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Introduction 
This document presents two assembly code 
implementations with memory of direct-form 
FIRs, capable of handling complex input and 
output and complex or real coefficients with 16-
bit integer precision. These implementations 
present methods of achieving high performance 
while conserving memory. 

General 
A mathematical representation in direct form of a 
FIR filter is given below. 
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i 0, 1, …, N-1 

N Number of samples 

M Number of filter coefficients 

y[i] Output sample number i 

x[i-k] Input sample number i-k 

h[k] Filter coefficient number k 

Equation 1. Direct-form FIR 

This equation is the result from the vector inner 
product between the filter coefficient vector h 
and the (time) order-reversed input data vector x. 
This is also known as the convolution between h 
and x. 

Figure 1 presents the same equation graphically. 

x[i-M+2]
Z-1 

x[i-M+3] 
Z-1 

x[i]
Z-1 

x[i-1]
Z-1 

h[0] h[1] h[M-3] h[M-2] h[M-1]

x[i-M+1]

+ + + +
y[i]

Figure 1. Direct-form FIR. 

A C pseudo-code description of the same FIR is 
given below, where ** represents complex 
multiplication. 

for(i=0; i< N; i++){ 
  y[i] = 0; 
  Ncoeffs = i < (M-1) ? i : (M-1); 
  for(k=0; k<=Ncoeffs; k++){ 
    y[i] = y[i] + x[i-k] ** h[k]; 
  } 
} 

Listing 1. C pseudo-code algorithm of direct form FIR. 

Parallelism in TigerSHARC Processors 

ADSP-TS20x TigerSHARC® processors are 
highly parallel computing devices that have three 
distinct types of parallelism: 

• Latency-2 computational pipeline 

• Multiple compute units 

• Wide memory structure 

These three forms of parallelism complement 
each other, and all three must be exploited to 
achieve a high level of efficiency. The 
computation rate and memory bandwidth in this 
machine are balanced in such a way that failing 
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to pay attention to  one of the three components 
of parallelism may result in sub-optimal 
performance.  

16-Bit Integer FIR with Complex 
Taps, Input and Output Data 

Introduction 

ADSP-TS20x TigerSHARC processors support 
two complex multiplications (one in each 
compute block) per core clock cycle along with 
simultaneous data transfers. Filter calculations 
like Equation 1 can, of course, be implemented 
in a straightforward sequential fashion using one 
(inner) loop for the summation, each iteration 
performing a multiplication between an (old) 
input sample and a coefficient, and adding that to 
the output of the last iteration, and another 
(outer) loop going through the same procedure 
over and over again to produce the output 
samples. However, using the parallel features 
and high internal bandwidth of ADSP-TS20x 
TigerSHARC processors, achieves higher 
performance.  

Pipelining and Parallel Resources Utilization 

The FIR representations show that most data 
used to compute output y[i] are the same as the 
ones used to compute y[i+1]. The same applies 
for y[i+1] when it comes to y[i+2] and so on. The 
‘outer’ loop in the C pseudo-code performs all 
the necessary steps to calculate all the output 
samples. Unrolling this outer loop gains three 
things: 

1. Data can be reused between calculations of 
different output samples. 

2. MAC operations can be parallelized. 

3. The effects of loop overhead are reduced. 

Reducing loop overhead is not to be neglected as 
this decreases the time required to perform the 
conditional branching necessary for looping, 

thereby increasing the percentage of time 
available to perform the actual calculations. 

Unrolling the outer loop four times yields an 
algorithm described by the following C pseudo-
code: 

for(i=0; i< N; i+=4){ 
  y[i]   = 0; 
  y[i+1] = 0; 
  y[i+2] = 0; 
  y[i+3] = 0; 
  Ncoeffs = i < (M-1) ? i : (M-1); 
  for(k=0; k<=Ncoeffs; k++){ 
    y[i]   = y[i]  + x[i-k]  **h[k]; 
    y[i+1] = y[i+1]+ x[i+1-k]**h[k]; 
    y[i+2] = y[i+2]+ x[i+2-k]**h[k]; 
    y[i+3] = y[i+3]+ x[i+3-k]**h[k]; 
  } 
} 

Listing 2. Outer loop unrolled 4 times. 

