
a Engineer To Engineer Note EE-147
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers� products or for any
infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by
Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding the technical
accuracy of the content provided in all Analog Devices� Engineer-to-Engineer Notes.

Tuning C Source Code for the TigerSHARC®
DSP Compiler

DSP Tools Compiler Group, Analog Devices Inc., Revision 3, 26 Nov
2001

This document provides some guidelines for
obtaining the best code execution performance
from the TigerSHARC® DSP family�s C/C++
compiler using VisualDSP++� release 2.0.

Use the Optimizer
There is a vast difference in the performance of C
code that has been compiled optimized and non-
optimized. In some cases optimized code can run
ten or twenty times faster. Optimization should
always be attempted before measuring
performance or shipping code as product. Note
that the default setting is for non-optimized
compilation, the non-optimized default being
there to assist programmers in diagnosing
problems with their initial coding.

The optimizer in the TigerSHARC DSP compiler
is designed to generate efficiently executing code
from C that has been written in a straightforward
manner. The basic strategy for tuning a program
is to present the algorithm in a way that gives the
optimizer excellent visibility of the operations and
data, hence the greatest freedom to safely
manipulate the code. Note that future releases will
enhance the optimizer, and expressing algorithms
simply will provide the best path for reaping the
benefits of such enhancements.

Use the Statistical Profiler
Tuning source begins with an understanding of
what areas of the application are the hot spots.
Statistical profiling provided in VisualDSP++ is
an excellent means for finding those hot spots. If

the application is unfamiliar to you, compile it
with diagnostics and run it unoptimized. This will
give you results that connect directly to the C
source. You will obtain a more accurate view of
your application if you build a fully optimized
application and obtain statistics that relate directly
to the assembly code. The only problem may be
in relating assembly lines to the original source.
Do not strip out function names when linking. If
you have the function names then you can scroll
the assembly window to locate the hot spots. In
very complicated code you can locate the exact
source lines by counting the loops.

Note: The compiler optimizer may have moved
code around.

Data Types
The compiler directly supports six scalar data
types.

int 32-bit signed integer
unsigned 32-bit unsigned integer
long long 64-bit signed integer
unsigned long long 64-bit unsigned integer
float 32-bit floating point
long double 64-bit floating point

The standard C types, char, short and long, in their
signed and unsigned forms are also supported for
compatibility, but they are all implemented as 32-
bit integers. double is supported and in the default
mode implemented as a 32-bit floating-point
value.

long double arithmetic operations are implemented
by library routines and consequently are far slower
than operations on float. This data type should
only be used where the algorithm requires the
long double’s greater range and precision, and
performance is not at a premium.

EE-147 Page 2
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Most operations on long long are supported
directly by the hardware, but multiplication and
division are not. This type is often useful for bit
manipulation algorithms because of the number of
bits that can be processed in each operation.

Avoid Division in Loops
The hardware does not provide direct support for
32-bit integer and floating point division, so the
division and modulus operations on int and float
are also expensive. The compiler will convert an
integer division by a power of two to a shift
operation if it actually knows the value of the
divisor. General rule: Do not divide inside a loop.

Using 16-bit and 8-bit Data Types
Other data types supported by the hardware such
as short vectors of 16-bit integers, 8-bit integers
and 16-bit fixed-point complex are not directly
supported by the compiler, but access to the
instructions are available through intrinsic
functions.

It should be noted that 16-bit operations are often
more efficient than 32-bit ones. However, the
compiler will not generate a 16-bit operation
where you wrote a 32-bit one, even if it is obvious
to you that the 16-bit operation would generate the
same result. To get 16-bit operations you need to
use an intrinsic function.

This code snippet shows scalar product written
with 4x16 short vector intrinsics. It illustrates the
recommended style for code written with intrinsic
functions.

typedef long long int4x16;
#define add(x,y) __builtin_add_4x16(x,y)
#define mult(x,y) __builtin_mult_i4x16(x,y)
#define sum(x) __builtin_sum_4x16(x)

int sp4x16(int4x16 a[], int4x16 b[], int n)
{
int i;
int4x16 sum4 = 0;
for (i = 0; i < n/4; ++i)
sum4 = add(sum4, mult(a[i], b[i]));

return sum(sum4);
}

Appendix B gives a comprehensive list of
intrinsic functions recognized by the compiler.

