
Reprinted from COTS Journal December 2003

SHARC Bites Back
Special Feature

Part II: Continuous
Real-Time Signal Processing—
Comparing TigerSHARC and PowerPC
Via Continuous cFFTs

Jeffry Milrod, President, BittWare
Chuck Millet, TigerSHARC Product
Manager, Analog Devices

Continuous, measured benchmarks provide the only real insight into real-
world DSP performance. An analysis using continuous cFFTs sheds light on
the real performance differences between TigerSHARC and PowerPC.

Although often quoted, peak
performance benchmarks are
misleading when used to

depict DSP performance. Any real-
world view into DSP performance
should center on sustained or con-
tinuous, algorithm performance.
Part I of this article series illustrated
that fact. It also proposed the con-
tinuous 1024-point cFFT algorithm
as an excellent indicator of real-
world performance. The Analog
Devices TigerSHARC (ADSP-
TS101) and the Motorola G4
PowerPC with Altivec (MPC7410
and MPC7455) processors were
compared along those lines, with
predictions made for their perfor-
mance.

Here, that analysis is taken a step
further. BittWare engineers took con-
tinuous 1024-point cFFT algorithm
benchmarks and coded, optimized
and measured them on the ADSP-
TS101 at 250 MHz and on the
MPC7410 at 400 MHz. Unlike some
other “system-level” benchmarks,
these implementations of the contin-
uous cFFT benchmarks took advan-
tage of all the features of each proces-
sor that could improve perfor-
mance—since this approach is more
like what would be implemented by
an engineer designing a real system.
The results are reported in detail,
along with extrapolations for other
variants and speeds, as well as board-
level implications.

TigerSHARC Implementation
The continuous cFFT algorithm

was implemented on a BittWare
Tiger-PCI board (TSPC) that fea-
tures a cluster of four ADSP-TS101
TigerSHARCs running at 250 MHz.
The benchmark code was written in
C and was developed using Analog
Devices’ VisualDSP++.

Part I of the article series pre-
dicted that running continuous
cFFTs on the TigerSHARC would be
processor-limited, implying that the
continuous benchmark performance
would be driven by the performance
of the cFFT algorithm itself. That
drove the engineers to choose a high-
ly optimized cFFT routine for the
benchmark. With that in mind, the

From the Editor’s Files:

This is the 2nd in a series of articles that
explores the complex processor tradeoffs and
evaluations required to choose the most
effective processor for continuous real-time
signal processing applications as typified by
the 1024-point complex Fast Fourier
Transform (cFFT). Part I appeared
in the December 2002 issue of
COTS Journal, and is available
on www.cotsjournalonline.com.

SHARC Bites Back
Special Feature

Reprinted from COTS Journal December 2003

benchmark implementation calls the
1024-point cFFT function from the
EZ-DSP TSlibs function library, which
is handcrafted and fully optimized in
assembly language.

The link ports on the
TigerSHARC were the obvious way to
move data on and off the processor. As
Figure 1 shows, a single TigerSHARC
was used to continuously perform
cFFTs. Two additional TigerSHARCs
were used as test instrumentation to
generate the input data and receive the
results via link ports. Those link ports
could also be used to move data
from/to other I/O devices such as
FPGAs—using the other
TigerSHARCs on the TSPC board was
simply a convenience.

Since the TigerSHARC can sup-
port I/O DMAs to and from internal
memory in background, dual input
and output buffers were used to
implement a ping-pong scheme
(Figure 2). Using this ping-pong
scheme, the internal memory of the
TigerSHARC must hold the bench-
mark code, as well as dual input and
output buffers. It was verified that
how the buffers are placed in memory
could dramatically impact the bench-
mark performance. As shown in
Figure 3, the TigerSHARC’s internal
memory consists of three banks of 2
Mbits each.

PowerPC Implementation
Turning to the PowerPC bench-

mark analysis, the continuous cFFT
algorithm was implemented on a
Motorola PrPMC800 PMC that has a
single MPC7410 running at 400 MHz
with a 100 MHz front-side bus; the
PMC board was placed on a PCI carri-
er card for ease of use. The benchmark
code was written in C and assembly,
and was compiled using the GNU C
compiler version 2.96; it was loaded
on to the board using the PPCBUG
monitor via a serial port.

