Engineer To Engineer Note

EE-167

ANALOG

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com

DEVICES Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Introduction to Tiger SHARC® M ultiprocessor Systems Using VisualDSP++™

Contributed by Maikel Kokaly-Bannourah

I ntroduction

The following Engineer-to-Engineer note
is intended to give an introduction to
Multiprocessor (MP) systems using
Visual DSP++™, The explanation will be based
on assembly code written for the ADDS-TS101S
EZ-Kit Lite, consisting of two TigerSHARC®
Processors, using Visua DSP++™ 3.0.

TigerSHARC® Multiprocessor systems can be
configured in different ways:

* Several processors sharing the external bus
* Link Port point-to-point communication

This note will discuss the implementation of an
MP system with the processors sharing the
external bus. For more details on other
implementations please refer to the
Tiger SHARC® Processor Hardwar e Reference.

In addition to the assembly code explored
throughout this note, an MP code example
writtenin Cisalso available.

Linker Description File (LDF) for
MP Systems

The very first step in setting up an MP
system is to create a multiprocessor project using

the multiprocessing capabilities of the linker, and
an LDF file to describe the system.

The LDF describes the multiprocessor memory
offsets, shared memory, and each processor’'s

April 04, 2003

memory. The following LDF commands must be
considered when writing an MP LDF:

« MPMEMORY({}, it defines each processor’'s
offset within multi-processor memory space
(MMS). The linker uses the offsets during
multiprocessor linking.

« MEMORY({}, it defines memory for all
processors present in the system.

* PROCESSOR{} and SECTIONS{} commands
define each processor and place program sections
for each processor's output file, using the
memory definitions.

« SHARED_MEMORY({}, it is needed when
external shared memory is used in the system.

This command identifies the output for the
shared memory items and generates Shared
Memory executable files (.SM) that reside in the
shared memory of the MP system.

The .SM file is generated from a source code file
(\ASM, .C or .CPP), which must be included
with the project files. This file contains the
variable definitions for the data that will be
placed in the external shared memory.

* LINK_AGAINSTY(), it resolves symbols within
multiprocessor memory and directs the linker to
check specified executables ((DXEs and .SMs) to
resolve variables and labels that have not been
resolved locally. Whenever expressions or
variables are defined in the MMS (i.e. internal
memory of another processor in the system) the
LINK_AGAINST() command must be used in
the LDF.

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Note: if .SM files and DXE files are included in
the command line, the .9V file must be placed
first, followed by all other DXE’s, for the linker
to be able to resolve the variables correctly.

The maximum number of processors that can be
declared in one LDF is architecture-specific (i.e.
maximum of 8 ADSP-TS101S's). Also note that

> ANALOG
DEVICES

a combination of different DSPs with different
architectures (i.e. ADSP-TS101S and ADSP-
21160) in the same LDF is not supported by
Visua DSP++.

MEMORY

{ IDo { START(OxZ000000) 3
IDl { START(OxZ400000) 3

}

SHARED MEMORTY

i OUTPUT ([2hared. =m)
SECTIONS
i EXT_mem

{

} >SDRAM
H

}
PROCESS0OR IDO

OUTTPUT (IDO. dxe)
SECTIONS
i code

FILL (Oxb3cOOO00)
INPUT SECTION ALIGH(<)

1 FMOCode
[---1
}

i
PROCESSOR IDL

OUTPUT (ID1. dxe)
SECTIONS
i code
{
FILL (Oxb3IcO0O000)
INPUT_SECTION ALIGH(4)

1 =MOCode
[---1

H

{ MOCode { TYPE (RAM) START (0x00000000) END (0x0000FFFF) WIDTH(IZ) }
MlData { TYPE (RAM) START(0x00080000) END (0x000SFFFF) WIDTH(IZ) }
[---1

+

MPMEMORY

S Declare Maltiprocessor Memory Space [(HMM3)
A4 offset walues for processors IDO and IDL

SiDeclare external shared memory

INPUT SECTIONS(data.dojiext data))

A4 Processzsor IDO sections definition.
) LINE AGATMNST (shared.sm, ID1l.dxe)

INPUT SECTIONS(IDO.doj(program))

S¢ Processor ID] sections definition.
i LINE AGATHNIT (shared.sm, IDO.dxe)

INFUT SECTIONS({ ID1.dod(program))

Figure 1Excerpt from and MP LDF example

An MP LDF example where al the above
commands are used is shown in Figure 1. The
remaining of the LDF file is basically the same
as the default one provided with the tools
(please refer to the “Linker and Utilities
Manual for TigerSHARC® DSPs’ or to “EE-69
Understanding and Using Linker Description
Files (LDFs)” for a general description on LDF
files).