Indexed Arrays vs. Pointers
C allows you to program data accesses from an
array in two ways: either by indexing off an
invariant base pointer or by incrementing a
pointer.

These two versions of vector addition illustrate
the two styles:

Indexed Array:
void va_ind(int a[], int b[], int out[],
int n) {
int i;
for (i = 0; i < n; ++i)
out[i] = a[i] + b[i];

}

Pointers:
void va_ptr(int a[], int b[], int out[],
int n) {
int i, *pout = p, *pa = a, *pb = b;
for (i = 0; i < n; ++i)
*pout++ = *pa++ + *pb++;

}

The style should not make any difference to the
generated code, but sometimes it does. Often one
version of an algorithm will do better than the
other but it is not always the same style that is
better; the generated code is affected by the
surrounding code, which is why there may be
differences. The pointer style introduces
additional variables that compete with the
surrounding code for resources during the
optimizer�s analysis. Array accesses, on the other
hand, must be transformed to pointers by the
compiler and sometimes it does not do the job as
well as you could do by hand.

The best strategy is to start with array notation. If
this looks unsatisfactory try using pointers.
Outside the important loops use the indexed style,
as it is easier to understand.

EE-147 Page 3
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Use the �ipa Switch
To ensure the best performance the optimizer
often needs to know things that can only be
determined by looking outside the routine it is
working on. In particular it helps to know the
alignment and value of pointer parameters and the
value of loop bounds.

The �ipa compiler switch enables inter-procedural
analysis which makes this information available.

This may be switched on from the IDDE by
checking the Interprocedural Optimization box in
the Compile tab of the Project Options dialogue
selected from the project menu.

When this switch is used the compiler may be
called again from the link phase to recompile the
program using additional information obtained
during previous compilations.

Note: Because it only operates at link time, the
effects of �ipa will not be seen if you compile
with the �S switch. To see the assembler file put
�save-temps in the Additional Options text box in
the Compile tab of the Project Options dialogue
and look at the .s file produced after your program
has been built.

Much of the following advice assumes that the
�ipa switch is being used.

Initialize Constants Statically
Inter-procedural analysis will also identify
variables that only have one value and replace
them with constants that can enable better
optimization. For this to happen a variable must
have only a single value throughout the program.
If the variable is statically initialized to zero, as all
global variables are by default, and assigned to at
one other point in the program the analysis sees

two values and will not consider it to have a
constant value.

Bad: (IPA cannot see val is a constant)

#include <stdio.h>

static int val;

void init() {
val = 3;

}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

Good: (IPA knows val is 3)

#include <stdio.h>

static int val = 3;

void init() {
}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

Loop Guidelines

Appendix A gives an overview of how the
optimizer transforms a loop to generate highly
efficient code. It describes the �loop unrolling�
optimization technique.

Do not unroll loops yourself
Not only does loop unrolling make the program
harder to read but it also prevents optimization.
The compiler must be able to unroll the loop itself
in order to use both compute blocks automatically.

In this example the first version of the loop runs
two and a half times faster than the second, in
cases where inter-procedural analysis can

EE-147 Page 4
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

determine that the initial values of a, b, and c are
quad-word aligned and n is a multiple of four.

Good: (Compiler unrolls and uses both
 compute blocks)

void va1(int a[], int b[], int c[], int n)
{
int i;
for (i = 0; i < n; ++i) {
c[i] = b[i] + a[i];

}
}

Bad: (Compiler leaves on a single compute
 block)

void va2(int a[], int b[], int c[], int n)
{
int xa, xb, xc, ya, yb, yc;
int i;
for (i = 0; i < n; i+=2) {
xb = b[i]; yb = b[i+1];
xa = a[i]; ya = a[i+1];
xc = xa + xb; yc = ya + yb;
c[i] = xc; c[i+1] = yc;

}
}

Avoid loop carried dependencies
A loop-carried dependency is where computations
in a given iteration of a loop cannot be completed
without knowing the values calculated in earlier
iterations. When a loop has such dependencies the
compiler cannot overlap loop iterations.

