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Introduction 
So, you want to write efficient code for the 
ADSP-TS201 TigerSHARC® processor? Or, 
maybe, you have come across the optimized 
example floating-point FFT for this processor 
and would like to understand how it works and 
what the author had in mind when writing it. 
This application note tries to answer both 
questions by going through that FFT example 
and all its levels of optimization in detail. This 
example can be followed in developing other 
algorithms and code optimized for the ADSP-
TS201S processor. 

Generally, most algorithms have several levels of 
optimization, all of which are discussed in detail 
in this note. The first and most straightforward 
level of optimization is paralleling of 
instructions, as the processor architecture will 
allow. This is simple and boring. The second 
level of optimization is loop unrolling and 
software pipelining to achieve maximum 
parallelism and to avoid pipeline stalls. Although 
more complex than the simple parallelism of 
level one, this can be done in prescribed steps 
without good understanding of the algorithm and, 
thus, requires little ingenuity. The third level is 
to restructure the math of the algorithm to still 
produce valid results, but so that the new 
restructured algorithm fits the processor’s 
architecture better. Being able to do this requires 
a thorough understanding of the algorithm and, 
unlike software pipelining, there are no 

prescribed steps that lead to the optimal solution. 
This is where most of the fun in writing 
optimized code lies. 

In practical applications it is often unnecessary to 
go through all of these levels. When all of the 
levels are required, it is always best to do these 
levels of optimization in reverse order. By the 
time the code is fully pipelined, it is too late to 
try to change the fundamental underlying 
algorithm. Thus, a programmer would have to 
think about the algorithm structure first and 
organize the code accordingly. Then, levels two 
and one (paralleling, unrolling, and pipelining) 
are usually done at the same time. 

The code that this note refers to is supplied by 
Analog Devices in the form that allows it to be 
called as either a real or a complex FFT, the last 
calling parameter of the function defining if real 
or complex is to be called. The real N-point FFT 
is obtained from the complex N/2-point FFT with 
an additional special stage at the end. This note is 
concerned with code optimization more than the 
technicalities of the special stage, so it discusses 
the algorithm for the complex FFT portion of the 
code only. The last special stage of the real FFT 
is discussed in detail in the comments of the 
code. 

Standard Radix-2 FFT Algorithm 
Figure 1 shows a standard 16-point radix-2 FFT 
implementation, after the input has been bit-
reversed. Traditionally, in this algorithm, stages 
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1 and 2 are combined together with the required 
bit reversing into a single optimized loop (since 
these two stages require no multiplies, only adds 
and subtracts). Each of the remaining stages is 
usually done by combining the butterflies that 
share the same twiddle factors together into 
groups (so the twiddles have to be fetched only 
once for each group). Un-optimized assembly 
source code for a TigerSHARC processor 
implementing this algorithm is shown in Listing 
1. This, with a few tricks that are irrelevant to 
this discussion, is the way that the 32-bit 
floating-point FFT code was written when it was 

targeted to an ADSP-TS101 processor. The 
benchmarks (in core clock cycles) for this 
algorithm, including bit reversal, running on an 
ADSP-TS101 and ADSP-TS201, are shown in 
Table 1. Note that since the ADSP-TS101 has 
less memory per memory block than a ADSP-
TS201, larger point size benchmarks do not 
apply to the ADSP-TS101. Clearly, as long as 
the data fits into the ADSP-TS201 cache, it is 
efficient. Once the data becomes too large for the 
cache, this FFT implementation becomes 
extremely inefficient – the cycle count increases 
from optimal by a factor of five.  

 

 
Figure 1. Standard Structure of the 16-Point FFT 
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//*********************************** Stages ************************************* 
 
 k10 = k31 + N;;       // twiddles stride 
 k11 = k31 + N/2;;      // butterflies/group 
 j12 = j31 + 1;;       // groups 
 j10 = j31 + 2;;       // width of butterfly 
 j11 = j31 + 4;;       // butterfly stride 
 k20 = k31 + STAGES;; 
 
_stages_loop: 
  j0 = j31 + j29;;     // j0 -> internal_buff 
  k0 = k31 + k30;;     // k0 -> twiddles 
  j13 = j31 + 0;; 
 
  LC1 = j12;; 
_group_loop: 
   xr1:0 = L[k0 += k10];;    // xr0=cos, xr1=-sin 
   j1 = j0 + j10;;     // j1 -> second input to butterfly 
 
   LC0 = k11;; 
 
_butterfly_loop: 
    xr3:2 = L[j0 += 0];;   // xr2=Re1, xr3=Im1 
    xr5:4 = L[j1 += 0];;   // xr4=Re2, xr5=Im2 
    xfr6 = r4 * r0;;    // xr6=Re2*cos  
    xfr7 = r5 * r1;;    // xr7=Im2*sin 
         xfr8 = r6 - r7;;    // xr8=Re(z2*twid) 
    xfr9 = r4 * r1;;    // xr6=Re2*sin  
    xfr10 = r5 * r0;;    // xr7=Im2*cos 
         xfr11 = r9 + r10;;    // xr8=Im(z2*twid) 
    xfr12 = r2 + r8, fr14 = r2 - r8;;  // Re(butterfly) 
    xfr13 = r3 + r11, fr15 = r3 - r11;;  // Im(butterfly) 
    L[j0 += j11] = xr13:12;; 
    L[j1 += j11] = xr15:14;; 
    if NLC0E, jump _butterfly_loop (NP);; 
 
   j13 = j13 + 2;; 
   j0 = j29 + j13;;     // offset for the next group 
   if NLC1E, jump _group_loop (NP);; 
 
  k10 = lshiftr k10;;     // twiddles stride 
  k11 = lshiftr k11;;     // butterflies/group 
  j12 = j12 + j12;;     // groups 
  j10 = j10 + j10;;     // width of butterfly 
  j11 = j11 + j11;;     // butterfly stride 
 
  k20 = k20 - 1;; 
  if NKEQ, jump _stages_loop (NP);;  

Listing 1. fft32_unoptimized.asm 
 

Points 

N 

ADSP-
TS101 

ADSP-TS201 
Input not in 

cache 

ADSP-TS201 
Input in 
cache 

256 2172 2641 2218 

512 4582 5533 4649 

1024 9872 12170 9992 

2048 21338 26610 22173 

4096 46244 197272 NA 

8192 99886 444628 NA 

16384 215224 987730 NA 

32768 NA 2133220 NA 

65536 NA 4720010 NA 

Table 1. Core Clock Cycles for N-point Complex FFT 

Optimizing the Structure of the FFT 
for ADSP-TS201 Processors 

To be able to re-structure the algorithm to 
perform optimally on ADSP-TS201, we have to 
understand why the performance of large FFTs 
using the conventional FFT structure is so poor. 

ADSP-TS201 memory is optimized for 
sequential reads. Cache is designed to help with 
algorithms where the reads are not sequential. In 
the conventional FFT algorithm, each stage’s 
butterflies stride doubles, so the reads are non-
sequential and, with each new stage, the cache is 
less and less likely to be a hit – the reads are all 
over the place. The solution lies in re-arranging a 
stage’s output to ensure that the next stage’s 
reads are sequential. The structure of the 
algorithm implementation is shown in Figure 2.  
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Figure 2. Reorganized Structure of the 16-Point FFT 
 

It is simple enough to trace this diagram by hand 
to see that it is simply a re-ordering of the 
diagram in Figure 1. Amazingly enough, the final 
output is in correct order. This can be easily 
proven for general N = 2k = the number of points 
in the FFT. Note that the re-ordering is given by 
the following formula: 
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Thus, if n is even, it is shifted right and if n is 
odd, it is shifted right and its most significant bit 
is set. This is, of course, equivalent to the 

operation of right 1-bit rotation, which after 
( )NK 2log=  steps returns the original n back. 

Thus, the output after K stages is in correct order 
again. 

Great! We have our new structure. It has 
sequential reads and we are lucky enough that 
the output is in the correct order. This should be 
much more efficient. Right? Let’s write the code 
for it! Well, before we spend a lot of time writing 
the code, we should ensure that all of the DSP 
operations that we are about to do actually fit 
into our processor architecture efficiently. There 
may be no reason to optimize data movements if 
the underlying math suffers.  
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The first obvious point to notice is that this 
structure cannot be done in-place due to its re-
ordering. The stages will have to ping-pong their 
input/output buffers. This should not be a 
problem. The ADSP-TS201 processor has a lot 
of memory on board, but should memory 
optimization be required (and input does not 
have to be preserved), we can use the input as 
one of the two ping-pong buffers.  