In Figure 1, a 2 ADSP-TS101S and external
shared memory system is defined

Now that the different sections of the LDF have
been discussed, we can examine the example
code that explores some of the MP capabilities
of the processor.

For MP system hardware configuration please
refer to Cluster Bus chapter of the
Tiger SHARC® Processor Hardware Reference.

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 2 of 12

Multiprocessor
(MMYS)

The multiprocessor memory space is
divided into a number of address regions (this
number is processor specific) that correspond to
the internal memory of the processorsin an MP
system. The ADSP-TS101S's multiprocessor
memory space appearsin Figure 2.

Memory Space

9x04000000
ProcessoriD 7 | 4x03C00000
ProcessoriD 8 | .03800000
ProcessoriDS | 4403400000
ProcessoriD4 | 4 43000000
ProcessorID3 | 5.02c00000
ProcessoriD2 | o 49800000
Processor ID 1 0x02400000
ProcessoriD 0 | o 12000000
Broadcast | ,01c00000
RESERVED

rE——— 0x003FFFFF

0x00000000

Figure 2 ADSP-TS101S’s Multiprocessor Memory
Space.

Depending on the address range used, the
internal memory of a particular DSP in the
multiprocessor system will be accessed as a
source or destination. Writes to the Broadcast
region access the memory of all DSPs in the
multiprocessing system.

For instance, accessing a memory location
within the address range 0x3000000 -
Ox33FFFFF, is equivalent to accessing the
internal memory of the DSP in the MP system
with ID 4.

Note: A TigerSHARC'S® own Internal space
can be accessed via the multiprocessing space
for write transactions only. This, however, is
performed through the external bus and should

ANALOG

DEVICES
not be used or other than in special cases where
data must pass through the Tiger SHARC® bus
interface. Performing a self-multiprocessor
read access will set the SELF MPROC READ
bit in the SYSTAT register as an error
indication for theillegal access.

Example 1 shows source code where the MM S
is used to access a memory location of another
DSP in the system. In this case DSP with 1DO
accesses a memory location in ID1’'s internd
memory.

Example 1.
// Code in 1DO

ro=0x02480000; //MO Data in int mem of ID1

In example 1, the MMS address for ID1 is
0x2400000, which is then added to the address
corresponding to ID1's internal memory
(0x80000). Therefore, this will result in a read
access of IDO from ID1’ sinternal memory.

Note: In DSP multiprocessor systems including
SDRAM a DSP with ID=000 must be present,
since this DSP performs the initialization (MRS
of the SDRAM. Also, there are issues related to
open drain pull-ups only enabled on the DSP
with ID=000. After reset, IDO becomes the bus
master and priority rotates in a round robin
fashion, going up from the present master.

External Memory

The ADSP-TS101S has 6Mbits of on-
chip SRAM memory that can store both
program and data. However, some applications
also require the use of external memory devices.

External memory iswidely used in MP systems,
and can be implemented as a shared resource for
al DSPs in the system, or dedicated to a
particular processor.

It is very important to keep in mind that al
DSPs in the system must set up the proper
access mode for the type of memory used in the
hardware system. The access mode is

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 3 of 12

programmed via the System Control (SY SCON)
register. Default power up/reset settings for
SYSCON are detailed in the TigerSHARC®
Processor Hardware Reference. User defined
settings must support the access mode
appropriate to the memory device(s) that the
user intends to use in their hardware systems.
SYSCON settings must be the same across all
devices sharing the cluster bus connection.

Note that SDRAM is gluelessly supported by
the ADSP-TS101S. As with the SYSCON
register, the SDRAM Configuration (SDRCON)
register of all processors in the system must be
initialized to the same vaue. Once the DSP's
internal memory controller has been configured,
the externa memory can be accessed by the
DSP viathe external bus.

In this project, SDRAM was used as an external
shared resource for the two DSPs in the system.
The code shown in example 2 corresponds to
the SDRCON register initialization, which, as
previously mentioned, must be done by all
DSPs sharing the same external memory (in this
case, IDO and ID1).

Example 2:
// Excerpt from IDO & 1D1: SDRAM Init.

j11 = j31 + 0x00005913;;
SDRCON = j11;;

// Enable SDRAM: ENA=1,CAS=2CL,pipedepth=0,
page=512w,
ref.rate=1200,trp=2,tras=5,init=1

Shared.asm contains the variable definitions for
the data that will be placed in external memory.