 Some dependencies are caused by scalar variables
that are used before they are defined in a single
iteration.

Bad: (scalar dependency)

for (i = 0; i < n; ++i)
x = a[i] - x;

An optimizer can reorder iterations in the
presence of the class of scalar dependencies
known as reductions. These are loops that reduce
a vector of values to a scalar using an associative
and commutative operator. The most common
example is multiply and accumulate.

Good: (a reduction)

for (i = 0; i < n; ++i)
x = x + a[i] * b[i];

In the first case, the scalar dependency is the
subtraction operation: the variable x changes in a
manner that will give different results if the
iterations are performed out of order. In contrast,
in the second case, the properties of the addition
operator mean that the compiler can perform the
operations in any order, and still get the same
result.

Do not rotate loops by hand
Loops in DSP code are often �rotated� by hand,
attempting to do loads and stores from earlier and
future iterations at the same time as computation
from the current iteration. This technique
introduces loop-carried dependencies that prevent
the compiler from rearranging the code
effectively. It is better to give the compiler a
�normalized� version, and leave the rotating to the
compiler.

Bad: (rotated)

float ss(float *a, float *b, int n) {
float ta, tb , sum = 0.0f;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {
sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
return sum;

}

By rotating the loop, the scalar variables ta and tb
have been added, and they have introduced loop-
carried dependencies which prevent the compiler
from issuing iterations in parallel. The optimizer
is capable of doing this kind of loop rotation
itself.

EE-147 Page 5
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Good:

float ss(float *a, float *b, int n) {
float sum = 0.0f;
int i;
for (i = 0; i < n; i++) {
sum += a[i] + b[i];

}
return sum;

}

Avoid array writes in loops
Other dependencies can be caused by writes to
array elements. In this loop the optimizer will not
be able to tell whether the load from a reads a
value defined on a previous iteration or one that
will be overwritten in a subsequent iteration.

Bad: (array dependency)

for (i = 0; i < n; ++i)
a[i] = b[i] * a[c[i]];

The optimizer can resolve access patterns where
the addresses are expressions that vary by a fixed
amount on each iteration. These are known as
�induction variables�.

Good: (induction variables)
for (i = 0; i < n; ++i)
a[i+4] = b[i] * a[i];

Avoid aliases
It may seem that a loop that looks like this does
not contain any loop carried dependencies,

void fn(int a[], int b[], int n) {
for (i = 0; i < n; ++i)
a[i] = b[i];

}

but a and b are both parameters, and although they
are declared with [] they are in fact pointers which
may point to the same array. When the same data
may be reachable through two pointers we say
they may alias each other.

If the -ipa switch is enabled the compiler will be
able to look at the call sites of fn and possibly

determine whether they ever do point at the same
array.

Even with the -ipa switch it is quite easy to create
apparent aliases. The inter-procedural analysis
works by associating pointers with sets of
variables they may refer to at some point in the
program. To simplify the analysis no account is
taken of the control flow, and if the sets for two
pointers are found to intersect then both pointers
are assumed to point to the union of the two sets.

If fn above were to be called in two places with
the global arrays as arguments then the inter-
procedural analysis will have the following
results:

fn(glob1, glob2, N); Sets do not intersect: a and b
fn(glob1, glob2, N); are not aliases (good)

fn(glob1, glob2, N); Sets do not intersect: a and b
fn(glob3, glob4, N); are not aliases (good)

fn(glob1, glob2, N); Sets intersect: a and b
fn(glob3, glob1, N); may be aliases (bad)

The third case shows that IPA considers the union
of all calls, at once, rather than considering each
call individually, when determining whether there
is a risk of aliasing. If each call were considered
individually, IPA would have to take flow control
into account, and the number of permutations
would make compilation time impracticably long.

Quad-word align your data
To make most efficient use of the hardware the
compute units must be kept fed with data. In
many algorithms the balance of data accesses to
computations is such that to keep the hardware
busy data must be fetched with 128-bit loads.

The hardware architecture requires that references
to memory be naturally aligned. Thus 64-bit
references must be at even address locations, and
128-bit at quad-aligned addresses. So for the

EE-147 Page 6
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

most efficient code to be generated you often have
to ensure you data is quad-word aligned.