What we have done so far is reuse the 
coefficients. By also unrolling the ‘inner’ loop, 
we achieve reuse of input data as well. Unrolling 
of the inner loop by four gives the C pseudo-code 
in Listing 3. 

for(i=0; i< N; i+=4){ 
  y[i]   = 0; 
  y[i+1] = 0; 
  y[i+2] = 0; 
  y[i+3] = 0; 
  Ncoeffs = i < (M-1) ? i : (M-1); 
  for(k=0; k<=Ncoeffs; k+=4){ 
    y[i]   = y[i]  + x[i-k]  **h[k]; 
    y[i]   = y[i]  + x[i-1-k]**h[k+1]; 
    y[i]   = y[i]  + x[i-2-k]**h[k+2]; 
    y[i]   = y[i]  + x[i-3-k]**h[k+3]; 
    y[i+1] = y[i+1]+ x[i+1-k]**h[k]; 
    y[i+1] = y[i+1]+ x[i-k]  **h[k+1]; 
    y[i+1] = y[i+1]+ x[i-1-k]**h[k+2]; 
    y[i+1] = y[i+1]+ x[i-2-k]**h[k+3]; 
    y[i+2] = y[i+2]+ x[i+2-k]**h[k]; 
    y[i+2] = y[i+2]+ x[i+1-k]**h[k+1]; 
    y[i+2] = y[i+2]+ x[i-k]  **h[k+2]; 
    y[i+2] = y[i+2]+ x[i-1-k]**h[k+3]; 
    y[i+3] = y[i+3]+ x[i+3-k]**h[k]; 
    y[i+3] = y[i+3]+ x[i+2-k]**h[k+1]; 
    y[i+3] = y[i+3]+ x[i+1-k]**h[k+2]; 
    y[i+3] = y[i+3]+ x[i-k]  **h[k+3]; 
  } 
} 

Listing 3. Outer and inner loops unrolled 4 times. 

 

16-bit FIR Filters on ADSP-TS20x TigerSHARC® Processors (EE-211) Page 2 of 10 



  a 
We now have a high level of data reuse and a 
possibility to parallelize calculations. What is not 
so obvious in the C pseudo-code is that we also 
have the possibility to do pipelining (i.e., fetch 
data concurrent with performing the 
calculations). 

Data Partitioning 

Complex 16-bit data is represented in ADSP-
TS20x TigerSHARC processors by a 32-bit word 
as shown in Figure 2. 

 Imaginary Real 

31 16 15 0 

 
Figure 2. Complex 16-bit data representation. 

Input and Coefficient Buffer Structure 
The input samples and coefficients are stored in 
memory as described in Figure 3. 

x[3] x[2] x[1] x[0] 

x[7] x[6] x[5] x[4] 

   … 

Input 

h[3] h[2] h[1] h[0] 

h[7] h[6] h[5] h[4] 

   … 

Coefficients 

0xHHHH 

0xHHHH + 4 

0xGGGG 

0xGGGG + 4 

Address 

0 

0 

31 

31 

j5 

k1  
Figure 3. Input and coefficient storage in memory. 

The addresses are quad-word aligned. This type 
of data storage enables quad-word loading, 
which is used for the input samples. Quad-word 
loading is used also for the coefficients. J5 points 
to the position from where we are currently 
loading input samples, and k1 points to the 
current coefficient loading position. 

Output Buffer Structure 
The two compute blocks (CBX and CBY) each 
calculate two output samples every outer loop 
iteration. CBX produces samples y[i+3] and 
y[i+1], and CBY produces y[i+2] and y[i]. Quad-

word aligned storage is used when writing the 
output samples to memory, and j4 keeps track of 
the current position to be written. 

y[3] y[2] y[1] y[0] 

y[7] y[6] y[5] y[4] 

   … 

Output

0xKKKK 

0xKKKK + 4

Address 0 31 

j4
 

Figure 4. Output storage in memory. 

Delay Line Structure 
The filter has memory in which it stores a history 
of the last M input samples used by the filter. 
This history is called the delay line. The samples 
from the delay line are quad-word loaded, and 
Figure 5 shows how they are stored. 

x[i-4] 

Delay line Address
0 31 

j0

x[i-3] x[i-2]x[i-1]

{Circular 
buffer x[i-M+4] x[i-M+5] x[i-M+6]x[i-M+7]

x[i-M] x[i-M+1] x[i-M+2]x[i-M+3]

… 

0xLLLL – M + 8

0xLLLL – M + 4

0xLLLL

 
Figure 5. Delay line in memory. 