Note: the DSP with the lowest ID number (and
therefore highest priority in the system) is
responsible for initializing the external data
defined in the .ASM shared memory file during
the booting-up sequence.

ANALOG
DEVICES

Vector Interrupt (VIRPT)

Vector Interrupts are used for inter-
processor communication between a host and a
DSP or between DSPs.

This interrupt is a general-purpose interrupt for
another master’s use. The host (or master DSP)
can issue a vector interrupt to the slave DSP by
writing the address of an interrupt service
routine to the VIRPT register. When serviced,
this high priority interrupt causes the DSP to
branch to the service routine at that address.

Example 3:
// Extract from ID1: VIRPT Generation
j1 = MMS_IDO + VIRPT_REG;;

xr0 = VIRPT_ISR_IDO - MMS_IDO; ;
[J1 += j31]= xro0;;

In example 3, ID1 triggers a vector interrupt in
IDO by writing the address of the service routine
to be served in IDO (labeled VIRPT_ISR_IDO)
to the VIRPT register in IDO (0x2180730 =
0x180730 VIRPT address + 0x2000000 MMS
IDO).

Note: In case an external defined label is used
for the ISR address (like in this example, i.e.
VIRPT_ISR_IDO0), the MMS offset value of the
DSP serving the interrupt (MMS _ID0) must be
subtracted for the DSP to vector to the address
of the ISR correctly.

This is just an example of how inter-processor
VIRPT interrupts can be used as flags or just to
indicate program execution completion in MP
systems.

Bus Lock and Semaphores

Semaphores are useful for synchronizing
tasks performed in an MP system. A semaphore
isaflag, set of data or memory location that can
be accessed by any of the DSPs present in the
system.

In critical tasks (i.e. should not be interrupted),
when attempting a read-modify-write operation

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 4 of 12

on a semaphore, the DSP must have bus
mastership for the duration of the operation.

This can be achieved by using the DSP's bus
lock feature, which retains mastership of the bus
and prevents other processors from
simultaneously accessing the semaphore.

A read-modify-write operation is accomplished
with the following steps (example 4):

1. Request bus lock by setting the BUSLK bit in
the BUSLK register.

2. Wait for bus mastership to be acquired
(condition codes BM and NBM can be used).

3. Read the semaphore, and write to it.

Example 4 is an excerpt from IDO's code
demonstrating the use of Bus Lock in
combination with a Broadcast write:

Example 4.

// Excerpt IDO code: BROADCAST write using
// Bus Lock

J11 = j31 + 1;;

BUSLK = ji11;; // Lock the bus

BUS_MASTER: if NBM, jump BUS_MASTER;;
// Check for bus mastership

DCSO = xr3:0;;

yr0O = MMS_Broadcast;;

DCDO = yr3:0;;

// Perform Broadcast data transfer
Jjl1 = j31 + 0;;

BUSLK = j11;;// Relinquish the bus

While the BUSLK bit is set, the DSP can
determine if it has acquired bus mastership by
executing a conditional instruction with the Not
Bus Master (NBM) condition code. If it has
become the bus master, the DSP can proceed
with the external read or write. If not, it can
either clear its BUSLK bit and try again later, or
simply wait until the busis acquired.

Bus lock can be used in combination with
broadcast writes to implement reflective
semaphores in a multiprocessing system. The
reflective semaphore (i.e. located in the DSP's
internal memory or an /O processor register)

ANALOG

DEVICES
must be located at the same address of each
DSP. Once the DSP has become the bus master,
it performs a broadcast write to the specified
address on every DSP, including itself.

Lastly, the BUSLK bit must be cleared to free
the bus after the broadcast transfer has finished.

Multiprocessor Data Transfers

Throughout the code, several types of
external port (EP) data transfers have been
implemented:

1. Direct Memory Access (DMA) between 1DO
and ID1,

2. DMA from IDO and ID1 to external memory
(SDRAM),

3. Coretransfer from ID1 to IDO,
4. Broadcast Write to all DSPsin the system.

The TigerSHARC® includes 14 DMA channels,
four of which are dedicated to externa memory
devices. channels 0, 1, 2, and 3.

For details on DMAs and how the different data
transfers are performed, please refer to “ EE-143
Understanding DMA on the ADSP-TS101S
TigerSHARC®” and the DMA Controller
chapter of the TigerSHARC® Processor
Hardware Reference.