The link ports on the TigerSHARC provide a useful way to move data on and off the
processor. A single TigerSHARC (DSP0) was used to continuously perform cFFTs.
Two additional TigerSHARCs were used as test instrumentation to generate the input
data (DSP3) and receive the results (DSP1) via link ports.

Figure 1

Performs
Continuous cFFTs

DSP0

TigerSHARC

DSP2

TigerSHARC

SDRAM

SharcFIN
Bridge/Interface

Chip

Receives cFFT
results from DSPO

DSP1

TigerSHARC

Creates & writes
input data to DSPO

DSP3

TigerSHARC

64-bit, 66 MHzPCI

Link Port @ 250 MB/sec

Link Port @ 250 MB/sec

C
lu

st
er

 B
us

Compared here are TigerSHARC and PowerPC specs and the predictions made for
the performance of the continuous 1024-point cFFT implementation on the
TigerSHARC and the PowerPC.

Table 1

TigerSHARC PowerPC PowerPC

ADSP-TS101S MPC7410 MPC7455
250 MHz 500 MHz 1,000 MHz

1,500 MFLOPS 4,000 MFLOPS 8,000 MFLOPS

64-bit/100 MHz 64-bit/125 MHz 64-bit/133 MHz

4@250 MB/Sec None None

1,800 MB/Sec 1,000 MB/Sec 1,064 MB/sec

1.20 Bytes/FLOP 0.25 Bytes/FLOP 0.13 Bytes/FLOP

39 µsec 22 µsec 13 µsec (est.)

9,750 cycles 11,000 cycles 13,000 cycles

25,641 per Sec 26,053* per Sec 64,941* per Sec

Parameter
Core Clock

Peak Floating-pt Performance

Memory Bus Size/Speed

External Link Ports

I/O Bandwidth (inc. memory)

Bandwidth-to-Processing Ratio

1024-pt cFFT Benchmark

Approx Cycles for 1024-pt cFFT

Predicted 1024-pt cFFTs/chip

* Assumes 100% of peak I/O used for continuous cFFTs, and neglects cache & data movement over-
heads due to inability to predict – real-world performance could be much less.

Processor Specifications and Performance Predictions from Part I

SHARC Bites Back
Special Feature

Reprinted from COTS Journal December 2003

Part I of this article series predict-
ed that running continuous cFFTs on
the G4 PowerPC with AltiVec would
be bandwidth-limited. That implies
that continuous benchmark perfor-
mance is limited by I/O, not by the
performance of the cFFT algorithm
itself. That means that the optimiza-
tion of the cFFT routine used for the
benchmark is not critical since it does
not drive the performance. A public
domain 1024-point cFFT algorithm
implementation was used that offered
good, but not stellar performance.

As with most PowerPC boards,
the primary mechanism for data
movement on the PrPMC800 is
through the external node controller
and PCI bridge. The PrPMC800 uses
Motorola’s Harrier chip that features a
64-bit, 66 MHz PCI interface, as
shown in Figure 4. Since the cFFT
algorithm operates “in-place”—the
input data buffer is overwritten with
the results—only two buffers are
required to implement a ping-pong
scheme. These buffers were placed in
the main memory.

While a cFFT was performed on
buffer A, data output from the previ-
ous cFFT calculation is written out via
a DMA from buffer B to the PCI bus;
data for the next cFFT calculation is
then read in via a DMA from the PCI
back into buffer B. As with the
TigerSHARC implementation, the
buffers simply switch when the whole
process is complete. The two DMAs
were combined using a chained DMA,
which allows a sequence of DMA
operations to be combined into a sin-
gle operation using a linked list of
DMA descriptors.

Most programmers use an oper-
ating system when programming the
PowerPC due to the complexity and
difficulty of creating stand-alone pro-
grams. Since the overhead of an oper-
ating system could reduce the bench-
mark performance, the engineers

For the TigerSHARC benchmark analysis dual input and output buffers were used to
implement a ping-pong scheme. While the cFFT routine is processing data from input
buffer A and writing the results to output buffer A, the DMA engines are doing two things:
moving the data for the next cFFT into input buffer B from a link port while the results from
the previous cFFT are being written out the other link port from output buffer B. After the
cFFTs and both DMAs complete, the ping-pong buffers are swapped; the cFFT now
processes out of/into buffer B while the DMAs operate on buffer A.