The compiler helps establish the alignment of
array data. The stack frames are kept quad-word
aligned. Top-level arrays are allocated at quad-
word aligned addresses, regardless of their data
types.

If you write programs that only pass the address of
the first element of an array as a parameter, and
write loops that process input arrays an element at
a time, starting at element zero, then inter-
procedural analysis should be able to establish that
the alignment is suitable for quad-word accesses.

Another situation occurs where the inner loop
processes a single row of a multi-dimensional
array. Consider making sure each row begins on a
quad-word boundary, possibly inserting dummy
data to do so, i.e. adding additional columns so
that the row length is a multiple of 4.

When a loop has a single non-aligned pointer, the
compiler can make use of the hardware data
alignment buffer to access 128-bits of data from
that pointer.

If pointers to aligned data are passed as
parameters to a function then make use of the
intrinsic __builtin_aligned. Optimizers take a
safety first approach with pointers and it is good
practice to assure the optimizer locally at the start
of a function that some or all of the data pointers
are guaranteed to be quad aligned addresses. The
corollary of course is that if you make the
assurance and the program passes a non-aligned
address then you will have an obscure bug!

float ss(float *a, float *b, int n) {
float sum;
int i;

__builtin_aligned(a,4);
__builtin_aligned(b,4);

< loop >
}

A literal value can be seen by the compiler and
�ipa will propagate literals where it can. Where
ambiguity persists the compiler will plant a vector
and a non-vector form of the loop, deciding
between them at run time.

Avoid descending access to arrays in loops where
possible as the vectorizing software currently
looks for ascending cases only.

Do as much work as possible in the inner loop
The optimizer focuses on the inner loops because
this is where most programs spend the majority of
their time. It is considered a good trade-off for an
optimization to slow down the code before and
after a loop if it is going to make the loop body
run faster, so make sure that your algorithm also
spends most of its time in the inner loop,
otherwise it may actually be made to run slower
by optimization.

A useful technique is loop switching. If you have
nested loops where the outer loop runs many
times and the inner loop runs a small number of
times, it may be possible to rewrite the loops so
that the fewer number of iterations is for the outer
loop.

The �inline� qualifier
Try and avoid function calls in inner loops, but if
you must and the function is small consider using
the inline qualifier. This will cause the body of
the function to be compiled inline and will not
only save the cost of the function call and return
code, but also give the optimizer greater visibility
into the function code. The cost is that code size
will expand.

 Be Aware of Latencies
All pipelined machines will introduce stall cycles
when you cannot execute the current instruction
until a prior instruction has exited the pipeline.

EE-147 Page 7
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

TigerSHARC DSP stalls for four cycles on a table
lookup. A[B[I]] takes four cycles more than you
may expect.

Avoid conditional code in loops
If a loop contains conditional code, there may be a
large stall penalty if the decision has to branch
against the compiler�s prediction. In many cases,
the compiler will be able to convert if-else and ?:
constructs into linear predicated instructions, but
complex calculations in the if or else block will
cause conditional jump code to be generated.

Try to put arrays into different spaces � the PM
qualifier
The pm type qualifier places data in alternate
memory for dual simultaneous access.
TigerSHARC DSP can support two memory
operations on a single instruction line. However,
this will only complete in one cycle if the two
addresses are situated in different memory spaces
� if both access the same block there will be a
stall.

Take as an example the dot product:

for (i = 0; i < n; i++) {
sum += a[i] + b[i];

}

 Since on every cycle we load from arrays a and b,
it may be useful to ensure that these arrays are
located in different blocks.

You can ensure this by using either static array
declarations such as:

pm int a[N];

or qualified pointers such as:

pm int * a;

The default or normal mode is dm.

Replacing Division with Shifts
Division requires a function call and is relatively
expensive. The modulus (%) operator is also a
form of division. Try and use division by powers
of two that can be replaced by the compiler with
much faster shift operations. The division of an
unsigned integer by a power of two can be
replaced by a single shift operation. The division
of a signed integer by a power of two requires
additional cycles. Consider if a cast to unsigned
could be applied.