Let’'s now examine the different types of data
transfers performed in this specific MP project.
Note that the Broadcast Write has already been
discussed in the previous sections.

DMA transfer from IDOto I1D1

This example shows a DMA transfer from
internal memory of 1D0 to internal memory of
ID1. In this case, DMA channel 0 is used to
transmit the data stored in tx_IDOtorx_ID1.

For this kind of transmission, two transfer
control blocks (TCBs), one for the source and
another one for the destination, must be set up.

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 5 of 12

Example 5 shows the loaded values into each
TCB using DMA channel 0. Note that the value
in register xr2/yr2 is irrelevant due to the fact
that 2-dimensional DMA is not selected for this
particular example. As soon as both the source
and destination TCBs are loaded with values the
DMA transfer starts.

Once the DMA is completed an interrupt occurs
and the _dma_ int vector interrupt routine is
then run.

Example 5:

// Excerpt from 1DO: DMAO
// External Port transfer from I1DO to ID1

xr0 = tx_IDO0;; // xrO=index= 1DO

xrl = 0x00100004;; // count=0x10,modify=4
xr3 = 0x47000000;; // int mem,prio=norm,
//2D=no,word=quad, int=yes,RQ=enbl,chain=no
DCSO = xr3:0;; // Source

yrO = rx_ID1;; // xrO=index= ID1

yrl = 0x00100004;; // count=0x10,modify=4
yr3 = 0x87000000;; // ext mem,prio=norm,

//2D=no,word=quad, int=yes,RQ=enbl,chain=no
DCDO = yr3:0;; // Destination

DMA transfer from DO to SDRAM

The transfer of the data from internal memory of
IDO to the SDRAM is executed with minor
alterations to the previous example. The source
TCB is loaded with the same contents as before
(xR3:0) and the destination TCB is written with
the values of registers yr3:0 where yr0 is altered
fromrx_ID1 to shared data.

In this case, DMA channel 1 is used for the data
transfer by replacing DCSO and DCDO with
DCS1 and DCDL1 respectively.

Example 6:

// Excerpt from I1D0O: DMAO

// Ext Port transfer from IDO to SDRAM
DCS1 = xr3:0;; // Same as before
yrO = shared_data;; // xrO=index= SDRAM
DCDO = yr3:0;; // Destination

Note: writing to an active TCB, i.e. back-to-
back DMA using the same channel before the
current transfer has completed, results in an
illegal operation. An error indication will be
flagged in the DMA status register (DSTAT).

ANALOG
DEVICES

DMA from ID1to SDRAM

As in example 6, this is a DMA data transfer
from interna memory (in this case from ID1
instead of 1D0) to the SDRAM.

Again, the same concepts apply, where the
source and destination TCBs are set up as
shown in example 7.

Example 7:

// Excerpt from I1D1: DMAO
// External Port transfer from ID1 to SDRAM

xr0 = tx_ID1;; // xrO=index= ID1
xrl = 0x00100004;; // count=0x10,modify=4
xr3 = 0x47000000;; // int mem,prio=norm,

//2D=no,word=quad, int=yes,RQ=enbl,chain=no
DCSO = xr3:0;; // Source

yr0 = shared_data+TAPS;; //xrO=index=SDRAM
yrl = 0x00100004;; //count=0x10,modify=4
yr3 = 0x87000000; ; //ext mem,prio=norm,

//2D=no,word=quad, int=yes,RQ=enbl,chain=no
DCDO = yr3:0;; // Destination

The source TCB is loaded with the same
contents as before (xR3:0) with the only
variation that the index now points to internal
memory of ID1, tx ID1. The destination TCB is
written with the values of registers yr3:0 where
yrO now points to shared_data+ TAPS. TAPS is
the offset value used to point to the second half
of the buffer declared in SDRAM to prevent
from overwriting the already transferred data by
IDO. Once again, DMA channel 0 is used.

Coretransfer from ID1to DO

Core transfer is a different way of handling data
where no DMA is used. In this case, the Integer
Arithmetic Logic Unit (IALU) is used to
directly transfer data from internal memory of
ID1 to interna memory of 1DO.

