isPrime(), and also a function to calculate the modular inverse of a number,

getModInv().

3. pka_functions.c/h – contains a simple driver API to use various simple PKA functionality.

In RSAexample.h, the DEBUG macro is defined. It can be set with a value up to 3 to output various levels of

debug information.

The code also builds and runs on the ADSP-BF706, and the ADSP-SC589, separately on the ARM and the

SHARC cores. The project files are found in the RSAexample/projects directory.

PKA Benchmarks

Benchmarks are provided in Table 1 (for ADSP-BF70x Blackfin+ processors) and Table 2 (for ADSP-

2158x/ADSP-2158x SHARC+ processors) for RSA operations, mainly modular exponentiations. For each

operation, there are two benchmarks. One is using one odd power, and the other is using four odd powers.

The number of odd powers to pre-calculate and use during the modular exponentiation is configurable by

writing to the PKA_SHIFT register. The decision on which to use is a trade-off between speed and memory

(the PKA RAM). The more odd powers that are pre-computed and used, the faster the modular

exponentiation will be because less multiplications are needed. There is a limit though, and a higher number

of odd powers would not be advisable for smaller bit lengths because the process of pre-computing all the

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 9 of 11

odd powers also requires a certain amount of computation time. The balance between the number of odd

powers used and the key bit length will have to be decided by user.

Operation HW operation Exponent Size

(bits)

Modulus

Size (bits)

of

Odd

Powers

Performance (cycles)

RSA sign/encr/decr 512 Modular exponentiation 512 512 1 690,551

RSA sign/encr/decr 512 Modular exponentiation 512 512 4 588,939

RSA sign/encr/decr 1024 Modular exponentiation 1024 1024 1 4,099,965

RSA sign/encr/decr 1024 Modular exponentiation 1024 1024 4 3,468,801

RSA sign/encr/decr 2048 Modular exponentiation 2048 2048 1 29,420,846

RSA sign/encr/decr 2048 Modular exponentiation 2048 2048 4 24,561,385

RSA sign/encr/decr 4096 Modular exponentiation 4096 4096 1 214,598,077

RSA sign/encr/decr 4096 Modular exponentiation 4096 4096 4 180,135,856

RSA sign/decr CRT 512 2x Modular exponentiation 256 256 1 240,733

RSA sign/decr CRT 512 2x Modular exponentiation 256 256 4 208,759

RSA sign/decr CRT 1024 2x Modular exponentiation 512 512 1 1,397,951

RSA sign/decr CRT 1024 2x Modular exponentiation 512 512 4 1,170,332

RSA sign/decr CRT 2048 2x Modular exponentiation 1024 1024 1 8,344,143

RSA sign/decr CRT 2048 2x Modular exponentiation 1024 1024 4 6,941,292

RSA sign/decr CRT 4096 2x Modular exponentiation 2048 2048 1 59,514,54

RSA sign/decr CRT 4096 2x Modular exponentiation 2048 2048 4 49,334,463

Table 1. PKA Benchmarks for RSA Operations for ADSP-BF70x Blackfin+ Processors

Also note that when the Chinese Remainder theorem is used, it saves the computation cycles by almost a

factor of three for the equivalent bit lengths. That is because doing two modular exponentiations on half the

bit length is computationally less expensive than doing one modular exponentiation on the original bit length

size.

Finally, the difference in the performance between the PKA on the ADSP-BF70x Blackfin+ processor and

the ADSP-SC58x/ADSP-2158x SHARC+ processor is due to the width of the processing elements. On the

ADSP-BF70x processor, the PKA is 32-bit, while the ADSP-SC58x/ADSP-2158x processor PKA is 16-bit.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 10 of 11

Operation HW operation Exponent Size

(bits)

Modulus

Size (bits)

of

Odd

Powers

Performance (cycles)

RSA sign/encr/decr 512 Modular exponentiation 512 512 1 2,299,238

RSA sign/encr/decr 512 Modular exponentiation 512 512 4 1,959,458

RSA sign/encr/decr 1024 Modular exponentiation 1024 1024 1 14,779,279

RSA sign/encr/decr 1024 Modular exponentiation 1024 1024 4 12,501,019

RSA sign/encr/decr 2048 Modular exponentiation 2048 2048 1 111,325,297

RSA sign/encr/decr 2048 Modular exponentiation 2048 2048 4 92,931,362

RSA sign/encr/decr 4096 Modular exponentiation 4096 4096 1 833,993,111

RSA sign/encr/decr 4096 Modular exponentiation 4096 4096 4 700,049,874

RSA sign/decr CRT 512 2x Modular exponentiation 256 256 1 704,406

RSA sign/decr CRT 512 2x Modular exponentiation 256 256 4 608,979

RSA sign/decr CRT 1024 2x Modular exponentiation 512 512 1 4,643,494

RSA sign/decr CRT 1024 2x Modular exponentiation 512 512 4 3,882,581

RSA sign/decr CRT 2048 2x Modular exponentiation 1024 1024 1 30,055,168

RSA sign/decr CRT 2048 2x Modular exponentiation 1024 1024 4 24,992,042

RSA sign/decr CRT 4096 2x Modular exponentiation 2048 2048 1 225,147,137

RSA sign/decr CRT 4096 2x Modular exponentiation 2048 2048 4 186,614,169

Table 2. PKA Benchmarks for RSA Operations on ADSP-SC58x/ADSP-2158x SHARC+ Processors

Disclaimer

The intended purpose of this EE-Note and associated code was to demonstrate the use of the hardware

accelerator engines in the implementation of the RSA cryptosystem. The code is provided as reference only.

Analog Devices, Inc. does not make any claims that this code is bug-free nor suitable for secure applications.

It is left to the user’s discretion on how the code is incorporated into the end product/application.

Implementing the RSA Cryptosystem with the Public Key Accelerator (EE-385) Page 11 of 11

References

[1] PKCS #1 v2.2: RSA Cryptography Standard. v2.2, October 27, 2012. RSA Laboratories.

[2] Associated ZIP File for EE-385. Rev 1, October, 2015. Analog Devices, Inc.

[3] ADSP-BF70x Blackfin+ Processor Hardware Reference, Preliminary Revision 0.2, May 2014, Analog Devices, Inc.

[4] ADSP-SC58x SHARC Processor Hardware Reference, Preliminary Revision 0.2, June 2015, Analog Devices, Inc.

Document History

Revision Description

Rev 1 – October 14, 2015

by G.Yi

Initial Release

	Introduction
	RSA Cryptosystem
	Protection
	Confidentiality
	Authenticity and Integrity

	Procedure
	Generating a Prime Modulus
	Generating Prime Numbers
	Using the True Random Number Generator (TRNG)

	Primality Testing
	Using the Public Key Accelerator (PKA)
	Overview of PKA

	Generating the Encryption Key
	Generating the Decryption Key
	Encryption/Decryption
	Signature Generation and Verification

	RSA Example Project
	PKA Benchmarks
	Disclaimer
	References
	Document History