Next, we note that a traditional FFT combines 
butterflies that share twiddles into the same 
group to save twiddle fetch cycles. Amazingly, 
the twiddles of the structure in Figure 2 line up 
linearly – one group at a time. We are lucky 
again!  

Now, what would a butterfly of this new 
structure consist of? Table 2 lists the operations 
necessary to perform a single complex butterfly. 
Since the ADSP-TS201 is a SIMD processor 
(i.e., it can double all the computes), we will 
write the steps outlined in Listing 1 in SIMD 
fashion, so that two adjacent butterflies are 
computed in parallel, one in the X-Compute 
block and the other one in the Y-Compute block. 
Let us analyze the DSP operations in more detail. 
F1, F2, K2 and F4 fetch a total of four 32-bit 
words, which on ADSP-TS201 can be done in a 
single quad fetch into X-Compute block 
registers. To be able to supply SIMD machine 
with data, we would also have to perform a 
second butterfly quad fetch into the Y-Compute 
block registers. Then, M1, M2, M3, M4, A1, and 
A2 will perform SIMD operations for both 
butterflies. 

The ADSP-TS201 supports a single add/subtract 
instruction, so A3 and A4 can be combined into a 
single operation (which is, of course, performed 
SIMD on both butterflies at once) and similarly 
A5 and A6 can be combined, as well. 

 

 

Mnemonic Operation 

F1 Fetch Real(Input1) of the Butterfly 

F2 Fetch Imag(Input1) of the Butterfly 

K2 Fetch Real(Input2) of the Butterfly 

F4 Fetch Imag(Input2) of the Butterfly 

M1 K2 * Real(twiddle) 

M2 F4 * Imag(twiddle) 

M3 K2 * Imag(twiddle) 

M4 F4 * Real(twiddle) 

A1 M1–M2 = Real(Input2*twiddle) 

A2 M3+M4 = Imag(Input2*twiddle) 

A3 F1 + A1 = Real(Output1) 

A4 F1 - A1 = Real(Output2) 

A5 F2 + A2 = Imag(Output1) 

A6 F2 – A2 = Imag(Output2) 

S1 Store(Real(Output1)) 

S2 Store(Imag(Output1)) 

S3 Store(Real(Output2)) 

S4 Store(Imag(Output2)) 

Table 2. Single Butterfly Done Linearly – Logical 
Implementation 

Now we run into a problem: S1, S2, S3 and S4 
cannot be performed in the same cycle, since S3 
and S4 are destined to another place in memory 
due to our output re-ordering. Instead, we can 
store S1 and S2 for both butterflies in one cycle 
(lucky again – these are adjacent!) and S3 and S4 
for both butterflies in the next cycle. So far, so 
good – the new set of operations is summarized 
in Table 3. 
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Mnemonic Operation 

F1 Fetch Input1,2 of the Butterfly1 

F2 Fetch Input1,2 of the Butterfly2 

M1 Real(Input2) * Real(twiddle) 

M2 Imag(Input2) * Imag(twiddle) 

M3 Real(Input2) * Imag(twiddle) 

M4 Imag(Input2) * Real(twiddle) 

A1 M1–M2 = Real(Input2*twiddle) 

A2 M3+M4 = Imag(Input2*twiddle) 

A3 Real(Input1) +/- A1 = Real(Output1,2) 

A4 Imag(Input1) +/- A2 = Imag(Output1) 

S1 Store(Output1, both Butterflies) 

S2 Store(Output2, both Butterflies) 

Table 3. Single Butterfly Done Linearly – Actual 
ADSP-TS20x Implementation 

Each operation in Table 3 is a single-cycle 
operation on ADSP-TS201 processor. There is a 
total of 2 fetches, 4 multiplies, 4 ALU, and 2 
store instructions. Since the ADSP-TS201 allows 
fetches/stores to be paralleled with multiplies and 
ALUs in a single cycle, loop unrolling, 
pipelining, and paralleling should yield a 4-cycle 
execution of these two SIMD butterflies (and we 
are still efficient in the memory usage!). At this 
point, we can now be reasonably certain that the 
above will yield efficient code and we can start 
developing it. However, careful observation at 
this point can help us optimize this structure even 
further. Note that we are only using a total of 4 
fetches and stores from a single memory block, 
say, by using JALU pointer registers. In parallel 
we can do 3 more fetches/stores/KALU 
operations without losing any cycles (actually, 
we can do 4 of them, but we do need one 

reserved place in one of the instructions for a 
loop jump back). 

Thus, the old rule of fetching twiddles only once 
per group of butterflies that shares them is no 
longer necessary – the twiddle fetches come free! 
And, since the structure of the arrows of Figure 2 
is identical at every stage, we may be able to 
reduce the FFT from the usual three nested loops 
to only two, provided that we can find a way to 
correctly fetch the twiddles at each stage 
(twiddles are the only thing that distinguishes the 
stages of Figure 2). Figure 2 shows how the 
twiddles must be fetched at each stage: 1st Stage 
– all are W0. 2nd Stage – half are W0, next half are 
WN/4. 3rd Stage – one quarter are W0, the next 
quarter are WN/8, the next quarter are W2N/8, and 
the last quarter are W3N/8. And so on… If we 
keep a virtual twiddle pointer offset, increment it 
to the next sequential twiddle every butterfly, but 
AND it with a mask before actually using it in 
the twiddle fetch, we achieve precisely this order 
of twiddle fetch. Moreover, this rule is the same 
for every stage, except that the mask at every 
stage must be shifted down by one bit (i.e., each 
stage requires twice as fine a resolution of the 
twiddles as the previous stage). Here, our unused 
KALU operations come in very handy. To 
implement this twiddle fetch, we need to 
increment the virtual offset, mask it and do a 
twiddle fetch every butterfly… Oh, no! We are in 
SIMD (i.e. we are doing two butterflies together) 
and we do not have the 6 available instruction 
slots for this! But luck saves us again. We can 
easily notice that all stages except the last share 
the twiddles between the SIMD pair of 
butterflies – so, for these stages, we need only to 
do the twiddle fetch once per SIMD pair of the 
butterflies! And the three cycles are precisely 
what we have to do this. Unfortunately, in the 
last stage, every butterfly has its own unique 
twiddle; but in the last stage, we do not have to 
mask – just step the pointer to the next twiddle 
every time! It will have to be written separately, 
but it will optimize completely as well. Table 4 
summarizes the latest structure’s steps. Three 
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new KALU operations (K1, K2 and K3) have 
been added to Table 3. Time to write the code? 
Well, no – let us figure out how to pipeline it 
first. 

Mnemonic Operation 

K1 Virtual Pointer Offset Mask 

K2 Twiddles Fetch 

K3 Virtual Pointer Offset Increment 

F1 Fetch Input1,2 of the Butterfly1 

F2 Fetch Input1,2 of the Butterfly2 

M1 Real(Input2) * Real(twiddle) 

M2 Imag(Input2) * Imag(twiddle) 

M3 Real(Input2) * Imag(twiddle) 

M4 Imag(Input2) * Real(twiddle) 

A1 M1–M2 = Real(Input2*twiddle) 

A2 M3+M4 = Imag(Input2*twiddle) 

A3 Real(Input1) +/- A1 = Real(Output1,2) 

A4 Imag(Input1) +/- A2 = Imag(Output1) 

S1 Store(Output1, both Butterflies) 

S2 Store(Output2, both Butterflies) 

Table 4. Single Butterfly Done Linearly – Modified 
ADSP-TS20x Implementation 

Pipelining of the Algorithm 
Figure 3 shows the algorithm’s operations from 
Table 4 with arrows showing the dependencies. 
The arrows of the dependencies indicate that the 
result of the operation at the start of the arrow is 
used by the operation at the end of that arrow 
and, thus, must be completed first to ensure 
correct data. Some arrows have a stall associated 
with them, specifically: 

K2 -> M1, M2, M3, M4 

F1, F2 -> M1, M2, M3, M4, A3, A4 

M1, M2 -> A1 

M3, M4 -> A2 

A1, A2 -> A3, A4 

This means that if the operation at the start of the 
arrow is immediately followed by the operation 
at the end of that arrow, the result will be correct, 
but code execution will produce a stall. Thus, to 
fully optimize the code, operations at the ends of 
arrows with stalls must be kept more than one 
instruction line apart. 