The delay line is implemented as a circular 
buffer with j0 as a pointer to the current 
position/index in the buffer. 

x[i-4] 

Delay line Address
0 31 j0

x[i-3] x[i-2]x[i-1]

{Circular 
buffer x[i-M+4] x[i-M+5] x[i-M+6]x[i-M+7]

x[i] x[i+1] x[i+2]x[i+3]

… 

0xLLLL – M + 8

0xLLLL – M + 4

0xLLLL

 
Figure 6. Delay line after update. 

Old samples are read from the delay line starting 
at the position indicated by j0 and counting 
backwards, wrapping at the circular buffer 
boundaries. Assuming that Figure 5 shows the 
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delay line just before samples y[i], y[i+1], y[i+2] 
and y[i+3] have been generated, Figure 6 shows 
the contents of the delay line after the output 
generation and update of the delay line. 

Interface 

The interface to the filter function consists of the 
following parts: 

• A pointer to the output buffer 

• A pointer to the input buffer 

• The number of samples to be filtered 

• A pointer to the filter state (including the 
delay line and coefficient buffer) 

The filter state consists of a pointer to the 
coefficient buffer, the number of coefficients, a 
pointer to the delay line buffer and an 
index/pointer to where we are currently in the 
delay line buffer.  

typedef struct 
{ 
  int2x16 *h; // Filter coefficients 
  int2x16 *d; // Delay line 
  int2x16 *p; // Delay line Index 
  int k;  // Number of coeff. 
} fir_state_t; 

Listing 4. Filter state structure 

The filter state is given by the C-code in Listing 
4. This structure must be initialized before the 
filter is used for the first time (see Appendix for 
an example of a C-code initialization ‘function’). 

void fir_16_comp( 
  int2x16 *outdata, 
  int2x16 *indata, 
  int N, 
  fir_state_t *fir_state 
); 

Listing 5. Filter function prototype 

Listing 5 shows a C-code prototype of the 
interface. 

16-Bit Integer FIR with Real Taps 
and Complex Input/Output Data 
Sometimes there is a need to filter the real and 
imaginary parts of a complex sample separately. 
One example is when the I and Q parts of 
antenna data are treated as separate data streams, 
both independently affected by the same filter 
kernel. 

Format 

Both the taps and the real and imaginary parts of 
the input data are 16 bits. Figures 7 and 8 show 
how the input to the filter algorithm is formatted. 

h[n] h[n+1] 

h[n+2] h[n+3] 

h[n+4] h[n+5] 

. 

. 

. 

. 

. 

. 

0 31 15

0 

 
Figure 7. Filter coefficients format 

Im{x[i]} 
15 31 

Re{x[i]} 

Re{x[i+1]} Im{x[i+1]} 

Im{x[i+2]} Re{x[i+2]} 

. 

. 

. 

. 

. 

. 

 
Figure 8.  Input sample format 

Since the data to be filtered is 32 bits wide with 
each 16-bit short word treated independently, 
one approach that facilitates the parallel structure 
of  the ADSP-TS20x TigerSHARC processor is 
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to duplicate each filter coefficient and create 
pairs of coefficients that occupy 32 bits each. 

h[n] h[n] 
31 15 0 

 
Figure 9.  Duplicated coefficients 

This way four 16-bit MACs are performed per 
cycle in each compute block, the real results are 
accumulated in two of the MR registers, and the 
imaginary results are stored in two other. 

Implementation 

One filtered output sample (y[i]) is calculated in 
compute block X and the next (y[i+1]) is 
simultaneously computed in compute block Y. 
Using this approach, only half the number of 
iterations are needed for a certain number of 
input samples. To accomplish this, the 
coefficients are skewed one position for one of 
the compute blocks when loaded from memory. 
In the filter implementation listed in appendix A 
(fir16_real.asm) the filter kernel was short 
enough to be completely stored in the X and Y 
register files. 

Delay Line 

The delay line is as long as the filter kernel. 
Using the same delay line approach as the one 
described for the complex filter, problems arise 
because the filter taps are 16 bits, whereas the 
input samples are 32 (16+16) bits. One way to 
easily get around this is to place the last 
processed samples (the delay line) directly before 
the next buffer to filter in memory. The downside 
is that between every call to the filter, the delay 
line needs to be transferred to the beginning of 
the next buffer. For a moderately long kernel, 
however, the overhead is not significant. 

