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Introduction  

The ADSP-CM40x family of mixed-signal control processors provide on-chip programmable SPI flash 

memory for code and data storage. The SPI peripheral and the implementation of an instruction cache on 

ADSP-CM40x processors allow for code execution directly from the on-chip SPI flash device. 

The processor, when originally released from reset, executes code from the on-chip boot ROM space. This 

boot code is responsible for initial processor configuration and for handling each of the processor’s 

supported boot modes[1]. 

The boot process is capable of vectoring and executing code directly from the on-chip SPI flash memory, 

or it may load a boot image in the form of a boot stream to the processor’s internal SRAM. 

The purpose of this EE-Note is to introduce users to techniques that may be used to reduce the initial system 

bring-up time when using the SPI master boot mode for code execution and show how to implement device 

initialization software to optimize the system hardware as early as possible before executing the end 

application. 

Example code compatible with IAR Embedded Workbench for ARM®[4] development tools is provided in 

the ADSP-CM40x Enablement Software Package[3] . 

Optimizing Boot Time  

In order to minimize processor bring-up time, it is important to optimize system clocks and configure core 

features/peripherals as early as possible in the boot process. By default, the processor exits the reset state 

with the PLL in bypass mode to ensure that the oscillator watchdog - a peripheral used to detect the most 

probable oscillator failures, such as loss of input clock or harmonic oscillation - can be configured 

appropriately before bringing the PLL out of bypass mode. 

In order to optimize the bring-up time for SPI master boot mode, it is also required to configure the SPI 

peripheral and cache controller for optimal performance. The SPI flash memory can be configured in 

command skip mode, and the cache pre-fetch feature can be enabled in order to optimize execution of code 

directly from internal flash. 

There are a number of ways to configure the system with processor initialization routines for the Clock 

Generation Unit (CGU), Dynamic Power Management block (DPM), Oscillator Watchdog (OSCWD), Serial 

Peripheral Interface (SPI), and cache controller. 
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1. Initialize all required units from main() in the user application code. 

2. Use an initialization block, if booting the processor using a compliant boot stream consisting of 

block headers and payload. 

3. Implement a multi-application approach, where device initialization is maintained in a separate piece 

of firmware from the end application. 

4. Utilize the __low_level_init() function of the IAR Embedded Workbench run-time startup. 

This document will focus on the latter two options to configure the processor efficiently and early in the 

boot process prior to the rest of the runtime initialization sequence. A brief introduction to the other two 

methods is also provided. 

The selected methods are two distinctly different approaches to the same problem, each having its own 

benefits and limitations. By providing examples of how to implement these two approaches, users can adopt 

a strategy that is best suited to their requirements. 

Initializing the Units from main() in the Final Application 

Initializing all units at the beginning of the application code is the least efficient way to configure the 

processor and results in extended bring-up time. 

The DPM and CGU blocks are just some of the components that may be required to be configured. It is 

advisable to execute the initialization routine from internal SRAM, as the clock being supplied to the SPI 

flash device will also be reconfigured during the process. 

The run-time setup code for the user application will copy all code and data intended for internal SRAM 

during the execution of the startup sequence before executing the main routine where the hardware is then 

optimized. Since the PLL is bypassed during the copying operation, the bring-up time is extended.  

For those applications that are not concerned about boot time requirements, this is certainly a viable option 

and perhaps the simplest to implement. A single project is required, with the only requirement being that 

code brings the PLL out of bypass and reconfigures the CGU block to be executed from SRAM (not from 

SPI flash memory). 

Initialization Codes from Boot Streams 

The on-chip boot ROM provides a boot kernel that is fully capable of loading a user application in a 

distributed manner to the on-chip SRAM, provided that the application image is in a compliant boot stream 

format. This boot stream format supports a feature referred to as ‘init code’. During the booting process, a 

block header instructs the boot kernel that init code has been loaded. The boot kernel will then execute this 

code before continuing with the boot process. It is an effective means of optimizing the system early in the 

boot process before the rest of the user application has been loaded. For further details, please refer to the 

Boot ROM and Booting the Processor section of the Hardware Reference Manual[2]. 