 
Figure 3. Reorganized Structure’s Dependencies 

A quick observation of the dependencies in 
Figure 3 is sufficient to analyze the level of 
pipelining and the number of compute block 
registers needed to do it.  
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State Dependency 
To States 

Max 
Dep 

Cycles 

Compute Block 
Registers 
Needed 

K1 K2 1 0 

K2 M1,M2,M3,M4 5 4*([5/4]+1)=8 

K3 K1 1 0 

F1 M1,M2,M3,M4,
A1,A2 10 4*([10/4]+1)=16 

F2 M1,M2,M3,M4,
A1,A2 10 4*([10/4]+1)=16 

M1 A1 2 2([2/4]+1)=2 

M2 A1 2 2([2/4]+1)=2 

M3 A2 2 2([2/4]+1)=2 

M4 A2 2 2([2/4]+1)=2 

A1 A3,A4 2 2([2/4]+1)=2 

A2 A3,A4 2 2([2/4]+1)=2 

A3 S1,S2 1 4([1/4]+1)=4 

A4 S1,S2 1 4([1/4]+1)=4 

S1 none 0 0 

S2 none 0 0 

 Total Regs  60 

Table 5. Number of Compute Block Registers 
Required to Pipeline the Butterflies 

Full pipelining, as mentioned earlier, would give 
a 4-cycle SIMD pair of butterflies. Thus,  

Pipelined_CB_Registers_Per_State_Output = 
Unpipelined_CB_Registers_Per_State_Output * 
([Maximum_Dependency_Cycles/4]+1) 

Here, [x] denotes the integer part of the number 
x. We can therefore determine the number of 
compute block registers needed, as shown in 
Table 5. Note that A3 and A4 require twice as 

many output registers as M1, M2, M3, M4, A1 and 
A2 since A3 and A4 are add/subtracts. 

The resulting requirement to fully pipeline this 
code is 60 compute block registers, out of 64 
total – just barely made it! 

Cycle/ 
Operation JALU KALU MAC ALU 

1 F1 K1 M4-- A3--- 

2 F2 K2 M2- A4--- 

3 S1---  M3- A2-- 

4 S2--- K3 M1 A1- 

5 F1+ K1+ M4- A3-- 

6 F2+ K2+ M2 A4-- 

7 S1--  M3 A2- 

8 S2-- K3+ M1+ A1 

9 F1++ K1++ M4 A3- 

10 F2++ K2++ M2+ A4- 

11 S1-  M3+ A2 

12 S2- K3++ M1++ A1+ 

13 F1+++ K1+++ M4+ A3 

14 F2+++ K2+++ M2++ A4 

15 S1  M3++ A2+ 

16 S2 K3+++ M1+++ A1++ 

Table 6. Pipelined Butterflies 

We pipeline this fully symbolically, using the 
mnemonics of Table 4 and Figure 3. The 
pipelining is shown in Table 6, in which “+” in 
the operation indicates the operation that 
corresponds to the next set of the butterflies and 
“-” corresponds to the operation in the previous 
set of the butterflies. 
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All instructions are paralleled, there are no stalls, 
and there is a place to put the jump to the top of 
the loop (actually, four places, but this is only 
because the pipeline is 4 pairs of butterflies deep, 
each iteration of the loop in Table 6 will actually 
do 4 pairs of butterflies). 

The Code 

Now, writing the code is trivial. The ADSP-
TS201 is so flexible that it takes all the challenge 
right out of it. Just follow the pipeline of Table 6 
and the code is done. The resulting code for the 
stages other than last is shown in Listing 2. 

Outside of this inner loop is a stage loop that 
ping-pongs input/output buffers and shifts the 
twiddle modifier mask. Pretty simple! 

Additional optimization is done by breaking the 
first two stages away from the main of the code 

and doing them separately – they do not really 
require a complex multiply and can be done 
faster. Also, bit-reversal is incorporated into the 
first two stages, as well. Now, for the bottom line 
– how much did the cycle count improve? In 
Table 7 we repeat Table 1 with additional 
columns for the benchmarks for the new 
algorithm. The cycle count for the larger-than-
cache FFTs improved by a factor greater than 3! 
Moreover, the cycle count for FFTs that fit into 
the cache is better than it was on the original 
ADSP-TS101 processor, which had no cache or 
memory latency issues of any kind. The reason 
for this is that the new architecture allows the 
code to be written in two nested loops instead of 
three and, thus, has significantly less overhead. 
This code, ported to the ADSP-TS101, improves 
its benchmarks, too – as shown in Table 7. 

 

.align_code 4; 
_BflyLoop:  
  q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r30*r12;  fr16=r6-r7;;                  // S2----,K3-,   M1-,   A1-- 
 
  yr3:0=q[j0+=4];   k3=k5 and k4;    fr15=r23*r4;  fr24=r8+r18,  fr26=r8-r18;;   // F1,    K1,    M4--,  A3--- 
  xr3:0=q[j0+=4];   r5:4=l[k7+k3];   fr7=r31*r13;  fr25=r9+r19,  fr27=r9-r19;;   // F2,    K2,    M2-,   A4--- 
  q[j1+=4]=r25:24;                   fr14=r30*r13; fr17=r14+r15;;                // S1---,        M3-,   A2-- 
  q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r2*r4;    fr18=r6-r7;;                  // S2---, K3,    M1,    A1- 
 
  yr11:8=q[j0+=4];  k3=k5 and k4;    fr15=r31*r12; fr24=r20+r16, fr26=r20-r16;;  // F1+,   K1+,   M4-,   A3-- 
  xr11:8=q[j0+=4];  r13:12=l[k7+k3]; fr7=r3*r5;    fr25=r21+r17, fr27=r21-r17;;  // F2+,   K2+,   M2,    A4-- 
  q[j1+=4]=r25:24;                   fr14=r2*r5;   fr19=r14+r15;;                // S1--,         M3,    A2- 
  q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r10*r12;  fr16=r6-r7;;                  // S2--,  K3+,   M1+,   A1 
    
  yr23:20=q[j0+=4]; k3=k5 and k4;    fr15=r3*r4;   fr24=r28+r18, fr26=r28-r18;;  // F1++,  K1++,  M4,    A3- 
  xr23:20=q[j0+=4]; r5:4=l[k7+k3];   fr7=r11*r13;  fr25=r29+r19, fr27=r29-r19;;  // F2++,  K2++,  M2+,   A4- 
  q[j1+=4]=r25:24;                   fr14=r10*r13; fr17=r14+r15;;                // S1-,          M3+,   A2 
  q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r22*r4;   fr18=r6-r7;;                  // S2-,   K3++,  M1++,  A1+ 
 
  yr31:28=q[j0+=4]; k3=k5 and k4;    fr15=r11*r12; fr24=r0+r16,  fr26=r0-r16;;   // F1+++, K1+++, M4+,   A3 
  xr31:28=q[j0+=4]; r13:12=l[k7+k3]; fr7=r23*r5;   fr25=r1+r17,  fr27=r1-r17;; // F2+++, K2+++, M2++,  A4 
.align_code 4; 

        if NLC0E, jump _BflyLoop; 
         q[j1+=4]=r25:24; fr14=r22*r5;  fr19=r14+r15;;                  // S1,           M3++,  A2+  

Listing 2. fft32.asm - fragment 
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N 
ADSP-TS101 

Old structure 
ADSP-TS101 
New structure 

ADSP-TS201 
Old structure-
Input not in 

cache 

ADSP-TS201 
New structure-

Input not in 
cache 

ADSP-TS201 
Old structure-
Input in cache 

ADSP-TS201 
New structure- 
Input in cache 

256 2172 1958 2641 2402 2218 1963 

512 4582 4276 5533 5192 4649 4283 

1024 9872 9410 12170 11662 9992 9419 

2048 21338 20688 26610 25316 22173 20699 

4096 46244 45278 197272 69924 NA NA 

8192 99886 98540 444628 147628 NA NA 

16384 215224 213243 987730 313292 NA NA 

32768 NA NA 2133220 662614 NA NA 

65536 NA NA 4720010 1397544 NA NA 

Table 7. Core Clock Cycles for N-point Complex FFT, New versus Old Structure 
 

Usage Rules 
The C-callable complex FFT routine is called as 
FFT32( &(input), &(ping_pong_buffer1), 

&(ping_pong_buffer2), &(output), N, F); 

where 

input -> FFT input buffer, 

output -> FFT output buffer, 

ping_pong_bufferx are the ping pong buffers,  

N=Number of complex points, 

F=0 if FFT is real and 1 if FFT is complex. 