An example of thisis shown below:

Example 8:

// Excerpt from ID1: Core transfer
// from 1D1 to IDO using the I1ALU

JjBO = tx_ID1;; // Base address in ID1
Jjo = jBO;; // Set index equals to base
JLO = TAPS;; // Set buffer length

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 6 of 12

jB1 = rx_ID0;; // Base register in IDO
Jj1 = jB1;; // Set index equals to base

JL1 = TAPS;; // Set buffer length
j4 = 1;; // Set loop modifier
LCO = TAPS;; // loop counter
write_ext: xr0 = CB[JO += j4];;

// read data from tx_ID1
CB[j1 += j4] = xr0;;
// write data to rx_IDO

if NLCOE, jump write_ext;;
// keep looping until completion

Two data arrays are declared, one in each DSP's
internal memory. ID1 writes to the array stored
in IDO through MMS (tx_ID1 to rx_IDO0). The
IALU registers are used to access the two data
buffers to perform the direct data transfer.

Some Per formance Consider ations

Core data transfers are a nice and fast way of
transferring words of data since there is no need
to set up a transfer control block of any kind.
However, DMA is a better choice when large
amounts of data need to be transferred since the
core can be utilized for computational
processing. Remember that DMA transfers
operate in the background freeing up the core.

ID Checking

This routine can be used to check
whether the executable file generated gets
loaded into the correct DSP in the system. It
ensures no ID mismatch.

Example 9:

// Extract from ID1: ID Checking

XRO = 0x3;; // FEXT operand
XR1 = SYSTAT;; // read SYSTAT
Xr2 = 1;; // DSP = ID1

XR1 = FEXT R1 by RO;; // get ID value
Xrl =r2 - rl;; // is DSP 1D1?

if NAEQ, jump incorrect_ID;;
// if false, stop and enter endless loop

Basically, it reads the DSP ID value from the
SYSTAT register and it compares it with the
theoretical value of the DSP ID. In this case, the
code has been written for ID1, so it makes sure
it has been loaded into the correct target that is

ANALOG

DEVICES
DSP 1. If false, it will enter an endless loop
indicating that an error has occurred.

Multiprocessor
Support

Visua DSP++™ Multiprocessor
Debugger provides the user with full system
evauation using the Emulator. The Emulator
alows code testing and evauation on the
hardware platform. 1/O inter-processor
communications as well as MMS data transfers
are supported. MP debugger operations like MP
load, run or reset provide the user with the
capability of testing the system with full
synchronization of all DSPs. Some of the MP
debugger features are:

Debugger

* Multiprocessor debug commands allow the
user to download, reset, restart, run and step
through the code just like with single-processor
commands, except that they work
synchronously on all active DSPsin the selected
MP group.

* The Debugger provides a Multiprocessor
Satus window. This window displays the
current status of each DSP in the system:
Running, Halted, or Unknown.

* The contents of each debugger window within
an MP emulation debugger session reflects the
selected DSP, i.e. the window in Focus.

* By default, the contents of each window will
change depending on which DSP is in focus.
The debugger supports Pinning windows
(Memory, Registers, etc.) dedicating them to a
specific DSP in the MP system. This will allow
the user to dedicate a particular debugger
window to only display information from one
particular DSP in the system, as opposed to
having the contents of the window change
whenever a new processor is selected via the
MP Status window.

*The debugger provides a Multiprocessor Group
window from which the processors can be
grouped into multiple, logical units upon which

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 7 of 12

all MP commands are applied. This window is
particularly useful when many processors are
present in a system and the user wishes to

ANALOG
DEVICES

Use pinning, and the processor status items in
the Multiprocessor window, in conjunction with
single-processor debug commands to debug

control/debug subsets of these processors individual processorsinan MP session.

together.

» Analog Devices YisualDSP++ - [Target: MP 2 x |
FEile Session WYiew Begister Memory Debug

Single-processor

sysmnzal |

a1 e

DMultiprocessor <

P Group Window

" iy & 4
M&It_mﬂ N
Dooooo] GI47= 3331 + OX3E
[000002] syscon = j14;:
[000003] j11 = §31 + OXSE
[DD000S] =m=drcon = j11:;:
[000006] =x0 = OX3;;
[D0ODD7] =rl sy=tatcl:
[000008] xx2 = O:; a
[00000%] Erl FEXIT rl by

Focused DSP —

[Statuz p Groups /

MP Status Window

Pinning

S

nom

Mulbprocessor

EE Processor I State I

@ FiDesal
start ID1 af 101 Halted

o [D00000] |14 = 531 + 0X3a @ D0 Halted
[000002] syscon = j14:;
[0Do00e3] j11 = 331 + DXSE
[000005) sdrecon = 511
[000D0&] xrD = 0X3::
[O0000071 =]l = systatcl: |

AT sows G 7

Figure 3 Multiprocessor Debugger Support

VisualDSP ICE Configurator

The Debugger allows the use of emulator
targets. The DSP In Circuit Emulator (ICE) isa
development tool for debugging programs
running in real time on DSP target system
hardware. The emulator reads executable files
and loads them into the DSP.