Old 
input 
buffer 

Delay line  
    buffer 

in
bu

Next 
put 
ffer 

 
Figure 10. Delay line handling 
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Appendix 
The assembly code for the filter functions are given, as well as a header file (*.h) specifying the filter state 
structure, a filter state initialization ‘function’, and the filter function prototype, so that it can easily be 
used in a C-code. 

fir_16_comp.h 

/* ******************************************************************************** 
 *  
 * Copyright (c) 2003 Analog Devices Inc.  All rights reserved. 
 * 
 * *******************************************************************************/ 
 
#include <i16.h> 
 
typedef struct 
{ 
  int2x16 *h; // Filter coefficients 
  int2x16 *d; // Start of (circular) delay line 
  int2x16 *p; // Current index into delay line 
  int k;  // Number of coefficients 
} fir_state_t; 
 
 
void fir_16_comp(int2x16 *outdata, int2x16 *indata, int N, fir_state_t *fir_state); 
 
#define fir_init(state, coeffs, delay, ncoeffs)  \ 
       (state).h = (int2x16 *) (coeffs); \ 
    (state).d = (int2x16 *) (delay); \ 
    (state).p = (int2x16 *) (delay); \ 
    (state).k = (int) (ncoeffs) 

Listing 6. fir_16_comp.h 

fir_16_comp.asm 

/* ******************************************************************************** 
 *  
 * Copyright (c) 2003 Analog Devices Inc.  All rights reserved. 
 * 
 * *******************************************************************************/ 
 
.global _fir_16_comp; 
.section program; 
.align_code 4; 
_fir_16_comp: 
 
   #define Yout  j4 // Pointer to output sample buffer 
   #define Xin  j5 // Pointer to input sample buffer 
   #define N   j6 // Number of samples to be filtered 
   #define FState  j7 // Pointer to filter state structure 
   #define h_offs  0 // Filter state structure offset to Coefficients 
      // buffer pointer 
   #define d_offs  1 // Filter state structure offset to Delay line pointer 
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   #define p_offs  2 // Filter state structure offset to Delay line index 
   #define k_offs  3 // Filter state structure offset to Number of 
      // coefficients 
 
 
   // Save stack so we can use the internal registers 
   // Stack PROLOGUE 
   J26 = J27 - 64;  K26 = K27 - 64;; 
   [J27 += -28] = CJMP;  K27 = K27 - 20;; 
   Q[J27 + 24] = XR27:24; Q[K27 + 16] = YR27:24;; 
   Q[J27 + 20] = XR31:28; Q[K27 + 12] = YR31:28;; 
   Q[J27 + 16] = J19:16; Q[K27 + 8 ] = K19:16;; 
   Q[J27 + 12] = J23:20; Q[K27 + 4 ] = K23:20;; 
   // Stack PROLOGUE ENDS 
 
 
   // Set number of samples to be generated/filtered 
   // (outerloop, 4 samples each iteration). 
   // Set number of times to go through filter kernel to use whole filter 
   // (innerloop, 4 coeffs/taps each iteration). 
   yR24 = N    ; // Number of samples 
   xR24 = [FState + k_offs] ;; // Number of coeffs 
   j0   = [FState + p_offs] ;; // Set j0 to point to latest sample in delay 
       // line, i.e x[i+k-1] 
   jl0  = xR24   ; // Circular buffer length = Number of coeffs    
   R24  = ASHIFT R24 BY -2 ;; // Divide number of samples and coeffs by 4 
   LC1  = yR24   ; // Number of iterations for outerloop (LC1) = 
       // Number of samples/4 
   jb0  = [FState + d_offs] ;; // Circular buffer base address = delay line 
       // buffer base address 
 
    
   .align_code 4; 
outerloop: 
   k1   = [FState + h_offs] ; // Set k1 to point to coefficient buffer 
   LC0  = xR24   ;; // Number of iterations for innerloop (LC0) = 
       // Number of coeffs/4 
 
   // Load input samples and coeffs. 
   R7:4   = q[Xin+=4]  ;; // Get x[i+k+3]:x[i+k] from input sample buffer 
   R11:8  = q[k1+=4]  ;; // Get c[k+3]:c[k] from coefficient buffer 
   R19:16 = R7:4   ; // Save x[i+k+3]:x[i+k] for later store in 
       // delay line 
    