As mentioned earlier, due to data re-ordering, 
stages cannot be done in-place and have to ping-
pong. Thus, ping_pong_buffer1 and 
ping_pong_buffer2 have to be two distinct 
buffers. However, depending on the routine’s 
user requirements, some memory optimization is 
possible. Ping_pong_buffer1 can be made the 

same as input if input does not need to be 
preserved. Also, if Log2(N) is even, output can be 
made the same as ping_pong_buffer2 and if 
Log2(N) is odd, output can be made the same as 
ping_pong_buffer1. Below are two examples of 
the routine usage with minimal use of memory: 
FFT32( &(input), &( input),  

&( output), &(output), 1024, 1); 

FFT32( &(input), &(input),  
&( ping_pong_buffer2), &( input), 2048, 1); 

To eliminate memory block access conflicts, 
input must reside in a different memory block 
than ping_pong_buffer2 and twiddle factors must 
reside in a different memory block than the ping-
pong buffers. Of course, all code must reside in a 
block that is different from all the data buffers, as 
well. Ping-pong buffers can share a memory 
block, however – there is no instruction that 
accesses both ping-pong buffers in the same 
cycle. 
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Appendix 

Complete Source Code of the Optimized FFT 

/*  fft32.asm  
 
 Prelim rev. October 19, 2003 - BL 
   Rev. 1.0 - added real inputs case - PM 
 
 This is assembly routine for the Complex radix-2 C-callable FFT on TigerSHARC  
 family of DSPs. 
 
 I. Description of Calling. 
 
  1. Inputs: 
   j4 -> input (ping-pong buffer 1) 
   j5 -> ping-pong buffer 1 
         j6 -> ping-pong buffer 2 
   j7 -> output 
   j27+0x18 -> N = Number of points 
   j27+0x19 -> REAL or COMPLEX 
 
  2. C-Calling Example: 
   fft32(&(input), &(ping_pong_buffer1), &(ping_pong_buffer2), &(output), N, COMPLEX); 
 
  3. Limitations: 
   a. All buffers must be aligned on memory boundary which is a multiple of 4. 
   b. N must be between 32 and MAX_FFT_SIZE. 
   c. If memory space savings are required and input does not have to be 
      preserved, ping_pong_buffer1 can be the same buffer as input. 
   d. If memory space savings are required, output can be the same buffer 
      as ping_pong_buffer2 if the number of FFT stages is even (i.e.  
      Log2(N) is even) or the same as ping_pong_buffer1 if the number of 
      FFT stages is odd (i.e. Log2(N) is odd). 
 
  4. MAX_FFT_SIZE can be selected via #define. Larger values allow for more choices 
     of N, but its twiddles will occupy more memory. 
     
  5. This C - callable function can process up to 64K blocks of data on TS201  
                 (16K blocks on TS101) because C environment itself necessitates memory.  
                 Therefore, if more input points are necessary, assembly language development  
                 may become a must. On TS201, a block of memory is 128K words long, so  
                 maximum N is 128K real points or 64K complex points. TS101 contains  
                 only 2 blocks of data memory of 64K words and 4 buffers must be 
                 accommodated. Therefore, maximum N is 32K real words or 16K complex words. 
 
 II. Description of the FFT algorithm. 
 
  1. The input data is treated as complex interleaved N-point. 
  
  2. Due to re-ordering, no stage can be done in-place. 
  
  3. The bit reversal and the first two stages are combined into 
     a single loop. This loop takes data from input and stores it 
     in the ping-pong buffer1. 
  
  4. Each subsequent stage ping-pongs the data between the two ping-pong 
     buffers. The last stage uses FFT output buffer for its output. 
  
  5. Although the FFT is designed to be called with any point size 
     N <= MAX_FFT_SIZE by subsampling the twiddle factors, for ADSP-TS20x 
     processors, the best cycle optimization is achieved when MAX_FFT_SIZE=N. 
     For ADSP-TS101 all choices of MAX_FFT_SIZE are equally optimal. 
 
 III. Description of the REAL FFT algorithm. 
 
  1. The input data is treated as complex interleaved N/2-point. The N/2 point complex 
     FFT will be computed first. Thus, N is halved, now number of points = N/2. 
 
  2. Details and source code of the N/2 point complex FFT are in II above. 
 
  3. Real re-combine: 
   Here the complex N/2-point FFT computed in the previous steps is recombined to 
   produce the N-point real FFT. If G is the complex FFT and F is the real FFT, 
   the formula for F is given by: 
 
   F(n) = 0.5*(G(n)+conj(G(N/2-n))-0.5*i*exp(-2*pi*i*n/N)*(G(n)-conj(G(N/2-n)).  
    
   From this the following can be derived: 
 
   conj(F(N/2-n)) = 0.5*(G(n)+conj(G(N/2-n))+0.5*i*exp(-2*pi*i*n/N)*(G(n)-conj(G(N/2-n)). 
 
   Thus, this can be computed in (n,N/2-n) pairs, as follows (dropping factor of 2): 
 
   G(n) ------------------------------->------------------------>--------> F(n) 
                                            \ +/                     \ +/ 
                                             \/                       \/ 
                                             /\                       /\ 
                      conj                  / -\  exp(-2*pi*i*n)*i   / -\   conj 
   G(N/2-n) -----> conj(G(N/2-n))------>------------------------>--------> F(N/2-n) 
 
   This is very efficient on the TigerSHARC architecture due to the add/subtract 
   instruction. 
 IV. For all additional details regarding this algorithm and code, see EE-218 
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     application note, available from the ADI web site.      
*/ 
//************************************ Includes ********************************** 
 
#include "FFTDef.h" 
#include "defts201.h" 
 
//************************* Externs ************************************* 
 
.extern _twiddles; 
 
//********************************* FFT Routine ********************************* 
.section program; 
.global _FFT32; 
 
_FFT32: 
 
//********************************** Prologue *********************************** 
 
 mENTER 
 mPUSHQ(xR31:28) 
 mPUSHQ(xR27:24) 
 mPUSHQ(yR31:28) 
 mPUSHQ(yR27:24) 
  
//************************************ Setup ************************************* 
   j17 = [j27 + 0x18];;                       //j17 = N 
   j11 = [j27 + 0x19];;                       // j11=COMPLEX or REAL, off the stack 
 
 comp(j11,COMPLEX);;     // Complex or Real? 
 if jeq, jump _FFTStages1and2;; 
 j17=ashiftr j17;;     // if Real, half N 
 
//******************************************************************************** 
_FFTStages1and2: 
 
 j11 = j31 + j17;;                                    // j11=N 
 xr3=j11; k7=k31+_twiddles;;     
 k1=j11; j8=lshiftr j11;;    // k1=N, j8=N/2 
 j9=lshiftr j8; xr0=MAX_FFT_SIZE; xr3=LD0 r3;;  // j9=N/4, compute the twiddle stride 
 k8=lshiftr k1; xr0=LD0 r0; xr1=j11;; 
 k8=lshiftr k8; xr1=LD0 r1; xr2=(31-3);;   // k8=N/4, Compute Stages-3 
 k0=j4; k10=lshiftr k8; xr1=r1-r0; xr0=lshift r0 by -32;; // k0->input, xr1=bit difference between MAX and N 
 k10=lshiftr k10; xr0=bset r0 by r1; xr30=r2-r3;;  // k10=N/16, xr30=Stages-3 
 k10=k10-1; xr0=lshift r0 by 2; LC1=xr30;;   // k10=N/16-1, LC1=Stages-3 
 k9=xr0; k4=k31+(MAX_FFT_SIZE/4-1);; 
 k4=not k4; j10=lshiftr j9;;    // initial twiddles pointer mask, j10=N/8 
 