EE-147 Page 8
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Appendix A: How the Optimizer Works
We will use the following floating-point scalar product to show how the optimizer works:

float sp(float *a, float *b, int n) {
int i;
float sum=0;
for (i=0; i<n; i++) {
sum+=a[i]*b[i];

}
return sum;

}

After code generation and conventional scalar optimizations, the compiler will have generated a loop that
looks something like this:

.P1L3:
xR0 = [J0 += 1];;
xR2 = [J1 += 1];;
xfR4 = R0 * R2;;
xfR5 = R5 + R4;;
K0 = K0 - 1;;
if nkle, jump .P1L3;;

The loop exit test has been moved to the bottom and the loop counter rewritten to count down to zero.
Sum is being accumulated in xR5. J0 and J1 hold pointers that are initialized with the parameters A and B
and incremented on each iteration.

In order to use both compute blocks, the optimizer unrolls the loop to run two iterations in parallel.

.P1L3:
yxR0 = l[J0 += 2];;
yxR2 = l[J1 += 2];;
xyfR4 = R0 * R2;;
xyR5 = R5 + R4;;
K0 = K0 - 2;;
if nkle, jump .P1L3;;

Sum is now being accumulated in xR5 and yR5, which must be added together after the loop to produce
the final result. In order to the use long word loads needed for the loop to be as efficient as this, the
compiler has to know that J0 and J1 have initial values that are even. Note also that unless the compiler
knows that original loop was executed an even number of times a conditionally executed odd iteration
must be inserted outside the loop.

If the optimizer can verify that J0 and J1 are initially quad word aligned then it will unroll the loop to
make better use of the TigerSHARC DSP�s memory bandwidth.

.P1L3:
yxR1:0 = q[J0 += 4];;
yxR3:2 = q[J1 += 4];;
xyfR4 = R0 * R2;;
xyfR6 = R1 * R3;;
xyR5 = R5 + R4;;
xyR7 = R7 + R6;;
K0 = K0 - 4;;
if nkle, jump .P1L3;;

EE-147 Page 9
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Now Sum is being calculated in xR5, yR5, xR7 and yR7.

Finally the optimizer software pipelines the loop, unrolling and overlapping iterations to obtain the highest
possible use of functional units. The following code would be generated if it were known that the loop
executed at least twenty times and the loop count was a multiple of eight.

.P1L3:
yxR1:0 = q[J0+=4]; K0 = K0 – 4;;
yxR3:2 = q[J1+=4];;
yxR9:8 = q[J0+=4]; K0 = K0 – 4;;
xyfR4 = R0 * R2; yxR11:10 = q[J1+=4];;
xyfR6 = R1 * R3; yxR1:0 = q[J0+=4]; K0 = K0 – 4;;
xyfR5 = R5 + R4; xyfR12 = R8 * R10; yxR3:2 = q[J1+=4];;

.P1L28:
xyfR7 = R7 + R6; xyfR14 = R9 * R11; yxR9:8 = q[J0+=4]; K0 = K0 – 4;;
xyfR5 = R5 + R12; xyfR4 = R0 * R2; yxR11:10 = q[J1+=4];;
xyfR7 = R7 + R14; xyfR6 = R1 * R3; yxR1:0 = q[J0+=4]; K0 = K0 – 4;
if nkle, jump .P1L28; xyfR5 = R5 + R4; xyfR12 = R8 * R10; yxR3:2 = q[J1+=4];;

xyfR7 = R7 + R6; xyfR14 = R9 * R11;;
xyfR5 = R5 + R12; xyfR4 = R0 * R2;;
xyfR7 = R7 + R14; xyfR6 = R1 * R3;;
xyfR5 = R5 + R4;;
xyfR7 = R7 + R6;;

EE-147 Page 10
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Appendix B: Intrinsic Functions