Figure 2

Output Buffer A
Results of cFFT n

Output Buffer B
Results of cFFT n-1

Input Buffer A
Data of cFFT n

1024-pt cFFT
Algorithm

Input Buffer B
Data of cFFT n+1

Link Port DMA out

Link Port DMA in Link Port DMA in

Link Port DMA out

With an internal memory consisting of three banks of 2 Mbits each, there was ample
room on the TigerSHARC to implement the buffers used in the benchmark analysis.
Bank 1 is used for the program code—with plenty of room to spare. Even though both
data buffers would easily fit into a single bank, it was found that for optimal performance
each input/output buffer set needed to be placed in a separate bank—buffers A placed
in Bank 2, and buffers B placed in Bank 3.

Figure 3

Sequencer
128-entry

BTB

128 b
128 b

128 b

Link Ports

C
lu

st
er

 B
us

J ALU

J-RF

0

31

K ALU

K-RF

0

31

Comp Block

M0
2 Mb

M1
2 Mb

M2
2 Mb

Y
R
F

ALU

Mult

Shift

0

31

Comp Block
X

R
F

ALU

Mult

Shift

0

31

External
Port

DMA
Peripherals

SHARC Bites Back
Special Feature

Reprinted from COTS Journal December 2003

memory is not necessarily the same
data that the processor sees when it
attempts to access the data. That’s
because the PowerPC will look to the
copy of data that is stored in cache
rather than the copy that is in memory.

One way to eliminate this problem
is to enable “snooping”, which causes
the hardware to keep the contents of
cache and main memory coherent. But
because snooping can severely hinder
performance, the cache was managed
manually by “invalidating” the address
range containing the data received via
DMA. An “invalidate” operation forces
the cache to reload the data in the
invalidated address range from memo-
ry the next time it is accessed, causing
the data in cache to be consistent with
the data in memory.

Likewise, when the cFFT writes its
results into an output buffer, this
buffer is located in cache rather than in
memory. It must then be “flushed”
from cache to memory before a DMA
is performed; otherwise the DMA
engine will move stale data located in
memory rather than the results of the
calculations that are stored in cache.

Results Compared
A comparison of the processors’

specs and the predictions made for the
performance of the continuous 1024-
point cFFT implementation on the
TigerSHARC and the PowerPC are
shown in Table 1. Table 2 shows the
actual results of the benchmarks tests.
While neither processor did as well as
predicted, the TigerSHARC dramati-
cally outperformed the PowerPC.

Further examination of the
TigerSHARC results and implementa-
tions revealed that the prediction made
in Part I neglected to allow for any
DMA management overhead. Setting
up the link port DMAs, handling the
DMA-done interrupts and checking
for DMA completion adds an over-
head of approximately 10% that

configured the PowerPC manually,
including managing the cache, MMU
and DMA engine on the external node
controller.

Bandwidth Limited
Because the PowerPC is band-

width-limited and uses cache to speed
access to data, cache management was
considered critical in the algorithm

implementation. The cache is not
addressable memory, but merely a fast
buffer holding a copy of portions of the
memory and is controlled by the cache
manager. Once a memory address
range—in this case, an I/O buffer—is
accessed by the processor, it was
“cached” for quicker subsequent
accesses. As a consequence, input data
that is read in from the PCI bus into

The PrPMC800, a Motorola Processor PMC board, provided the platform for the
PowerPC benchmark analysis. The card’s primary mechanism for data movement is
via the external node controller and PCI bridge. Since the cFFT algorithm operates
“in-place”, only two buffers are required to implement a ping-pong scheme. These
buffers were placed in the main memory.

Figure 4

L2 Cache

Main Memory
(ECC SDRAM)

Harrier
Controller/Bridge

Chip

MPC7410

64-bit, 66 MHzPCI

64-bit @ 100 MHz

64-bit @ 200 MHz

Shown here are actual results of the benchmarks tests. While neither processor did as
well as predicted, the TigerSHARC dramatically outperformed the PowerPC.

Table 2

TigerSHARC PowerPC
ADSP-TS101S MPC7410

250 MHz 400 MHz

22,923 per sec 7,899 per sec

Parameter
Core Clock

Actual 1024-pt cFFTs/chip

Results of Continuous 1024-pt cFFT Benchmark Implementation

SHARC Bites Back
Special Feature

Reprinted from COTS Journal December 2003

accounts for the performance differ-
ence. For the sake of convenience the
DMA management code was written in
straightforward C, and since the
improvement of the overall benchmark
would be small (10% at best), no
attempt was made to minimize this
overhead. The results reveal that the
PowerPC’s overhead is much more sig-
nificant. Although the benchmark tests
were only performed on a 400 MHz
processor, the results are approximately
a factor of three less than predicted.