   // Perform initial complex mult between data and coeffs and store in cleared 
   // MACs. 
   xMR3:2 += R7 ** R8  (CI) ; // y[i+3] = 0 + x[i+k+3] ** c[k] 
   yMR3:2 += R5 ** R8  (CI) ;; // y[i+1] = 0 + x[i+k+1] ** c[k] 
   xMR1:0 += R6 ** R8  (CI) ; // y[i+2] = 0 + x[i+k+2] ** c[k] 
   yMR1:0 += R4 ** R8  (CI) ; // y[i+0] = 0 + x[i+k+0] ** c[k] 
   R3:0    = CB Q[j0+=-4]   ;; // Get x[i+k-1]:x[i+k-4] 
 
 
   .align_code 4; 
innerloop: 
   // Iterate through filter length 
   xMR3:2 += R6 ** R9  (I) ; // y[i+3] = y[i+3] + x[i+k+2] ** c[k+1] 
   yMR3:2 += R4 ** R9  (I) ;; // y[i+1] = y[i+1] + x[i+k+0] ** c[k+1] 
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   xMR1:0 += R5 ** R9  (I) ; // y[i+2] = y[i+2] + x[i+k+1] ** c[k+1] 
   yMR1:0 += R3 ** R9  (I) ; // y[i+0] = y[i+0] + x[i+k-1] ** c[k+1] 
   R23:20  = q[k1+=4]      ;; // Get c[k+7]:c[k+4] 
   xMR3:2 += R5 ** R10 (I) ; // y[i+3] = y[i+3] + x[i+k+1] ** c[k+2] 
   yMR3:2 += R3 ** R10 (I) ;; // y[i+1] = y[i+1] + x[i+k-1] ** c[k+2] 
   xMR1:0 += R4 ** R10 (I) ; // y[i+2] = y[i+2] + x[i+k+0] ** c[k+2] 
   yMR1:0 += R2 ** R10 (I) ; // y[i+0] = y[i+0] + x[i+k-2] ** c[k+2] 
   R9:8    = R21:20  ;;  // Use c[k+5]:c[k+4] 
   xMR3:2 += R4 ** R11 (I) ; // y[i+3] = y[i+3] + x[i+k+0] ** c[k+3] 
   yMR3:2 += R2 ** R11 (I) ; // y[i+1] = y[i+1] + x[i+k-2] ** c[k+3] 
   R7:4    = R3:0          ;; // Shift x[i+k-1]:x[i+k-4] into x[i+k+3]:x[i+k] 
   xMR1:0 += R3 ** R11 (I) ; // y[i+2] = y[i+2] + x[i+k-1] ** c[k+3] 
   yMR1:0 += R1 ** R11 (I) ; // y[i+0] = y[i+0] + x[i+k-3] ** c[k+3] 
   R11:10  = R23:22  ;; // Use c[k+7]:c[k+6] 
   xR15:14 = MR3:2, MR3:2 += R7 ** R8 (I);  // y[i+3] = y[i+3] + x[i+k-1] ** c[k+4] 
   yR15:14 = MR3:2, MR3:2 += R5 ** R8 (I);; // y[i+1] = y[i+2] + x[i+k-3] ** c[k+4] 
   if NLC0E, JUMP innerloop   ;  // All filter taps computed? 
   xR13:12 = MR1:0, MR1:0 += R6 ** R8 (I);  // y[i+2] = y[i+2] + x[i+k-2] ** c[k+4] 
   yR13:12 = MR1:0, MR1:0 += R4 ** R8 (I);  // y[i+0] = y[i+0] + x[i+k-4] ** c[k+4] 
   R3:0    = CB Q[j0+=-4]    ;; // Get x[i+k-5]:x[i+k-8] 
   j0=j0+8 (CB)   ; 
   sR12 = COMPACT R13:12 (IS);; // Transfer result from MACs and compact 
       // from 32-bit to 16-bit (with saturation). 
   CB q[j0+=j31] = xR19:16 ; // Store x[i+k+3]:x[i+k] in delay line buffer 
   sR13 = COMPACT R15:14 (IS);; // Transfer result from MACs and compact from 
       // 32-bit to 16-bit (with saturation). 
 