These are the intrinsic functions recognized by the compiler:

int __builtin_add_sat(int, int); Rs = Rm + Rm (S);
int __builtin_abs(int); Rs = ABS Rm;
int __builtin_addbitrev(int, int); Js = Jm + Jn (BR);
int __builtin_avg(int, int); Rs = (Rm + Rn) / 2;
int __builtin_clip(int, int); Rs = CLIP Rm by Rn;
int __builtin_count_ones(int); Rs = ONES Rm;
int __builtin_fext(int, int); Rs = FEXT Rm by Rn (SE);
int __builtin_frmul(int, int); Rs = Rm * Rm;
int __builtin_frmul_sat(int, int); Rs = Rm * Rm (S);
int __builtin_max(int, int); Rs = MAX (Rm, Rn);
int __builtin_min(int, int); Rs = MIN (Rm, Rn);
int __builtin_neg_sat(int); Rs = - Rm;
int __builtin_sub_sat(int, int); Rs = Rm - Rm (S);

float __builtin_conv_RtoF(int); FRs = FLOAT Rm by -31;
float __builtin_copysignf(float, float); FRs = Rm COPYSIGN Rn;
float __builtin_fabsf(float); FRs = ABS Rm;
float __builtin_favgf(float, float); FRs = (Rm + Rn) / 2;
float __builtin_fclipf(float, float); FRs = CLIP Rm by Rn;
float __builtin_fmaxf(float, float); FRs = MAX (Rm, Rn);
float __builtin_fminf(float, float); FRs = MIN (Rm, Rn);
int __builtin_conv_FtoR(float); Rs = FIX FRm by 31;

long long __builtin_llabs(long long); LRsd = ABS Rmd;
long long __builtin_llavg(long long, long long); LRsd = (Rmd + Rnd) / 2;
long long __builtin_llclip(long long, long long); LRsd = CLIP Rmd by Rnd;
int __builtin_llcount_ones(long long); Rs = ONES Rmd;
long long __builtin_llmax(long long, long long); LRsd = MAX (Rmd, Rnd);
long long __builtin_llmin(long long, long long); LRsd = MIN (Rmd, Rnd);

int __builtin_abs_2x16(int); SRs = ABS Rm;
int __builtin_add_2x16(int, int); SRs = Rm + Rn;
int __builtin_add_2x16_sat(int, int); SRs = Rm + Rn (S);
int __builtin_clip_2x16(int, int); SRs = CLIP Rm by Rn;
int __builtin_cmult_fr2x16(int, int); MRa += Rm ** Rn (C);
int __builtin_cmult_i2x16(int, int); MRa += Rm ** Rn (IC);
int __builtin_max_2x16(int, int); SRs = MAX (Rm, Rn);
int __builtin_min_2x16(int, int); SRs = MIN (Rm, Rn);
int __builtin_mult_fr2x16(int, int); SRsd = Rmd * Rnd;
int __builtin_mult_i2x16(int, int); SRsd = Rmd * Rnd (I);
int __builtin_neg_2x16(int); SRs = - Rm;
int __builtin_sub_2x16(int, int); SRs = Rm - Rn;
int __builtin_sub_2x16_sat(int, int); SRs = Rm - Rn (S);
int __builtin_sum_2x16(int); Rs = SUM Rm;

int __builtin_compact_to_fr2x16(long long); SRs = COMPACT Rmd;
long long __builtin_expand_fr2x16(int); Rsd = EXPAND SRm;

int __builtin_compact_to_i2x16(long long); SRs = COMPACT Rmd (I);
long long __builtin_expand_i2x16(int); Rsd = EXPAND SRm (I);
long long __builtin_merge_2x16(int, int); SRsd = MERGE Rm, Rn;

long long __builtin_abs_4x16(long long); SRsd = ABS Rmd;
long long __builtin_add_4x16(long long, long long); SRsd = Rmd + Rnd;
long long __builtin_add_4x16_sat(long long, long long); SRsd = Rmd + Rnd (S);
long long __builtin_clip_4x16(long long, long long); SRsd = CLIP Rmd by Rnd;
long long __builtin_max_4x16(long long, long long); SRsd = MAX (Rmd, Rnd);
long long __builtin_min_4x16(long long, long long); SRsd = MIN (Rmd, Rnd);
long long __builtin_mult_fr4x16(long long, long long); SRsd = Rmd * Rnd;
long long __builtin_mult_fr4x16_sat(long long, long long); SRsd = Rmd * Rnd (S);
long long __builtin_mult_i4x16(long long, long long); SRsd = Rmd * Rnd (I);
long long __builtin_neg_4x16(long long); SRsd = - Rmd;
long long __builtin_sub_4x16(long long, long long); SRsd = Rmd - Rnd;
long long __builtin_sub_4x16_sat(long long, long long); SRsd = Rmd – Rnd (S);
int __builtin_sum_4x16(long long); Rs = SUM SRmd;

int __builtin_abs_4x8(int); SRs = ABS Rm;
int __builtin_add_4x8(int, int); SRs = Rm + Rn;