The ICE provides a controlled environment for
observing, debugging, and testing activitiesin a
target system by connecting directly to the
target processor through its JTAG interface.

For the MP system emulation, the Summit-
ICE™ Universal Emulator system was used. As
afirst step, the MP platform must be configured

using the VisuaDSP ICE Configurator. The
Configurator is used to describe the user's
hardware platform to the JTAG emulator. Once
a platform has been described, an emulator
target session can be based upon it. The
following steps should be followed when
configuring the MP platform:

1. Open the Visual DSP ICE Configurator.
2. Create anew platform.

3. Specify the name, number and type of devices
to beincluded as part of the platform.

These steps areillustrated in Figure 4.

Please be aware of the Initial Reset on Sartup
option, which appears in the Device Properties

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 8 of 12

window shown in Figure 4. Enabling this
option will perform a complete reset on the
selected device every time the emulator session
isinitiated. In systems where some settings may
need to be preserved (i.e. SDRCON register)
this option should be cleared.

~FJTAG ICE Configurator

ANALOG

DEVICES
Note: there is also a similar option in the
debugger itself, reset before loading executable,
which performs a complete reset of all devices
in the system upon downloading code to the
DSPs. This option can be found under
Settings/Target Optiong/.

Platform Templates

Platform Properties

 Platforms;
TET - Mulkio pe Mew

tndily
Delete

Devices fzbed in sequential order from TDO o TDI

JTAG Instuchon Regeter Width: I

— Platfamn i Devices
Hame: |T5107 Mulbprocessor Board
Ipe: |SurmmidCE
Dascription: g Properties
~ Device Properties
Mame {01
Twpe [4DSPTS10M
Base Address [Hexk 1EEEEI
Descrption:
7 intial Feset on Startug

[=]

Cancel

Figure 4 VisualDSP ICE Configurator

ICE Test Utility and JTAG Scan Test

Before getting into the actual system debugging,
the ICE must be tested to make sure that has
been properly configured.

The ICE Test Utility (Figure 5) is used for this
purpose. Open the utility, select the proper

emulator 1/0O address, check the continuous scan
box and start testing. The scan test will then be
performed and the output window would look as
follows after a successfully completed scan test:

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 9 of 12

£ |ceTest M= E I
gl Emulator 1/0 Address:

v Opening Emulatar Interface
Fiezetting ICEPAC module
Teszting ICEPAL menarny

I ECED

M Continuous scan

2JTAG device(s) detected

NN NS

Performing scan test: 10

E xit |

Figure 5 VisualDSP ICE Test Utility

In case the test does not complete successfully,
an error message will be displayed with a
possible solution for the problem. Here is a
description of some issues that should be kept in
mind for the system design:

1. In a multiprocessor system it is imperative
that the JTAG header is buffered. Thiswill keep
the signals clean and avoid noise problems that
occur with longer signal traces (ultimately
resulting in reliable emulator operation).

2. In one scan chain, it is not recommended to
use more than eight physical devices (although,
theoretically, the devices that can be supported
in one JTAG scan chain by the software is about
50). The recommendation of not more than eight
physical devices is mostly due to the
transmission line effects that appear in long
signal traces, and based on some field-collected
empirical data.

3. The recommended power-up procedure for
the target and emulation system is as follows:

e Power up PC with POD connected to the PC
but not the target.

e Power up the target with jumpers on /TRST
and TCK of the JTAG header.

e Remove jumpers on /TRST and TCK from
the JTAG header of target.

e Connect POD to JTAG header of target.
e Open Visuad DSP++™ |DDE.

ANALOG
DEVICES

Similarly, the recommended power-down
procedure is as follows:

e CloseVisualDSP++™ |IDDE.

e Disconnect POD from JTAG header of
target.

e Power-down the target.

e Replace jumpers on /TRST and TCK of the
JTAG header of target (for next power up).

Please refer to “EE- 68 Analog Devices JTAG
Emulation Technical Reference (2.5)" for a
more detailed description on thistopic.

MP System Emulation

Now that the MP project has been created and
the emulator platform is ready for debugging,
we can begin with the hardware emulation.