   .align_code 4; 
   if NLC1E, JUMP outerloop ; // All samples computed? 
   q[Yout+=4] = R13:12  ;; // Store 4 output samples in output buffer. 
   [FState + p_offs] = j0 ;; // Save j0 to point to latest sample in delay  
       // line, i.e x[i+k-1] 
  
 
 
// Restore stack and return to calling function. 
// EPILOGUE STARTS 
   CJMP = [J26 + 64];; 
   YR27:24 = q[K27 + 16]; XR27:24 = q[J27 + 24];; 
   YR31:28 = q[K27 + 12]; XR31:28 = q[J27 + 20];; 
   K19:16  = q[K27 + 8 ]; J19:16  = q[J27 + 16];; 
   K23:20  = q[K27 + 4 ]; J23:20  = q[J27 + 12];; 
   CJMP (ABS); J27:24=q[J26+68]; K27:24=q[K26+68]; nop;; 
// EPILOGUE ENDS 
_fir_16_comp.end: 

Listing 7. fir_16_comp.asm 

fir16_real.asm 

.section program; 

.global _fir16_real; 
 
_fir16_real: 
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// Local defines 
#define Yout j4 
#define Xin j5 
#define INPUT_LEN j6 
#define FIR_STATE j7 
// Offsets to state struct elements 
#define coeff_offs 0 
#define delay_offs 1 
#define idx_offs 2 
#define nof_coeff_offs 3 
 
//PROLOGUE 
   J26 = J27 - 64;  K26 = K27 - 64;; 
   [J27 += -28] = CJMP; K27 = K27 - 20;; 
   Q[J27 + 24] = XR27:24; Q[K27 + 16] = YR27:24;; 
   Q[J27 + 20] = XR31:28; Q[K27 + 12] = YR31:28;; 
   Q[J27 + 16] = J19:16; Q[K27 + 8 ] = K19:16;; 
   Q[J27 + 12] = J23:20; Q[K27 + 4 ] = K23:20;; 
//PROLOGUE ENDS 
 
k0 = [FIR_STATE + coeff_offs];;  
k0 = k0 + k0;; // Times 2 for short data access  
j0 = k0;;  
j0 = j0 + 0x1;;  
 
xR3:0   = sDAB q[k0 += 0x8]; // Preload filter coeffs to CBX 
yR3:0   = sDAB q[j0 += 0x8];; // Preload skewed coeffs copy into CBY  
xR3:0   = sDAB q[k0 += 0x8]; 
yR3:0   = sDAB q[j0 += 0x8];; 
 
xR20 = INPUT_LEN;;  
// Expand the coeffs into 2 identical short words(16 bits) each  
SR11:8 = MERGE R1:0, R1:0;; 
SR15:12 = MERGE R3:2, R3:2;; 
// Divide by two since two outputs are calculated simultaneously  
xR20 = ASHIFT R20 by -1;; 
 
j11 = -10;; // increment for i/p pointer 
 
j0 = Xin + 0x2; // The first data will be picked from delay line 
LC0 = xR20 ;;  
R27:24 =  DAB q[j0 += 4];; // Prefetch  
R27:24 =  DAB q[j0 += 4];;  
j8 = [FIR_STATE + delay_offs];; // Get pointer to delay line 
 
///////// Loop over number of input samples //////// 
.align_code 4; 
loop_: 
R3:0 = R27:24;;  
MR3:0 += R9:8   * R25:24 (CI); 
R31:28 = DAB q[j0 += 4];; 
MR3:0 += R11:10 * R27:26 (I);  
R27:24 =  DAB q[j0 += j11];; 
MR3:0 += R13:12 * R29:28 (I);  
R27:24 =  DAB q[j0 += 4];;  
MR3:0 += R15:14 * R31:30 (I);  
R27:24 =  DAB q[j0 += 4];; 
sR23:22 = COMPACT MR3:0 (IS);; 

 

16-bit FIR Filters on ADSP-TS20x TigerSHARC® Processors (EE-211) Page 9 of 10 



  a 
R7:4 = R31:28;; 
sR21 = R23 + R22;; 
if NLC0E, jump loop_; l[Yout += 0x2] = xyR21;;  
/////////// End of loop_ //////////////// 
q[j8 += 0x4] = xR3:0;; // Store delay line 
q[j8 += j31] = xR7:4;;   
 
// EPILOGUE STARTS 
   CJMP = [J26 + 64];; 
   YR27:24 = q[K27 + 16]; XR27:24 = q[J27 + 24];; 
   YR31:28 = q[K27 + 12]; XR31:28 = q[J27 + 20];; 
   K19:16  = q[K27 + 8 ]; J19:16  = q[J27 + 16];; 
   K23:20  = q[K27 + 4 ]; J23:20  = q[J27 + 12];; 
   CJMP (ABS); J27:24=q[J26+68]; K27:24=q[K26+68]; nop;; 
// EPILOGUE ENDS 
 
_fir16_real.end: 

Listing 8. fir16_real.asm 
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