To ensure accurate and optimized
results, several variants of the full
benchmark implementation were run
on the PowerPC. As expected, with the
cache disabled, performance decreased
by about an order of magnitude.
Benchmarks were also run with the
cFFT disabled, and it was discovered
that just moving the data in and out, as
well as managing the cache and MMU,
resulted in no performance improve-
ment. The upshot is that even if a con-
siderably faster cFFT algorithm were
used, there would be no performance
improvement of the continuous cFFT
benchmark. Along similar lines, elimi-
nating the chained DMAs and forcing
all data movement over PCI to be writes,
could possibly result in a small, but rela-
tively insignificant improvement.

Operating System Impact
One complication is the possible

impact of an operating system to man-
age the cache and MMU. It is assumed
that the overhead would be increased;
however, this may be a false assump-
tion—it’s possible that commercial
operating systems could provide an
improvement over this manual imple-
mentation, but it seems unlikely due to
the inefficiencies and cache overhead
associated with the OS services and
context switches.

Arguments could be made that
this benchmark implementation on
the PowerPC is not truly indicative of

Board level performance is projected to simply be the number of continuous cFFTs per
processor multiplied by the number of processors per board. It was originally projected
that an Octal TigerSHARC board with an 250 MHz ADSP-TS101S could perform three
times as many continuous cFFTs as a quad 500 MHz PowerPC MPC7410 board. The
results of this study indicate that the TigerSHARC board will actually outperform the
PowerPC board by more than seven times, and that the new TigerSHARC (ADSP-
TS201S) will outperform the PowerPC boards by a factor of 15.

Table 3

TigerSHARC TigerSHARC PowerPC

ADSP-TS101S ADSP-TS201S MPC7410
250 MHz 500 MHz 500 MHz

8 8 4

12 GFLOPS 24 GFLOPS 16 GFLOPS

64-bit/83.3 MHz 64-bit/100 MHz 64-bit/100 MHz

2 PMC + 16 Links 2 PMC + 16 Links 2 PMCs

5,056 MB/Sec 9,056 MB/Sec 1,056 MB/Sec

0.42 Bytes/FLOP 0.38 Bytes/FLOP 0.07 Bytes/FLOP

180,000* per Sec 360,000* per Sec 24,000* per Sec

Parameter
Core Clock

Typical # Processors/Board

Peak FLOPS/Board

Memory Bus Size/Speed

Typical Off-board I/O

Peak Off-board I/O (not backplane)

Bandwidth-to-Processing Ratio

Projected 1024-pt cFFT/Board

* Estimated based on previous results

Board-level Implications and Extrapolations

the real-time signal processing capa-
bilities of the PowerPC. But the con-
clusions of the benchmark analysis
suggest that the TigerSHARC is far
superior at processing continuous
cFFTs and is, therefore, a better real-
time signal processor.

As discussed in Part I of this article
series, multi-processor COTS boards are
readily available with TigerSHARCs and
PowerPCs. The original board-level pre-
dictions accounted for the I/O band-
width scalability of the TigerSHARC,
and further bandwidth limits imposed
for the PowerPC boards. However, the
reduced processor benchmark perfor-
mance of the PowerPC indicates that
the boards should no longer further
limit the I/O required to keep all the
PowerPCs fed when running continu-
ous cFFTs. As shown in Table 3, the
board level performance is projected to
simply be the number of continuous
cFFTs per processor multiplied by the
number of processors per board.

Original Conclusions Supported
The benchmark implementa-

tions and testing supported the con-
clusions from Part I that the
TigerSHARC is a superior real-time
signal processor. In fact, the results
make them even more emphatic. In
summary, the PowerPC is more suited
for applications that require a lot of
number crunching with little data
movement, typical of so-called back-
end data processing. For continuous
real-time signal processing such as
imaging, radar, sonar, SIGINT and
other applications that require high
data flow or throughput, however, the
TigerSHARC can dramatically out-
perform the PowerPC.

BittWare
Concord, NH.
(603)226-0404.
[www.bittware.com].

Reprinted from COTS Journal December 2003