//****************** Bit Reverse and Stages 1 & 2 ****************************** 
 
 k5=lshiftr k1;;      // k5=N/2 
 j0=j31+j6; k6=k6-k6;;     // j0->ping_pong_buffer2 
 j1=j0+j9; LC0=k10;;     // j1->ping_pong_buffer2+N/4, LC0=N/16-1 
 j2=j1+j9; k1=k0+k5;;     // j2->ping_pong_buffer2+N/2, k1->input+N/2 
 j3=j2+j9; k2=k1+k5;;     // j3->ping_pong_buffer2+3N/4, k2->input+N 
 j12=j3+j9; k3=k2+k5;;     // j12->ping_pong_buffer2+N, k3->input+3N/2 
 j13=j12+j9; k5=lshiftr k5;;    // j13->ping_pong_buffer2+5N/4, k5=N/4 
 j14=j13+j9; r1:0=q[k0+k6];;    // j14->ping_pong_buffer2+3N/2 
 j15=j14+j9; r3:2=q[k2+k6];;    // j15->ping_pong_buffer2+7N/4 
  
 r5:4=q[k1+k6];; 
 r7:6=q[k3+k6];; 
  
 k6=k6+k5 (br); fr0=r0+r2, fr20=r0-r2;; 
 r9:8=q[k0+k6]; fr2=r1+r3, fr29=r1-r3;; 
 r11:10=q[k2+k6]; fr4=r4+r6, fr21=r4-r6;; 
 r13:12=q[k1+k6]; fr5=r5+r7, fr28=r5-r7;; 
   
 r15:14=q[k3+k6]; fr18=r8+r10, fr22=r8-r10;;    
 k6=k6+k5 (br); fr19=r9+r11, fr31=r9-r11;;    
 fr26=r12+r14, fr23=r12-r14;;       
 fr27=r13+r15, fr30=r13-r15;;       
   
 fr20=r20+r28, fr28=r20-r28;;       
 fr29=r29+r21, fr21=r29-r21;;       
 fr22=r22+r30, fr30=r22-r30;;       
 fr31=r31+r23, fr23=r31-r23;;       
  
.align_code 4; 
_Stages1and2Loop: 
  r1:0=q[k0+k6]; q[j2+=4]=yr23:20; fr16=r0+r4, fr24=r0-r4;; 
  r3:2=q[k2+k6]; q[j3+=4]=xr23:20; fr17=r2+r5, fr25=r2-r5;; 
  r5:4=q[k1+k6]; q[j14+=4]=yr31:28; fr18=r18+r26, fr26=r18-r26;; 
  r7:6=q[k3+k6]; q[j15+=4]=xr31:28; fr19=r19+r27, fr27=r19-r27;; 
   
  k6=k6+k5 (br); q[j0+=4]=yr19:16; fr0=r0+r2, fr20=r0-r2;; 
  r9:8=q[k0+k6]; q[j1+=4]=xr19:16; fr2=r1+r3, fr29=r1-r3;; 
  r11:10=q[k2+k6]; q[j12+=4]=yr27:24; fr4=r4+r6, fr21=r4-r6;; 
  r13:12=q[k1+k6]; q[j13+=4]=xr27:24; fr5=r5+r7, fr28=r5-r7;; 
   
  r15:14=q[k3+k6]; fr18=r8+r10, fr22=r8-r10;;    
  k6=k6+k5 (br); fr19=r9+r11, fr31=r9-r11;;     
  fr26=r12+r14, fr23=r12-r14;;       
  fr27=r13+r15, fr30=r13-r15;;       
   
  fr20=r20+r28, fr28=r20-r28;;       
  fr29=r29+r21, fr21=r29-r21;; 
  fr22=r22+r30, fr30=r22-r30;; 
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.align_code 4; 
  if NLC0E, jump _Stages1and2Loop; 
  fr31=r31+r23, fr23=r31-r23;;       
   
 q[j2+=4]=yr23:20; fr16=r0+r4, fr24=r0-r4;; 
 q[j3+=4]=xr23:20; fr17=r2+r5, fr25=r2-r5;; 
 q[j14+=4]=yr31:28; fr18=r18+r26, fr26=r18-r26;; 
 q[j15+=4]=xr31:28; fr19=r19+r27, fr27=r19-r27;; 
   
 q[j0+=4]=yr19:16;; 
 q[j1+=4]=xr19:16;; 
 q[j12+=4]=yr27:24;; 
 q[j13+=4]=xr27:24;; 
 
//************************ Stages 3 to Log2(N)-1  ******************************* 
 
 j0=j31+j6; k5=k31+0;; 
 
.align_code 4; 
_StageLoop:  
  yr3:0=q[j0+=4];   k3=k5 and k4;;                                              // F1,    K1 
  xr3:0=q[j0+=4];   r5:4=l[k7+k3];;                                             // F2,    K2 
  LC0=k10;          k5=k5+k9;;                                                  //        K3,    M1 
 
  yr11:8=q[j0+=4];  k3=k5 and k4;    fr6=r2*r4;;                                        // F1+,   K1+ 
  xr11:8=q[j0+=4];  r13:12=l[k7+k3]; fr7=r3*r5;;                                // F2+,   K2+,   M2 
                                   fr14=r2*r5;;                               //               M3 
  j1=j31+j5;        k5=k5+k9;        fr6=r10*r12;  fr16=r6-r7;;                 //        K3+,   M1+,   A1 
    
  yr23:20=q[j0+=4]; k3=k5 and k4;    fr15=r3*r4;;                               // F1++,  K1++,  M4 
  xr23:20=q[j0+=4]; r5:4=l[k7+k3];   fr7=r11*r13;;                              // F2++,  K2++,  M2+ 
                                     fr14=r10*r13; fr17=r14+r15;;               //               M3+,   A2 
  j2=j1+j11;         k5=k5+k9;        fr6=r22*r4;   fr18=r6-r7;;                 //        K3++,  M1++,  A1+ 
 
  yr31:28=q[j0+=4]; k3=k5 and k4;    fr15=r11*r12; fr24=r0+r16, fr26=r0-r16;;   // F1+++, K1+++, M4+,   A3 
  xr31:28=q[j0+=4]; r13:12=l[k7+k3]; fr7=r23*r5;   fr25=r1+r17, fr27=r1-r17;;   // F2+++, K2+++, M2++,  A4 
         q[j1+=4]=r25:24;                   fr14=r22*r5;  fr19=r14+r15;;              // S1,           M3++,  A2+ 
    
.align_code 4; 
_BflyLoop:  
   q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r30*r12;  fr16=r6-r7;;                  // S2----,K3-,   M1-,   A1-- 
 
   yr3:0=q[j0+=4];   k3=k5 and k4;    fr15=r23*r4;  fr24=r8+r18,  fr26=r8-r18;;   // F1,    K1,    M4--,  A3--- 
   xr3:0=q[j0+=4];   r5:4=l[k7+k3];   fr7=r31*r13;  fr25=r9+r19,  fr27=r9-r19;;   // F2,    K2,    M2-,   A4--- 
   q[j1+=4]=r25:24;                   fr14=r30*r13; fr17=r14+r15;;                // S1---,        M3-,   A2-- 
   q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r2*r4;    fr18=r6-r7;;                  // S2---, K3,    M1,    A1- 
 
   yr11:8=q[j0+=4];  k3=k5 and k4;    fr15=r31*r12; fr24=r20+r16, fr26=r20-r16;;  // F1+,   K1+,   M4-,   A3-- 
   xr11:8=q[j0+=4];  r13:12=l[k7+k3]; fr7=r3*r5;    fr25=r21+r17, fr27=r21-r17;;  // F2+,   K2+,   M2,    A4-- 
              q[j1+=4]=r25:24;                   fr14=r2*r5;   fr19=r14+r15;;                // S1--,         M3,    A2- 
   q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r10*r12;  fr16=r6-r7;;                  // S2--,  K3+,   M1+,   A1 
    
   yr23:20=q[j0+=4]; k3=k5 and k4;    fr15=r3*r4;   fr24=r28+r18, fr26=r28-r18;;  // F1++,  K1++,  M4,    A3- 
   xr23:20=q[j0+=4]; r5:4=l[k7+k3];   fr7=r11*r13;  fr25=r29+r19, fr27=r29-r19;;  // F2++,  K2++,  M2+,   A4- 
   q[j1+=4]=r25:24;                   fr14=r10*r13; fr17=r14+r15;;                // S1-,          M3+,   A2 
   q[j2+=4]=r27:26;  k5=k5+k9;        fr6=r22*r4;   fr18=r6-r7;;                  // S2-,   K3++,  M1++,  A1+ 
 
   yr31:28=q[j0+=4]; k3=k5 and k4;    fr15=r11*r12; fr24=r0+r16,  fr26=r0-r16;;   // F1+++, K1+++, M4+,   A3 
   xr31:28=q[j0+=4]; r13:12=l[k7+k3]; fr7=r23*r5;   fr25=r1+r17,  fr27=r1-r17;;  // F2+++, K2+++, M2++,  A4 
.align_code 4; 
         if NLC0E, jump _BflyLoop; 
         q[j1+=4]=r25:24; fr14=r22*r5;  fr19=r14+r15;;                   // S1,           M3++,  A2+ 
     
  q[j2+=4]=r27:26;                   fr6=r30*r12;  fr16=r6-r7;;                   // S2----,       M1-, A1-- 
    
  j0=j31+j5;                         fr15=r23*r4;  fr24=r8+r18,  fr26=r8-r18;;    //               M4--,  A3--- 
             // swap ping-pong pointers 
  j5=j31+j6;                         fr7=r31*r13;  fr25=r9+r19,  fr27=r9-r19;;    //               M2-,   A4--- 
  q[j1+=4]=r25:24;                   fr14=r30*r13; fr17=r14+r15;;                 // S1---,        M3-,   A2-- 
  q[j2+=4]=r27:26;                                 fr18=r6-r7;;                   // S2---,               A1- 
 
  j6=j31+j0;                         fr15=r31*r12; fr24=r20+r16, fr26=r20-r16;;   //               M4-,   A3-- 
                                                   fr25=r21+r17, fr27=r21-r17;;   //                      A4-- 
         q[j1+=4]=r25:24;                           fr19=r14+r15;;               // S1--,                A2- 
  q[j2+=4]=r27:26;                   fr24=r28+r18, fr22=r28-r18;;       // S2--                 A3- 
    
  j0=j31+j6;                         fr25=r29+r19, fr23=r29-r19;;     //                      A4- 
  q[j1+=4]=r25:24; k5=k31+0;;                                                              // S1- 
.align_code 4; 
  if NLC1E, jump _StageLoop; 
  q[j2+=4]=r23:22; k4=ashiftr k4;;                                                // S2-, shift the mask 
    
//******************************* Last stage ********************************* 
  k9 = ashiftr k9;;//in this manner any MAX_FFT_SIZE can be used 
 
 yr3:0=q[j0+=4]; yr5:4 = l[k7+=k9];;                                      // F1, 
 xr3:0=q[j0+=4];   xr5:4=l[k7+=k9];;                                              // F2,    K2 
 j1=j31+j7;        fr6=r2*r4; LC0=k10;;                                  //               M1 
 
 yr11:8=q[j0+=4];  yr13:12=l[k7+=k9];;                                                // F1+ 
 xr11:8=q[j0+=4];  xr13:12=l[k7+=k9]; fr7=r3*r5;;                                 // F2+,   K2+,   M2 
     j2=j1+j11;                    fr14=r2*r5;;                                //               M3 
                                      fr6=r10*r12;  fr16=r6-r7;;                  //               M1+,   A1 
 
 yr23:20=q[j0+=4]; yr5:4=l[k7+=k9];  fr15=r3*r4;;                                // F1++,         M4 
 xr23:20=q[j0+=4]; xr5:4=l[k7+=k9];   fr7=r11*r13;;                               // F2++,  K2++,  M2+ 
                                     fr14=r10*r13; fr17=r14+r15;;                //               M3+,   A2 
                                     fr6=r22*r4;   fr18=r6-r7;;                  //               M1++,  A1+ 
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 yr31:28=q[j0+=4]; yr13:12=l[k7+=k9];fr15=r11*r12; fr24=r0+r16, fr26=r0-r16;;    // F1+++,        M4+,   A3 
 xr31:28=q[j0+=4]; xr13:12=l[k7+=k9]; fr7=r23*r5;   fr25=r1+r17, fr27=r1-r17;;    // F2+++, K2+++, M2++,  A4 
     q[j1+=4]=r25:24;                    fr14=r22*r5;  fr19=r14+r15;;                // S1,           M3++,  A2+ 
   
.align_code 4; 
_BflyLastLoop:  
  q[j2+=4]=r27:26;                    fr6=r30*r12;  fr16=r6-r7;;                   // S2----,       M1-,   A1-- 
 
  yr3:0=q[j0+=4];   yr5:4=l[k7+=k9];  fr15=r23*r4;  fr24=r8+r18,  fr26=r8-r18;;    // F1,           M4--,  A3--- 
  xr3:0=q[j0+=4];   xr5:4=l[k7+=k9];  fr7=r31*r13;  fr25=r9+r19,  fr27=r9-r19;;    // F2,    K2,    M2-,   A4--- 
  q[j1+=4]=r25:24;                    fr14=r30*r13; fr17=r14+r15;;                 // S1---,        M3-,   A2-- 
  q[j2+=4]=r27:26;                    fr6=r2*r4;    fr18=r6-r7;;                   // S2---,        M1,    A1- 
 
  yr11:8=q[j0+=4];  yr13:12=l[k7+=k9];fr15=r31*r12; fr24=r20+r16, fr26=r20-r16;;   // F1+,          M4-,   A3-- 
  xr11:8=q[j0+=4];  xr13:12=l[k7+=k9];fr7=r3*r5;    fr25=r21+r17, fr27=r21-r17;;   // F2+,   K2+,   M2,    A4-- 
         q[j1+=4]=r25:24;                    fr14=r2*r5;   fr19=r14+r15;;                 // S1--,         M3,    A2- 
  q[j2+=4]=r27:26;                    fr6=r10*r12;  fr16=r6-r7;;                   // S2--,         M1+,   A1 
 
  yr23:20=q[j0+=4]; yr5:4=l[k7+=k9];  fr15=r3*r4;   fr24=r28+r18, fr26=r28-r18;;   // F1++,         M4,    A3- 
  xr23:20=q[j0+=4]; xr5:4=l[k7+=k9];  fr7=r11*r13;  fr25=r29+r19, fr27=r29-r19;;   // F2++,  K2++,  M2+,   A4- 
  q[j1+=4]=r25:24;                    fr14=r10*r13; fr17=r14+r15;;                 // S1-,          M3+,   A2 
  q[j2+=4]=r27:26;                    fr6=r22*r4;   fr18=r6-r7;;                   // S2-,          M1++,  A1+ 
 
  yr31:28=q[j0+=4];yr13:12=l[k7+=k9]; fr15=r11*r12; fr24=r0+r16,  fr26=r0-r16;;    // F1+++,        M4+,   A3 
  xr31:28=q[j0+=4];xr13:12=l[k7+=k9]; fr7=r23*r5;   fr25=r1+r17,  fr27=r1-r17;;    // F2+++, K2+++, M2++,  A4 
.align_code 4; 
     if NLC0E, jump _BflyLastLoop; 
     q[j1+=4]=r25:24;  fr14=r22*r5;  fr19=r14+r15;;                    // S1,           M3++,  A2+ 
 
 q[j2+=4]=r27:26;                   fr6=r30*r12;  fr16=r6-r7;;                    // S2----,       M1-, A1-- 
                                    fr15=r23*r4;  fr24=r8+r18,  fr26=r8-r18;;     //               M4--,  A3--- 
                                    fr7=r31*r13;  fr25=r9+r19,  fr27=r9-r19;;     //               M2-,   A4--- 
 q[j1+=4]=r25:24;                   fr14=r30*r13; fr17=r14+r15;;                  // S1---,        M3-,   A2-- 
 q[j2+=4]=r27:26;                                 fr18=r6-r7;;                    // S2---,               A1- 
                                    fr15=r31*r12; fr24=r20+r16, fr26=r20-r16;;    //               M4-,   A3-- 
                                                  fr25=r21+r17, fr27=r21-r17;;    //                      A4-- 
     q[j1+=4]=r25:24;                     fr19=r14+r15;;             // S1--,                A2- 
 q[j2+=4]=r27:26;;                                                                // S2-- 
                                                  fr24=r28+r18, fr26=r28-r18;;    //                      A3- 
                                                  fr25=r29+r19, fr27=r29-r19;;    //                      A4- 
 q[j1+=4]=r25:24;;                                                                // S1- 
 q[j2+=4]=r27:26;;                                                                // S2- 
   j11=[j27+0x19];;        // j11=COMPLEX or REAL, off the stack 
 comp(j11,COMPLEX);;        // Complex or Real? 
.align_code 4; 
 if jeq, jump _FFTEpilogue;;       // If Complex, done 
 
//******************************* Real re-combine ******************************** 
 
         //j17=N/2, j7=output 
 k8=k31+_twiddles; j0=j31+j7;;     // k8->twiddles, j0->internal buffer 
 k9=ashiftr k9; j10=j31+j7;;     // k9=twiddle stride, j10->internal buffer 
 j14=j17+j17;;       // j14=N (N/2 complex values) 
 j14=j14-4;;       // j14=N-4 real=N/2-2 complex 
 j1=j0+j14;;       // j1->internal buffer+(N/2-2) 
 j14=j10+j14;;       // j14->internal buffer+(N/2-2) 
 j29 = ashiftr j17;;      // j29=N/4 
 k15=k31+MAX_FFT_SIZE/4; j30=ashiftr j29;;    // k15=N/4*twiddle_stride, j30=N/8 
 j30 = ashiftr j30;;      // N/16 
 k8=k8+k9; r0=l[j7+j17];;     // k8->twiddles+1, get G(N/4) 
 j0=j0+2; k12=k8+k15;;      // j0->internal buffer+1, k12->twiddles+N/8+1 
 LC0=j30; fr0=r0+r0; j2=j0+j29;;     // LC0=N/16, compute F(N/4)=2*conj(G(N/4)),  
         // j2->internal buffer+1+N/8 
 j3=j1-j29;;       // j3->internal buffer+3N/8-2 
 xfr0=-r0; j10=j10+2; k10=yr0;;     // j10->internal buffer+1, k10=Im(F(N/4)) 
 j12=j10+j29;;       // j12->internal buffer+N/8+1 
 if LC0E; j13=j14-j29; k11=xr0;;     // LC0=N/16-1, j13->internal buffer+3N/8-2, k11=Re(F(N/4)) 
 yr3:0=DAB q[j0+=4];;      // Prime the DAB 
 xr3:0=DAB q[j2+=4];;      // Prime the DAB 
 yr3:0=DAB q[j0+=4];;      // yr0=Re(G(n)), yr1=Im(G(n)), yr2=Re(G(n+1)), yr3=Im(G(n+1)) 
 xr3:0=DAB q[j2+=4];;      // xr0=Re(G(n+N/8)), xr1=Im(G(n+N/8)) 
         // xr2=Re(G(n+1+N/8)), xr3=Im(G(n+1+N/8)) 
 yr7:4=q[j1+=-4]; xr9:8=l[k12+=k9];;    // yr4=Re(G(N/2-(n+1))), yr5=Im(G(N/2-(n+1))) 
         // yr6=Re(G(N/2-n)), yr7=Im(G(N/2-n)) 
         // twiddles(n+N/8) - want to mult by sin(x)-icos(x) 
 xr7:4=q[j3+=-4]; xr11:10=l[k12+=k9];;    // xr4=Re(G(N/2-(n+1+N/8))), xr5=Im(G(N/2-(n+1+N/8))) 
         // xr6=Re(G(N/2-(n+N/8))), xr7=Im(G(N/2-(n+N/8))) 
         // twiddles(n+1+N/8) 
 if LC0E; fr16=r0+r6, fr20=r0-r6; yr9:8=l[k8+=k9];;   // LC0=N/16-2, r16=Re(G(n)+conj(G(N/2-n))),  
         // r20=Re(G(n)-conj(G(N/2-n))) 
         // twiddles(n) 
 fr18=r2+r4, fr22=r2-r4; yr11:10=l[k8+=k9];;   // r18=Re(G(n+1)+conj(G(N/2-(n+1)))),  
         // r22=Re(G(n+1)-conj(G(N/2-(n+1)))) 
         // twiddles(n+1) 
 fr24=r20*r9; fr21=r1+r7, fr17=r1-r7;;    // r24=s(n)*Re(G(n)-conj(G(N/2-n))) 
         // r17=Im(G(n)+conj(G(N/2-n))), r21=Im(G(n)-conj(G(N/2-n))) 
 fr26=r22*r11; fr23=r3+r5, fr19=r3-r5; xr3:0=DAB q[j2+=4];;  // r26=s(n+1)*Re(G(n+1)-conj(G(N/2-(n+1)))) 
         // r19=Im(G(n+1)+conj(G(N/2-(n+1)))),  
         // r23=Im(G(n+1)-conj(G(N/2-(n+1)))) 
         // xr3:0=next G(n+2+N/8), G(n+3+N/8) 
 fr25=r21*r8;  yr3:0=DAB q[j0+=4];;    // r25=c(n)*Im(G(n)-conj(G(N/2-n))),  
         // yr3:0=next G(n+2), G(n+3) 
 fr27=r23*r10;;       // r27=c(n+1)*Im(G(n+1)-conj(G(N/2-(n+1)))) 
 fr24=r24+r25; fr25=r21*r9; yr7:4=q[j1+=-4];;   // r24=Re(-i*exp(2*pi*i*n)(G(n)-conj(G(N/2-n)))) 
         // r13=s(n)*Im(G(n)-conj(G(N/2-n))) 
         // yr7:4=next G(N/2-(n+2)), G(N/2-(n+3)) 
 fr26=r26+r27; fr27=r23*r11; xr7:4=q[j3+=-4];;   // r26=Re(-i*exp(2*pi*i*(n+1))(G(n+1)-conj(G(N/2-(n+1))))) 
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         // r27=s(n+1)*Im(G(n+1)-conj(G(N/2-(n+1)))) 
         // xr7:4=next G(N/2-(n+2+N/8)), G(N/2-(n+3+N/8)) 
 fr13=r20*r8; fr12=r16+r24, fr30=r16-r24;;    // r13=c(n)*Re(G(n)-conj(G(N/2-n))), 
         // r12=Re(F(n)), r30=Re(F(N/2-n)) 
 fr15=r22*r10; fr14=r18+r26, fr28=r18-r26;;    // r15=c(n+1)*Re(G(n+1)-conj(G(N/2-(n+1)))) 
         // r14=Re(F(n+1)), r28=Re(F(N/2-(n+1))) 
 fr13=r25-r13; xr9:8=l[k12+=k9];;     // r13=Im(-i*exp(2*pi*i*x)(G(n)-conj(G(N/2-n)))),  
         // next twiddles(n+2+N/8) 
 fr15=r27-r15; xr11:10=l[k12+=k9];;    // r15=Im(-i*exp(2*pi*i*x)(G(n+1)-conj(G(N/2-(n+1))))) 
         // next twiddles(n+3+N/8)  
.align_code 4; 
_combine_stage: 
  fr16=r0+r6, fr20=r0-r6; yr9:8=l[k8+=k9];;   // r16=Re(G(n+2)+conj(G(N/2-(n+2)))), 
         // r20=Re(G(n+2)-conj(G(N/2-(n+2)))) 
         // next twiddles(n+2) 
  fr18=r2+r4, fr22=r2-r4; yr11:10=l[k8+=k9];;   // r18=Re(G(n+3)+conj(G(N/2-(n+3)))),  
         // r22=Re(G(n+3)-conj(G(N/2-(n+3)))) 
         // next twiddles(n+3) 
  fr13=r13+r17, fr31=r13-r17;;    // r13=Im(F(n)), r31=Im(F(N/2-n)) 
  fr15=r15+r19, fr29=r15-r19; l[j12+=2]=xr13:12;;  // r15=Im(F(n+1)), r29=Im(F(N/2-(n+1))), store F(n+N/8) 
  fr24=r20*r9; fr21=r1+r7, fr17=r1-r7; q[j14+=-4]=yr31:28;; // r24=s(n+2)*Re(G(n+2)-conj(G(N/2-(n+2)))) 
         // r21=Im(G(n+2)+conj(G(N/2-(n+2)))),  
         // r17=Im(G(n+2)-conj(G(N/2-(n+2)))) 
         // store F(N/2-n), F(N/2-(n+1)) 
  fr26=r22*r11; fr23=r3+r5, fr19=r3-r5; xr3:0=DAB q[j2+=4];; // r26=s(n+3)*Re(G(n+3)-conj(G(N/2-(n+3)))) 
         // r23=Im(G(n+3)+conj(G(N/2-(n+3)))),  
         // r19=Im(G(n+3)-conj(G(N/2-(n+3)))) 
         // xr3:0=next G(n+4+N/8), G(n+5+N/8) 
  fr25=r21*r8; yr3:0=DAB q[j0+=4];;    // r25=c(n+2)*Im(G(n+2)-conj(G(N/2-(n+2)))) 
         // yr3:0=next G(n+4), G(n+5) 
  fr27=r23*r10; q[j13+=-4]=xr31:28;;    // r27=c(n+3)*Im(G(n+3)-conj(G(N/2-(n+3)))) 
         // store F(N/2-(n+N/8)), F(N/2-(n+1+N/8)) 
  fr24=r24+r25; fr25=r21*r9; l[j10+=2]=yr13:12;;  // r24=Re(-i*exp(2*pi*i*x)(G(n+2)-conj(G(N/2-(n+2))))) 
         // r25=s(n+2)*Im(G(n+2)-conj(G(N/2-(n+2)))), store F(n) 
  fr26=r26+r27; fr27=r23*r11; l[j10+=2]=yr15:14;;  // r26=Re(-i*exp(2*pi*i*x)(G(n+3)-conj(G(N/2-(n+3))))) 
         // r27=s(n+3)*Im(G(n+3)-conj(G(N/2-(n+3)))), store F(n+1) 
  fr13=r20*r8; fr12=r16+r24, fr30=r16-r24; l[j12+=2]=xr15:14;; // r13=cos(n+2)*Re(G(n+2)-conj(G(N/2-(n+2)))) 
         // r12=Re(F(n+2)), r30=Re(F(N/2-(n+2))), store F(n+1+N/8) 
  fr15=r22*r10; fr14=r18+r26, fr28=r18-r26; xr7:4=q[j3+=-4];; // r15=cos(n+3)*Re(G(n+3)-conj(G(N/2-(n+3)))) 
         // r14=Re(F(n+3)), r28=Re(F(N/2-(n+3))) 
         // xr7:4=next G(N/2-(n+4+N/8)), G(N/2-(n+5+N/8)) 
  fr13=r25-r13; xr9:8=l[k12+=k9]; yr7:4=q[j1+=-4];;  // r13=Im(-i*exp(2*pi*i*x)(G(n+2)-conj(G(N/2-(n+2))))) 
         // next twiddles(n+4+N/8) 
         // yr7:4=next G(N/2-(n+4)), G(N/2-(n+5)) 
.align_code 4; 
  if NLC0E, jump _combine_stage(P); fr15=r27-r15; xr11:10=l[k12+=k9];;// r15=Im(-i*exp(2*pi*i*x)(G(n+3)-conj(G(N/2-(n+3))))) 
         // next twiddles(n+5+N/8) 
 