Using Multiple Applications for Initialization 

The multiple application approach requires the user to create and load a small application solely for the 

purposes of configuring the optimization features of the processor. As the application is small, a minimum 

amount of user code and data are loaded from the SPI flash memory to the internal SRAM before being 

executed. Once executed, the application vectors to the next application in the flash memory space, whether 
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that is a second-stage boot loader or the end application. This method minimizes the number of SPI 

transactions and instructions executed at the slower clock frequency. 

For ease of use, each individual application should be loaded to a separate erasable block of memory in the 

on-chip flash memory. The Interrupt Vector Table (IVT) of processor optimization firmware should be 

placed at the bootAddress memory location defined by the security header. When the main user application 

code is in development or being updated in the flash device, the software responsible for optimizing the 

processor configuration remains intact in a separate erasable memory block. 

Second-stage boot loaders may be implemented such that they are called after the initial application 

responsible for optimizing the processor configuration and prior to the main user application. These second-

stage boot loaders may provide firmware update functionality for all the applications stored in the flash 

device. This type of approach provides the benefit of the processor optimization firmware and the second-

stage loader firmware being completely independent from the end user application. The maintenance of the 

various application images and update functionality is taken care of solely by the second-stage boot loader. 

While the end user application is not required to have any knowledge of the other applications executed 

previously, the linker files for the main application must not make use of the flash memory banks that are 

intended to hold the other pieces of firmware. Therefore, maintenance of multiple projects and linker files 

is required. The use of multiple applications within the flash memory in conjunction with a second-stage 

boot loader for firmware update functionality provides an extremely flexible solution for devices requiring 

field upgrade functionality while still supporting quicker bring-up time. 

Using __low_level_init() for Initialization 

Beside the method of initializing everything from the main() routine, this is likely the simplest approach to 

implement. Only a single project is required, which means that a single linker file is involved. This method 

does not provide the flexibility of having the initial processor configuration and second-stage boot loader 

for individual firmware image maintenance, and any update to the software would require the entirety of 

the flash memory to be reprogrammed. 

The __low_level_init() routine is called early in the runtime startup sequence, providing a hook to initialize 

hardware prior to the rest of the runtime initialization in which all the code and data is copied from flash 

memory to internal SRAM space. This approach may take slightly longer than the multiple application 

approach, depending on the functionality implemented within the startup.c file prior to the call to the 

__low_level_init() routine. For example, if the processor’s entire vector table is relocated from flash 

memory to internal SRAM, this may take place before the __low_level_init() function call; thus, it will be 

happening prior to the clocks being optimal. Users may wish to reorganize the operations performed in the 

startup.c file for their specific requirements. 

Executing Code from SPI Flash Memory  

Details on the SPI master boot mode can be found in the hardware reference manual[2]. The general 

procedure in the SPI master boot mode is that upon completing the pre-boot sequence, the processor will 

proceed to boot from the on-chip SPI flash memory via the SPI2 interface. If no boot stream is found, then 

the processor will check for a valid stack pointer in the first entry of the vector table. The reset vector of the 

vector table is located at the next physical address. 

If the stack pointer is found to fall within valid SRAM space, then the processor will branch to the address 

stored in the reset vector. By this time, the SPI peripheral has been configured to allow for code execution 
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directly from the SPI flash memory. At this point, the processor is running in PLL bypass mode and the CGU 

is not configured, hence the SPI code execution speed is not optimal. 

In general, an application loaded to the SPI flash memory for execution would have data and code sections 

that are required to be copied from the SPI flash memory to the internal SRAM space during the run-time 

initialization phase and prior to executing main(). These memory sections to be initialized and copied are 

all controlled by the project linker file. 

The example below highlights the linker command to perform this type of operation. For further details, 

please refer to the IAR C/C++ Compiler, Compiling and Linking Manual[5]. 

initialize by copy    {rw}; 

In order to minimize the boot time, the initialization time of the SRAM memory from the SPI flash content 

can be improved by optimizing all the system clocks prior to running the C-run-time for the main 

application. This will also improve the performance of code being executed from flash memory, as the cache 

line instruction fetches will be more efficient. 

Optimization and Initialization Operations  

The examples discussed apply the same optimizations and configuration, but use different methods. Each 

of the examples: 

 Configures the Oscillator Watchdog, 

 brings the processor out of PLL Bypass Mode, 

 optimizes the various system and core clock frequencies, 

 configures the SRAM memory partitioning, 

 initializes any newly added code or data sections for parity error detection, 

 optimizes the SPI interface and configures the flash memory for command skip mode, 

 enables posted-write functionality, and 

 enables the cache pre-fetch feature. 

The example software provided in the ADSP-CM40x Enablement Software Package[3] has been developed 

with minimal error handling support in order to keep the footprint small. The examples can be easily 

expanded depending upon requirements to provide more robust error handling mechanisms. 

Using Multiple Applications for Processor Optimization 

The example discussed in this section requires the development and maintenance of two individual projects. 

The ‘proc_init’ project is responsible for configuring and optimizing the processor, and the ‘blink’ project 

in this case is the main user application to be executed. 
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An IAR Embedded Workbench workspace file is located in the following folders of the enablement software 

package: 

 ‘Boot_Optimization_Multi_App\blink\CM403F\iar’ 

 ‘Boot_Optimization_Multi_App\blink\CM408F\iar’ 

Figure 1 shows the workspace containing the two projects. 

 

Figure 1. Multi-Application Workspace 

The following routines in the ‘proc_init’ project are copied to SRAM memory space for execution: 

 main() 

 init_cgu() 

 init_dpm() 

 init_spi() (and all additional SPI configuration routines) 

The following routine is configured to be located in and executed from flash memory space: 

 init_mem() 

The __ramfunc keyword is used to instruct the linker to execute code from SRAM space. There are different 

methods of implementing placement of functions and copying them from flash memory to SRAM space for 

execution. Pragma directives may be used to place the code in a specific section. That section can then be 

marked as initialize by copy in the linker file. 

The __ramfunc keyword provides additional information when compiling the code. Diagnostic warnings 

are provided indicating the possibility that a function declared using the keyword may be accessing data not 

located in SRAM space. There may be cases where statically initialized local variables result in a constant 

being located in the flash space. If a function, such as one that is required to reconfigure the SPI flash 

memory or perform an SPI program operation, executes and requires access to those constants located in 

the SPI flash memory to initialize the local data, then the code may fail. The SPI peripheral may not be 

configured for the required memory mapped read mode of operation. 
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Listing 1 shows the use of the __ramfunc keyword. 

__ramfunc void main() 

{ 

  uint32_t app_address = 0; 

  uint32_t dummy = 0; 

 

  /* Bring the PLL out of bypass mode */ 

  if(init_dpm() != INIT_DPM_RESULT_SUCCESS) 

  { 

    /* Call the error handler */ 

   … 

   … 

  } 

Listing 1. Using the __ramfunc Keyword 

The critical parts of the linker file showing the memory placement and the various section initialization 

requirements are shown in Listing 2. 

define symbol FLASH_SIZE            = 0x00001000; // 4 KB Erasable sector  

define symbol FLASH_BASE            = 0x18001000; // Memory mapped base address 

 

define region FLASH_region          = mem:[from FLASH_BASE size FLASH_SIZE]; 

 

// INITIALIZATIONS... 

do not initialize                   { section .noinit }; 

do not initialize                   { section .mainstackarea }; 

do not initialize                   { section .processstackarea }; 

 

initialize by copy                  { rw }; 

 

// flash code 

place in FLASH_region               { ro }; 

 

// SRAM Code (regular .text plus .textrw from "__ramfunc") 

place in RAM_code_region            { rw section .text, rw section .textrw}; 

 

// SRAM data 

place at end of RAM_data_region     { block CSTACK }; 

place in RAM_data_region            { rw, block HEAP }; 

Listing 2. Using the __ramfunc Keyword 

For this example, the application code and data must be mapped to the second erasable 4 KB sector in flash 

memory. The security header is placed at the beginning of the flash at location 0x18000000. The security 

header contains a bootAddress field that defines the default address to boot from or the location of the 

interrupt vector table when code is to be executed from flash. In this case, the bootAddress field is 

0x18001000, hence the interrupt vector table for the ‘proc_init’ project is placed at that location, and the 

code and data are then mapped thereafter. 
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A large portion of the implementation of the default startup.c file that is supplied with the examples 

included in the enablement software package has been removed in order to minimize the amount of software 

to be copied and executed during this phase of the boot process. 