Load Multiprocessor Confirmation 7] x|

Processar | Program File Mame |
In3| C:hMy DaocumentshtP TST10154D1.0XE
DO C:AMy DocumentshtP TST10154D0.DE

Scan... OF. Cancel
| | |

Figure 6 Load Multiprocessor Processor Window

First of all, the DSP executable files (.DXE’S)
are downloaded to the corresponding DSPs. For
MP emulation, a Load Multiprocessor
Confirmation window (Figure 6) appears. This
window enables the user to select which .DXE
fileisloaded into which DSP.

Once the code has been successfully loaded into
each DSP, the system can be fully evaluated
using the MP features previously described.

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 10 of 12

ANALOG

DEVICES
Running code in the DSP targets
(synchronously in both DSPs or independently),
setting up break points, viewing the memory
contents, and system registers are just some of
VisualDSP++™ Multiprocessor debugger
capabilities.

After running the code in both DSPs the user
can view the contents in the data memory
windows and should be able to verify that all
data transfers between the two DSPs have
completed successfully.

Figure 7 illustrates a classical example of some
of the MP debugger windows that can be
viewed when evaluating the system.

[»] Analog Devices YisualD5P++ - [Target: T51015 Multiprocessor Board] - [Project: MP TS101.dpi]

File Edt Session “iew Project Begister Memory Debug Settings Took ‘Window Help

NEEE (38 |/ =8 oc Matada 4% %% | [wRe [0k Btk S sd|boy -|BE0&BGE
B eI EEED
=] B ID0.asm _ (O] x|
Ty MPTST00 [/7 52t uwp and pecforn DMA tramsfers 77 af||| SYSCON U0ATIE? start_ID0 R
&2 Source Fils - l13ank0 lfankl }llnst o [000000] 14 = 331 + ORa2
i -5 e // External port transmit - DMAD Uaif 3 3 3 [oooonz] syscon = 1140
<2 10asm xx0 = tx_ID0:: S xr0 = source index = int. mem. D3P_O0 Pipe Depth O 0 0 [000003] 411 = §31 + DESE
5] deta.am xrl = 0x00100004;; £/ count = Ox10, modify = 4 |quadword) Slow 1 1 1 [000005] sdrcon = j11::
20 Header Files xrd = 0x47000000;; // int mew,prio=norm,ZDb=no,word=quad,int=) [OUDODE] =el = 0X3:;
E1-E3 Linker Files DCS0 = xe3:0:; /7 %et up source for transfer Bus Width: [000007] =rl = systatcl: JJ
B ADSPTSI0N Ezernal Memory: 1 [000008] =r2 = 0::
wr0 = rx_ID1:: J/ ®xr0 = destination index = ext. wem. = ggéthrDcessmg. i [000009] =rl = FEXT rl by
yrl = Dx00100004;; 7/ count = Ox10, modify = 4 (quadword) | |) [0000DA] =rl = x2 - zl;;
¥r3 = 0x87000000;; /4 ext mem,pris=norm,ZD=no,word=quad,int= [00000E] TF naeq. JUME ir
DCDO = yr3:0:: J/ Fet up descination and start external [ounooC] =e3 = 0,
[oonoop] =l = 0;;
TPE] - eydafe s f4 Fuwermal movt frawendt o DML et e o [00000E] =r2 = 0 -
Ll rl
»
E ID1.asm
1 = MI5_IDO + VIRPT_REG:; 44 Write the address of the Interrupt Servic SHES MBI o) s 5 [000000] S.;zr':—lgi N
xrl = VIRPT_ISR_IDO - MM3_IDO:: // executed in IDO (MM3_IDO] to the WIRFT re Idle 1 1 1 [000002] syscon = 314;:
[31 += 331]= ®r0;: /4 M3 _ID0 MUST be subtracted from ISR for © Wait 3 3 3 [o00003] -31’1 _ 313+ 0%sE
Fipe Depth 0 i i J I8 & G
Sl 1 1 1 [000005] =drcon = §11;:
u || T r— b e
ﬁ Project /¢ External port transmit - DMAD ﬁﬁ?ﬁ?;iaggggigé: i Egggggg% zii : g‘gjlﬁ‘:rl ng
xrl = tx_ID1;; £f wrl = source index = int. mem. DIF_1 Host - 1 [O00004] xrl = v2 — =1::
xrl = 0x00100004;; A count = 0x10, wodify = 4 (cquadword) [00O00E] TF nas .]UMP”ir
xr3 = 0x47000000;; A4 int mem,prio=norm,2l=no,word=quad,int [o0000c] =r0 = E[
DCS0 = xx3:0;; /¢ Get up source for transfer [00000D] =rl < D
- . an R R A . . . ol [00000E] =r2 = 0 =
4 4V 4| | LH
Broadcast_r=_ID0 d Broadcast_r= ID1 STSTAT 00002A00 SYSTAT 00000AOL -
[0800007 OOO0O0DO0 111113111 22222222 [080000] 00000000 111111311 22222222
[080003] 33333333 44444444 55555555 [080003] 33333333 44444444 55555555 gracessog ID}i{ g grocessog ID& : é
[050006] 6RGRGGEE 77777777 BES8B8&ES [0&0O006] BEBBEEERG 77777777 SG88EE88 ngfeﬁgst;i aster 0 ngfeﬁgstgi EeliE q
[080009] 99999999 AAkAAAA BEEEEEEB [0B0009] 99999999 AAAAAAAA EEEEEBEE Clock Haltaplicr: 3 Clock Haltiplier: 3
[08000C] COOCCCOC DDDDDDDD EEEEEEEE | [D8000C] CCCCCCCC DDDDDDDD EEEEEEEE Feal Frequency 1 i s — 1
[02000F] FEFFFFFF [02000F] FFEFFFFF Boot Hode 1} Boot Mode 0
rx_ IDO rx ID1 MRS Complete: 1 MRS Complete: 0
[0§0010] FFFFFFFF EEEEEEEE DDDDDDDD [080010] 00000000 11111111 22222222 Bus Lock: 0 Bus Lock B
[080013] CCOCCCCCC EEEEBEEE AAAARARL [080013] 33333333 44444444 555EEECE gi:g: g-‘i”ﬁgng:;_RBad- g gi:z: gll”ﬁ%d;xg?ead- g
[080016] 99999999 BR88E8EE 77777777 : [080016] EERBEERE 77777777 SHEBOBEE STRAH Error: 1 SORLH Error: 1
- Self MP Read: 0 e F_Ij
ﬂ s ﬂ Revision: il 1 L4
IDl: Loading: "D:“My Documentsz DSP~Frojects»Intro to HF Systen=~ADSP-TS101GWMFP TSlﬂ Processar |Slate |
ID1: Load conplete. @ D1 Halted
ID0D: Loading: "D:~My Documents DSP~Frojects:Intro to WP Systems“ADSP-TS101GMP TS1 dlte
ID0D: Loading: "D:~My Documents~DSP~Frojects“Intro to WP Systems™ADSP-TS101GMP TS1 & D0 Halted
ID0D: Loading: "D:~My Documents~DSP~Frojects“Intro to WP Systems™ADSP-TS101GMP TS1
ID0D: Load complete.
i B 4 |
[= [*1] console A Build | <| | | A R status A Groups