EE-147 Page 11
Technical Notes on using Analog Devices� DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

int __builtin_add_4x8_sat(int, int); SRs = Rm + Rn (S);
int __builtin_clip_4x8(int, int); SRs = CLIP Rm by Rn;
int __builtin_max_4x8(int, int); SRs = MAX (Rm, Rn);
int __builtin_min_4x8(int, int); SRs = MIN (Rm, Rn);
int __builtin_sub_4x8(int, int); SRs = Rm - Rn;
int __builtin_sub_4x8_sat(int, int); SRs = Rm – Rn (S);
int __builtin_sum_4x8(int); Rs = SUM Rm;

long long __builtin_merge_4x8(int, int); SRsd = MERGE Rm, Rn;
long long __builtin_abs_8x8(long long); SRsd = ABS Rmd;
long long __builtin_add_8x8(long long, long long); SRsd = Rmd + Rnd;
long long __builtin_add_8x8_sat(long long, long long); SRsd = Rmd + Rnd (S);
long long __builtin_clip_8x8(long long, long long); SRsd = CLIP Rmd by Rnd;
long long __builtin_max_8x8(long long, long long); SRsd = MAX (Rmd, Rnd);
long long __builtin_min_8x8(long long, long long); SRsd = MIN (Rmd, Rnd);
long long __builtin_sub_8x8(long long, long long); SRsd = Rmd - Rnd;
long long __builtin_sub_8x8_sat(long long, long long); SRsd = Rmd – Rnd (S);
int __builtin_sum_8x8(long long); Rs = SUM SRmd;

long long __builtin_compose_64(int hi, int lo); compose a 64-bit datum
unsigned long long __builtin_compose_64u(unsigned, unsigned);
long double __builtin_f_compose_64(float, float);

int __builtin_high_32(long long); extract most significant word
unsigned __builtin_high_32u(unsigned long long);
float __builtin_f_high_32(long double);

int __builtin_low_32(long long); extract least significant word
unsigned __builtin_low_32u(unsigned long long);
float __builtin_f_low_32(long double);

__builtin_quad __builtin_compose_128(long long, long long); compose a 128-bit datum
int __builtin_high_64(__builtin_quad); extract most significant words
int __builtin_low_64(__builtin_quad); extract least significant words

int __builtin_sysreg_read(int); read system registers
long long __builtin_sysreg_read2(int);
__builtin_quad __builtin_sysreg_read4(int);

void __builtin_sysreg_read(int); write to system registers
void __builtin_sysreg_read2(long long);
void __builtin_sysreg_read4(__builtin_quad);

void * __builtin_alloca_aligned(int, int); allocate data on the stack
void __builtin_assert(int); ignored

	Tuning C Source Code for the TigerSHARC® DSP Compiler��DSP Tools Compiler Group, Analog Devices Inc., Revision 3, 26 Nov 2001
	Use the Optimizer
	Use the Statistical Profiler
	Data Types
	Avoid Division in Loops
	Using 16-bit and 8-bit Data Types
	Indexed Arrays vs. Pointers
	Use the –ipa Switch
	Initialize Constants Statically
	Loop Guidelines
	Do not unroll loops yourself
	Avoid loop carried dependencies
	Do not rotate loops by hand
	Avoid array writes in loops
	Avoid aliases
	Quad-word align your data
	Do as much work as possible in the inner loop
	The “inline” qualifier

	Be Aware of Latencies
	Avoid conditional code in loops
	Try to put arrays into different spaces – the PM qualifier

	Replacing Division with Shifts
	Appendix A: How the Optimizer Works
	Appendix B: Intrinsic Functions
	These are the intrinsic functions recognized by the compiler:

