
Engineer-to-Engineer Note EE-407

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor
Contributed by Yi, Gabby Rev 1 – November 29, 2018

Copyright 2018, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
U-Boot is a secondary boot loader that is typically used to boot Linux images. However, this EE-Note
describes how to use U-Boot to boot binary LDR boot stream files. The LDR boot streams can be single-
core boot streams that boot onto the ARM core or multi-core boot streams that boot onto both the ARM
core and the SHARC+® DSP cores of the ADSP-SC589 processor. U-Boot features include support for
Ethernet, mobile storage interface, FAT file system, and GPIO. These features facilitate a path toward this
objective.

This EE-Note demonstrates:

• The steps used to modify U-Boot
• How to selectively boot one of multiple LDR files stored on an SD card
• How to boot an LDR file over Ethernet.

In the two booting examples, from SD card and over Ethernet, the LDR files are transferred from the source
into external DDR memory and then the LDR boot stream is parsed and booted.

Modifying U-Boot
To modify the bootloader, complete the following steps:

1. Obtain the U-Boot Source Code.
2. Create Command to Parse LDR Boot Stream.
3. Use GPIOs to Select Boot Stream.
4. Update GPIO Command.

Obtain the U-Boot Source Code
The U-Boot source code is available as part of the Linux Add-in for the ADSP-SC5xx processor. The Linux
Add-in can be downloaded from the Analog Devices website.

Follow the instructions outlined in the Linux Add-in for CrossCore® Embedded Studio[1] to set up the tools
and sources so that U-Boot code can be compiled. The instructions are found in the section Configure and
build from source code. The makefile configuration depends on the development board being used.

http://www.analog.com/processors

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor (EE-407) Page 2 of 6

Create Command to Parse LDR Boot Stream
Once the source code is configured to be updated, a boot kernel can be developed that can process the boot
stream stored in memory. The LDR boot stream is basically a series of headers and payload data. Following
the description and details found in the Boot ROM and Booting the Processor section of the ADSP-
SC58x/ADSP-2158x SHARC+ Processor Hardware Reference[2], a command, bootldr, was created to
parse the boot stream. The command takes in one input: the memory address where the boot stream is
stored.

The source code is found in the file cmd_bootldr.c that is included in the zip file associated with this EE-
Note [3].

The boot stream parser is simple and does not process all the possible flags and commands that the boot
stream format supports. Since this is only a proof of concept demonstration, enhancements are left up to
the reader.

Information on creating custom commands can be found in U-Boot programming: A tutorial – Part II[4].

 This parser assumes a binary LDR file.

Debugging bootldr Command
If the bootldr command must be debugged, uncomment the macro COMPILED_IN_LDR_DEBUG and comment
out READ_LDR_FROM_MEMORY. The boot stream stored in bs_arm.c will be compiled into the U-Boot code
with the command. It contains a buffer which is byte data of a boot stream of a program that blinks the
LEDs on the SHARC+ Audio Module development board.

Use GPIO Pins to Select Boot Stream
On the SHARC+ Audio Module development board, there are two push buttons. Their corresponding GPIO
pins are PF_00 and PF_01 which translate to GPIO numbers 80 and 81, respectively.

For this demonstration, the push buttons determine which one of the boot streams stored on an SD card is
loaded.

Update GPIO Command

In U-Boot, there is a gpio command utility to set, clear and read the state of a given GPIO pin. When used
to read the state of a GPIO pin, the status is displayed on the console. Unfortunately, the console output
cannot be piped or redirected. So, to use the status of a GPIO pin, modifications were made to the existing
cmd_gpio.c file to set the status of a GPIO pin in an environment variable.

…
do{
 char pinenvvar[64];
 sprintf(pinenvvar, "pin%d", gpio);

 setenv_ulong(pinenvvar, value);
}while(0);

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor (EE-407) Page 3 of 6

Listing 1: Setting GPIO Status into Environment Variable

Listing 1 shows the snippet of code that sets an environment variable in the U-Boot code with the status of
the pin. It declares a buffer pinenvvar to hold the string of an environment variable name. It is then post-
fixed with the GPIO number. Finally, the value of the GPIO is set into the environment variable using
setenv_ulong(). With the status of the GPIO/push button in an environment variable, it can be used to
direct which LDR file is chosen to be booted.

Booting from SD Card
U-Boot also supports the FAT file system. Once U-Boot is compiled and programmed into flash memory,
the user no longer depends on a Linux host machine.

Prepare the SD Card
The user can use CrossCore Embedded Studio on a Windows host machine to develop applications and
generate LDR files and then copy the files directly to a FAT-formatted SD card.

U-Boot Scripting
After the state of the push button is saved to an environment variable, additional environment variables are
executed using the run command.

bootfromsd=run selectbootfile; fatload mmc 0:1 ${loadaddr} ${bf}; bootldr
${loadaddr}

Listing 2: Environment variable to boot from SD card

Listing 2 shows the environment variable bootfromsd that boots a file from the SD card. First, it runs
another environment variable, selectbootfile. This environment variable determines which LDR boot
stream file is chosen based on how the push buttons are pushed. The resulting filename is stored in the
environment variable bf (bootstream file). The command fatload is used to read a file from a FAT file
system on the SD card and store it at the address specified in the loadaddr environment variable. Once the
file is transferred to memory, the bootldr command (the simple boot loader) is executed, taking in the
address of where the boot stream file is stored in memory.

selectbootfile=run pb_pressed; if test ${pin80} = 0 -a ${pin81} = 0; then set bf
${f1}; elif test ${pin80} = 1 -a ${pin81} = 1; then set bf ${f4}; elif test
${pin80} = 1; then set bf ${f2};elif test ${pin81} = 1; then set bf ${f3}; fi
pb_pressed=gpio input 80; gpio input 81

f1=blinksam_core0.ldr
f2=turnonledssam_core0.ldr
f3=blinksamall_core0.ldr
f4=sam_baremetal_framework_core2.ldr

Listing 3: Environment variables to select boot stream file

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor (EE-407) Page 4 of 6

In Listing 3, the environment variables are used to select the boot stream file. Assuming the filenames are
known, they can be saved into environment variables. In this example, three different blinking routines are
stored in environment variables f1, f2 and f3, while f4 holds the filename of an audio talk-through program
boot stream.

The selectbootfile environment variable first determines which push buttons were pressed. This
operation is done by running another environment variable, pb_pressed, which uses the gpio command.
On the SHARC+ Audio Module as well as the ADSP-SC589 EZ-Board®, the two push buttons are mapped
to GPIO 80 and 81. Since the gpio command had been modified, the status is stored in the environment
variables pin80 and pin81. If the push button for GPIO 80 is pressed down during the call to the gpio
command, then variable pin80 is set to 1; otherwise, it is set to 0. The same applies to GPIO 81.

After the status of the push buttons is obtained and stored in environment variables, a test can be applied
using the if-elif-else-then syntax understood by U-Boot to determine which file is selected and to set
the filename into bf. In this case, bf is set to the first file, f1, if both pin80 and pin81 are both 0. If they
are both 1, bf is set to the filename held in f4. Or, bf is set to the second file, f2, if pin80 is 1, and pin81
is set to 0. Finally, if pin80 is set to 0 and pin81 is set to 1, bf is set to the filename stored in f4.
More information on U-Boot tests and scripting can be found on the U-Boot scripts wiki page[4].

The environment variables can be set at the U-Boot command line and saved to flash memory. Or, the user
can program the variables into the U-Boot source code and compile them. In this demonstration, the
environment variables were manually set at the U-Boot command line.

Booting From Host
U-Boot provides Ethernet support. Not only can a boot stream be selected and booted from an SD Card, the
same can be applied to an LDR boot stream file sitting on a host PC. Following the instructions from the
Linux Add-in guide, an Ethernet connection can be set up to communicate between the board and a host
computer, and a TFTP server can be set up on a host computer.

bootfromhost=tftpboot ${loadaddr} ${serverip}:${bf}; bootldr ${loadaddr}

Listing 4: Environment variable to boot LDR file from host machine

Listing 4 shows the environment variable that can be used to boot an LDR file from the host machine. The
command tftpboot is used to transfer the file whose filename is stored in the bf environment variable from
the host using TFTP into a memory location specified in the loadaddr environment variable. In this
example, the IP addresses were set up so that the board uses IP address 192.168.1.9 while the host computer
used IP address 192.168.1.10, which is stored in serverip. Once in memory, the bootldr command is
called to boot the boot stream data from the memory location.

This configuration allows remote debugging and testing of different versions of an application. The user
just updates the LDR boot stream file on the host computer. U-Boot can be configured to automatically
fetch the file from the host via TFTP and boot it.

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor (EE-407) Page 5 of 6

Other Use Cases

Booting Different LDR Boot Streams in Flash
Due to hardware restrictions, the primary boot kernel is unable to selectively boot from a flash location
other than the flash base address. This option allows various boot streams to be stored in different flash
memory locations with the capability of selectively booting any of them.

Memory Usage and Constraints
There are a few things to consider when implementing the second stage loader. Both U-Boot and the boot
stream reside in memory during the second stage boot.

By default, when configuring and building U-Boot for the SHARC+ Audio Module (target sc589-
mini_defconfig), it is mapped to the higher end of the second DDR memory interfaced to the ADSP-
SC589 processor at address 0xC2200000. The loadaddr used in the example is set to 0xC2000000.

The application to be booted should avoid this upper range of DDR1 memory so that the U-Boot or boot
stream do not get overwritten while booting. Also, the DDR initialization occurs as part of the U-Boot
booting procedure. Therefore, do not include an init file to initialize the DDR in the generation of the LDR
file in CCES. Note that the user can still change how U-Boot is linked and where the boot stream is stored,
as needed.

Associated ZIP Files
The accompanying files provide the modifications to U-Boot and the example projects with the LDR boot
stream files. The example presented here can be recreated by programming the flash with one of the U-
Boot LDR files, depending on which board is used. The example application LDR files can be copied over
to a FAT-formatted SD card. At a U-Boot command prompt, set the environment variables f1 to f4, to the
file names of the LDR files on the SD card. A directory listing can be shown by using the command fatls
mmc 0:1. Finally, execute the saveenv command to save the updated environment variables to flash
memory. The next time U-Boot starts, execute the run bootfromsd command while pressing down on the
push buttons (or not). From the combination of the state of the push buttons, one of the four LDR files on
the SD card will be booted.

To make further modifications to U-Boot, download the full source code attached to the Linux Add-in and
apply the patch in the ZIP file to the sources. Refer to the readme file in the associated ZIP file for more
information.

Conclusion
This EE-Note demonstrates how U-Boot can be modified and used as a second stage loader to boot different
LDR boot stream files from multiple sources (SD card and remote host). Using this approach, U-Boot can
also boot LDR boot streams from different memory locations in external flash storage.

U-Boot was modified to add a command to process an LDR boot stream from a memory location. U-Boot
was also modified so the gpio command saves the status output to environment variables. Finally, scripts
were written to choose a file based on the status of push buttons, transfer the file into memory and boot it

Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor (EE-407) Page 6 of 6

References
[1] Linux Add-in for CrossCore® Embedded Studio.Version 1.2.0, August 2017. Analog Devices, Inc.

[2] ADSP-SC58x/ADSP-2158x SHARC+® Processor Hardware Reference. Rev 1.0, September 2017. Analog Devices, Inc.

[3] Associated ZIP File for Using U-Boot for LDR Boot Streams on the ADSP-SC589 Processor. Rev 1, November 2018.
Analog Devices, Inc.

[4] U-Boot programming: A tutorial – Part II (http://xillybus.com/tutorials/uboot-hacking-howto-2) Xillybus.

[5] U-Boot Scripts (http://www.compulab.co.il/ utilite-computer/wiki/index.php/U-Boot_Scripts).

Readings
[6] The DENX U-Boot and Linux Guide (DULG) for canyonlands (https://www.denx.de/wiki/DULG/Manual)

Document History

Revision Description

Rev 1 – November 16, 2018
by G Yi

Initial Draft

http://xillybus.com/tutorials/uboot-hacking-howto-2
https://www.denx.de/wiki/DULG/Manual

	Introduction
	Modifying U-Boot
	Obtain the U-Boot Source Code
	Create Command to Parse LDR Boot Stream
	Debugging bootldr Command

	Use GPIO Pins to Select Boot Stream
	Update GPIO Command

	Booting from SD Card
	Prepare the SD Card
	U-Boot Scripting

	Booting From Host
	Other Use Cases
	Booting Different LDR Boot Streams in Flash

	Memory Usage and Constraints
	Associated ZIP Files
	Conclusion
	References
	Readings
	Document History