|Halted

|Line &, Col 1 [

[

Figure 7 VisualDSP++ ™ Multiprocessor Session

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167)

Page 11 of 12

References

[1] TigerSHARC® Processor Hardware
Reference, First Edition, March 2003.
Analog DevicesInc.

[2] Visuad DSP++ Linker & Utilities Manual for
TigerSHARC® DSPs, Analog Devices Inc.

[3] VisuaDSP++ Emulation Tools Installation
Guide for Windows 95/98/NT/2000, Analog
DevicesInc.

Document History

ANALOG

DEVICES

[4] Analog Devices JTAG Emulation Technical

Reference (2.5) (EE-68), Analog Devices
Inc.

[5] Understanding DMA on the ADSP-TS101S
TigerSHARC® (EE-143), Analog Devices
Inc.

Version Description

April 04, 2003 by Maikel Kokaly-Bannourah Updated trademark usage and upgraded code example according
to VisualDSP++ release 3.0

June 26, 2002 by Maikel Kokaly-Bannourah Initial Release

Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167) Page 12 of 12

	Introduction
	Linker Description File (LDF) for MP Systems
	Multiprocessor Memory Space (MMS)
	External Memory
	Vector Interrupt (VIRPT)
	Bus Lock and Semaphores
	Multiprocessor Data Transfers
	DMA transfer from ID0 to ID1
	DMA transfer from ID0 to SDRAM
	DMA from ID1 to SDRAM
	Core transfer from ID1 to ID0
	Some Performance Considerations

	ID Checking
	Multiprocessor Debugger Support
	VisualDSP ICE Configurator
	ICE Test Utility and JTAG Scan Test
	MP System Emulation

	References
	Document History