The interrupt vector table for the boot ROM code has been left as the active vector table. The proc_init 

vector table only contains two entries, the stack pointer and the reset vector, which is the minimum required 

in order for the boot code to successfully transition to the application stored in flash memory. 

Once the hardware initialization has completed, the routine must vector to the next application. For this 

example, the next application has been mapped to SPI memory address 0x00010000, which correlates to 

the memory-mapped address 0x18010000 and is a non-occupied erasable block of flash memory. 

An example function responsible for transitioning to the next application is shown in Listing 3. This function 

takes a pointer to the application’s vector table, reads the stack pointer from the vector table, and sets the 

core main stack pointer before reading the reset vector and branching. Additional error checking may be 

implemented in order to check that the vector table is valid. 

inline void call_app(uint32_t address) 

{ 

  __ASM("ldr r1, [r0, #0]"); 

  __ASM("msr msp, r1"); 

  __ASM("ldr r1, [r0, #4]"); 

  __ASM volatile ("bx      r1"); 

} 

Listing 3. Example Transition Code between Applications 

The application to be executed after the processor initialization sequence is a simple blink program. In order 

to bulk up the application, some data sections are also included. This is simply intended to better highlight 

the advantages in the boot time when the application requires more data to be copied from SPI flash memory 

to SRAM internal memory space than the simple blink application provides. 

The linker file for the blink program is required to be modified so that the application does not get mapped 

to the same flash sector as the hardware initialization section, as shown in Listing 4. 

// 2048k FLASH 

define symbol FLASH_SIZE  = 0x001F0000; // 2M byte Flash, reduced by base offset                                

define symbol FLASH_BASE  = 0x18010000; // Internal stacked QSPI (SPI2) Flash 

Listing 4. Linker File Snippet for Blink Project 

The blink routine is placed at 0x18010000 in the flash, which is where it will then be executed from. The 

linker file is modified to offset the base location of flash memory in order to take into consideration the 

hardware initialization firmware located in the first block. 
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Using __low_lev_init() for Processor Optimization  

IAR Embedded Workbench run-time provides support for early initialization of hardware features prior to 

the rest of the run-time initialization, where a bulk of the data would be copied from flash memory to SRAM 

space. In order to make use of this feature, users can add a __low_level_init() function to their application, 

which can be used to configure the hardware. 

First, the application software that is required to execute from this function must be considered. Statically 

initialized variables that may need to be copied from flash memory to SRAM space cannot be used, as the 

routine is executed prior to the software that performs all the variable initialization. As previously described, 

a bulk of the software executed is to be copied from the flash memory to SRAM space and then executed. 

Once again, the routines that perform this task of copying the code from flash memory to SRAM space are 

not called until afterwards. 

For hardware initialization tasks that simply need to execute from flash memory early in the boot cycle, this 

is the ideal location for them. In order to execute code from SRAM space, however, some additional linker 

functionality is required. The linker in the previous multi-application case used the initialize by copy 

directive for instructing the linker to arrange the content for initialization by copying the section from flash 

memory to SRAM space. The linker also has an initialize manually directive. Sections declared with 

this directive will not be copied during the run-time process by the standard run-time software and must 

instead be copied manually with additional code. 

All routines to be executed from SRAM space are not only defined using the __ramfunc keyword, but they 

are also explicitly placed within a section using the location pragma, as shown in Listing 5. 