 fr16=r0+r6, fr20=r0-r6; yr9:8=l[k8+=k9];;    // r16=Re(G(n+4)+conj(G(N/2-(n+4)))),  
         // r20=Re(G(n+4)-conj(G(N/2-(n+4)))) 
         // next twiddles(n+4) 
 fr18=r2+r4, fr22=r2-r4; yr11:10=l[k8+=k9];;   // r18=Re(G(n+5)+conj(G(N/2-(n+5)))),  
         // r22=Re(G(n+5)-conj(G(N/2-(n+5)))) 
         // next twiddles(n+5) 
 fr13=r13+r17, fr31=r13-r17;;     // r13=Im(F(n+2)), r31=Im(F(N/2-(n+2))) 
 fr15=r15+r19, fr29=r15-r19;;     // r15=Im(F(n+3)), r29=Im(F(N/2-(n+3))) 
 fr24=r20*r9; fr21=r1+r7, fr17=r1-r7; yr1:0=l[j31+j7];;  // r24=s(n+4)*Re(G(n+4)-conj(G(N/2-(n+4)))) 
         // r21=Im(G(n+4)+conj(G(N/2-(n+4)))),  
         // r17=Im(G(n+4)-conj(G(N/2-(n+4)))) 
         // yr0=Re(G(0)), yr1=Im(G(0)) 
 fr26=r22*r11; fr23=r3+r5, fr19=r3-r5;;    // r26=s(n+5)*Re(G(n+5)-conj(G(N/2-(n+5)))) 
         // r23=Im(G(n+5)+conj(G(N/2-(n+5)))),  
         // r19=Im(G(n+5)-conj(G(N/2-(n+5)))) 
 fr25=r21*r8;;       // r25=cos(x)*Im(G(n)-conj(G(N/2-n))) 
 fr27=r23*r10; l[j12+=2]=xr13:12;;    // r27=cos(x)*Im(G(n)-conj(G(N/2-n))) 
         // store F(n+2+N/8) 
 yfr0=r1+r0; yr1=lshift r1 by -32; q[j14+=-4]=yr31:28;;  // yr0=Re(G(0))+Im(G(0)), yr1=0=Im(F(0)) 
         // store F(N/2-(n+2)), F(N/2-(n+3)) 
 yfr0=r0+r0; q[j13+=-4]=xr31:28;;     // yr0=Re(F(0)) 
         // store F(N/2-(n+2+N/8)), F(N/2-(n+3+N/8)) 
 fr24=r24+r25; fr25=r21*r9; l[j10+=2]=yr13:12;;   // r24=Re(-i*exp(2*pi*i*x)(G(n+4)-conj(G(N/2-(n+4))))) 
         // r25=s(n+4)*Im(G(n+4)-conj(G(N/2-(n+4)))), store F(n+2) 
 fr26=r26+r27; fr27=r23*r11; l[j10+=2]=yr15:14;;   // r26=Re(-i*exp(2*pi*i*x)(G(n+5)-conj(G(N/2-(n+5))))) 
         // r27=s(n+5)*Im(G(n+5)-conj(G(N/2-(n+5)))), store F(n+3) 
 fr13=r20*r8; fr12=r16+r24, fr30=r16-r24; l[j12+=2]=xr15:14;;  // r13=c(n+4)*Re(G(n+4)-conj(G(N/2-(n+4)))) 
         // r12=Re(F(n+4)), r30=Re(F(N/2-(n+4))), store F(n+3+N/8) 
 fr15=r22*r10; fr14=r18+r26, fr28=r18-r26; l[j31+j7]=yr1:0;;  // r15=c(n+5)*Re(G(n+5)-conj(G(N/2-(n+5)))) 
         // r14=Re(F(n+5)), r28=Re(F(N/2-(n+5))) 
         // store F(0) 
 fr13=r25-r13; l[j7+j17]=k11:10;;     // r13=Im(-i*exp(2*pi*i*x)(G(n+4)-conj(G(N/2-(n+4))))) 
         // store F(N/4) 
 fr15=r27-r15;;       // r15=Im(-i*exp(2*pi*i*x)(G(n+5)-conj(G(N/2-(n+5))))) 
 fr13=r13+r17, fr31=r13-r17;;     // r13=Im(F(n+4)), r31=Im(F(N/2-(n+4))) 
 fr15=r15+r19, fr29=r15-r19; l[j12+=2]=xr13:12;;   // r15=Im(F(n+5)), r29=Im(F(N/2-(n+5))), store F(n+4+N/8) 
 q[j14+=-4]=yr31:28;;      // store F(N/2-(n+4)), F(N/2-(n+5)) 
 q[j13+=-4]=xr31:28;;      // store F(N/2-(n+4+N/8)), F(N/2-(n+5+N/8)) 
 l[j10+=2]=yr13:12;;      // store F(n+4) 
 l[j10+=2]=yr15:14;;      // store F(n+5) 
 l[j12+=2]=xr15:14;;      // store F(n+5+N/8) 
 
//******************************** Epilogue ********************************** 
_FFTEpilogue: 
 
 mPOPQ(yR27:24) 
 mPOPQ(yR31:28) 
  mPOPQ(xR27:24) 
     mPOPQ(xR31:28) 
 mRETURN 
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//********************* End Label For Statistical Profiling ****************** 
_FFT32.end:  

Listing 3. fft32.asm 
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