#pragma location = "hw_init" 

__ramfunc void main() 

{ 

  uint32_t app_address = 0; 

  uint32_t dummy = 0; 

 

  /* Bring the PLL out of bypass mode */ 

  if(init_dpm() != INIT_DPM_RESULT_SUCCESS) 

  { 

    /* Call the error handler */ 

  … 

} 

Listing 5. Using location Pragma to Place Routines 

An example implementation of the __low_level_init() function is shown in Listing 6. The implementation 

shows how all the data from flash memory can be manually copied to SRAM space in order to execute the 

code, all prior to the rest of the runtime initialization. The function is preceded with two pragma commands, 

which allow for dedicated section operators to be used to determine the source and destination locations and 

sizes of the sections to copy. 
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#pragma section = "hw_init" 

#pragma section = "hw_init_init" 

uint32_t __low_level_init() 

{ 

  char * from = __section_begin("hw_init_init"); 

  char * to = __section_begin("hw_init"); 

 

  for(uint32_t i = 0; i<__section_size("hw_init"); i++) 

    to[i] = from[i]; 

 

  proc_init(); 

  return 1; 

} 

Listing 6. Example __low_level_init() Function 

In addition to the code required to copy the data, adjustments to the linker file are also needed to perform 

this task, as depicted in Listing 7. 

// ICF FILE INITIALIZATIONS... 

do not initialize                   { section .noinit }; 

do not initialize                   { section .mainstackarea }; 

do not initialize                   { section .processstackarea }; 

initialize manually                 { section hw_init }; 

 

// SRAM Code (regular .text plus .textrw from "__ramfunc" and hw_init) 

place in RAM_code_region  { rw section .text, rw section .textrw, 

                            rw section hw_init}; 

Listing 7. Linker File Commands for Manual Initialization 

Two sections are required when initialize manually is used. The section name containing the data to 

be copied is appended with “_init”, and the section in which the data is to be copied to is the same as the 

section name used. In the previous example, if initialize manually were used for a section named 

“hw_init”, the data to be copied would be located in a section named “hw_init_init”, and the section it 

would be copied to would be named “hw_init”. 

Conclusion  

The two methods of initializing the system hardware early in the boot phase can significantly reduce the 

bring-up time of the processor. In order to highlight the benefits, a simple benchmark was taken in which 

the blink application initialized the system hardware after entry to the main() routine. The application was 

run on an ADSP-CM408F EZ-KIT® evaluation platform. The software for each of the examples was 

compiled using the same compilation settings. 

The time measured was from the de-assertion of the SYS_RESOUTb signal to the first toggling edge of the 

GPIO (toggled at the beginning of the main) on the ADSP-CM408F EZ-KIT platform. The boot ROM code 

de-asserts the SYS_RESOUTb signal once the initial pre-boot phase has completed and prior to executing the 

actual boot mode code. 
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Table 1 below shows the results when initializing the system hardware from main() as opposed to using the 

multi-application and __low_level_init() implementations for CCLK of 240 MHz and SCLK of 96MHz. 

Hardware Initialization Method Bring up time 

Initialize from main() 21.11 ms 

Multi Application 1.277 ms 

__low_level_init() 1.594 ms 

Table 1. Boot Time Benchmarks 

The most efficient method was to use multiple applications, but this was very closely followed by the 

__low_level_init() implementation. The __low_level_init() implementation was slightly slower, as the 

initial startup for that application copied the entire interrupt vector table from flash memory to SRAM space 

prior to optimizing the system hardware. The system startup could be rearranged to further optimize this 

process, however the benefits would be minimal. The multi-application implementation initially only copied 

two entries of the vector table before then optimizing the hardware. The benefits of implementing such 

techniques become more significant as the application requirements grow and the amount of data to be 

copied from flash memory to SRAM space increases. 

Developers who are looking to implement In Application Programming (IAP) that can be stored in the initial 

boot sector of the flash may wish to adopt the __low_level_init() functionality for the IAP to minimize the 

number of firmware images that are required to be maintained, leaving only the IAP and the end application. 

The IAP will always be executed first, optimizing the hardware configuration before then deciding whether 

a firmware update is being requested. If no firmware update is required, the IAP can then use the techniques 

highlighted in the multi-application method to vector to the main application. 

Firmware update software is often required to be copied to internal SRAM memory before being executed, 

allowing for dynamic updates to flash content. The techniques highlighted for copying and initializing 

regions of memory both prior to and during the runtime allow for IAPs to be executed initially and with low 

impact to the main application’s bring-up time (in the event a firmware update is not required).
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