

AN-806
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Flash Programming via I2C—Protocol Type 5

INTRODUCTION
A key feature of the Analog Devices, Inc., microcontroller product
family is the ability of the devices to download code to on-chip
Flash/EE memory while in circuit.

This application note applies to devices in which the in circuit
code download feature is conducted over the device I2C serial port.

A Windows® executable program (I2CWSD.exe) allows users to
download code to the microcontroller from a USB port via an I2C
pod, such as USB-I2C/LIN-CONV-Z. Any master host machine
with an I2C master (microcontroller, DSP, or other) can download
to the microcontroller after the host machine adheres to the I2C
download protocols.

This application note outlines the microcontroller I2C download
protocol, which allows end users to both understand the protocol
and, if required, to implement this protocol in an end target system
(with an embedded host to an embedded microcontroller).

For the clarity purposes, the term host refers to the host machine
(microcontroller, DSP, or other machine) attempting to download
data to the microcontroller. In addition, the term loader refers
specifically to the on-chip serial download firmware resident on
the microcontroller.

Note that throughout this application note, multifunction pins,
such as the P0.0/nTRST/ADCBUSY/PLAI[8]/BM pin, are referred
to either by the entire pin name or by a single function of the
pin, for example, P0.0, when only that function is relevant.

Figure 1. Example Product Identifier

“ADuC702xi<space><space>–62<space>I51<space><space><space><space><\n><\r>”

“–62” CORRESPONDS
TO THE MEMORY

SIZE MODEL

“I51” MEANS A SILICON REV. I AND
A VERSION 5 LOADER. “1” IS THE

LOADER’S VERSION REVISION NUMBER.

05
64

6-
00

1

“ADuC702xi”
IS THE

PRODUCT ID

Rev. D | Page 1 of 6

http://www.analog.com/microcontroller?doc=an-806.pdf
http://www.analog.com/microcontroller?doc=an-806.pdf
http://www.analog.com

AN-806 Application Note

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
I2C Download Protocol .. 3

Running the Microcontroller Loader .. 3

The Physical Interface ...3
Defining the Data Transport Packet Format3
Data Packet Command Functions ..5

REVISION HISTORY
3/15—Rev. C to Rev. D
Changed MicroConverter to Microcontroller Throughout
Changes to Title and Introduction Section 1
Moved Revision History Section .. 2
Added I2C Download Protocol Section, Downloader Entry for
the ARM7 Core Devices Section, Downloader Entry for the
Cortex-M3 Devices Section, and Node Address Section 3
Changes to The Physical Interface Section 3
Changes to Acknowledge of Command Section, Table 3,
Table 4, and Table 5 .. 4
Changes to Table 6, Table 7, Erase Command Section, Write
Command Section, and Verify Command Section 5
Added Table 8 and Table 9; Renumbered Sequentially 5

Changed Flash/EE Memory Protection Command Section to
Protect Flash/EE Memory Command Section 6
Changes to Protect Flash/EE Memory Command Section and
Run Command Section .. 6

8/12—Rev. B to Rev. C
Changes to Title, Introduction Section, and Figure 1 Caption ... 1
Changes to Running the MircoConverter Loader Section and
The Physical Interface Section ... 2

5/12—Rev. A to Rev. B
Changes to Introduction Section .. 1
Changes to Flash/EE Memory Protection Command Section 4

Rev. D | Page 2 of 6

Application Note AN-806

I2C DOWNLOAD PROTOCOL
RUNNING THE MICROCONTROLLER LOADER
Downloader Entry for the ARM7 Core Devices

To allow an unattended download via I2C, the device enters
loader mode only if boot mode (BM) (for example P0.0 on the
ADuC7023) is low during reset, and the content of Flash/EE
memory at Address 0x14 is 0xFFFFFFFF. For BM to determine
if loader mode is entered, the user must ensure that the word at
Flash Address 0x14 is 0xFFFFFFFF.

Alternatively, BM can be kept low and entry to download mode
can be determined by the content of Flash Address 0x14.
Typically, the value at Flash Address 0x14 is not 0xFFFFFFFF;
therefore, user code must have a built-in mechanism for erasing
Page 0 (Flash Address 0x0 to Flash Address 0x200) and for
resetting the device. This mechanism allows entry to download
mode to reprogram the device.

Ideally, the value at Flash Address 0x14 is programmed last to
allow re-entry to download mode in case power fails or another
error occurs during reprogramming of the bulk of the program.

Downloader Entry for the Cortex-M3 Devices

If the BM pin (P2.3) is high, the kernel exits to user code.

If the BM pin (P2.3) is low, the kernel waits for a user defined
time for the first I2C frame to arrive. If the first frame consists of
Node Address 0x04 and one data byte of 0x08 (backspace) exactly,
the kernel enters the downloader. Any other first frame causes
the kernel to exit to user code. In addition, the user can set a
timeout at Address 0x3FFE0. The 16-bit value gives the number
of milliseconds before the timeout occurs. When the timeout
occurs, the kernel exits to user code. The maximum timeout is
65 sec, which is when the value is erased. As a special case, a
timeout value of 0xFFFE sets the timeout to 15 minutes. In
addition, if after the device enters download mode no valid
download frames arrive for 15 minutes, the downloader exits
via a software reset.

Note that if during the timeout period the first frame arriving is
Node Address 0x04, the device provides ACK signals as
required by the I2C standard, which has to happen even if it is
not a 0x04, 0x08 frame. It is, therefore, recommended that Node
Address 0x04 be reserved for entry to the downloader and that
it is not used in a system application.

THE PHYSICAL INTERFACE
After the loader triggers, it configures the I2C0 port as a slave
device; for example, P0.4 (SCL0) and P0.5 (SDA0) on the
ADuC7023. Its slave address is 0x04; therefore, the host must start
each transmission of data to the loader with Byte 0x04 (I2C write),
and each command acknowledge request from the loader with
Byte 0x05 (I2C read). The data of the first packet sent by the
loader must be backspace (BS = 0x08) to start the protocol.

When in download mode and after receiving the backspace
character, the loader sends the following 24-byte ID data packet:

• 15 bytes are the product identifier
• 4 bytes are the hardware and firmware version number
• 3 bytes are reserved for future use
• 2 bytes are the line feed and carriage return

DEFINING THE DATA TRANSPORT PACKET FORMAT
After the I2C has been configured, the transfer of data can
begin. The general communications data transport packet
format is shown in Table 1.

Node Address

Note that each frame must start with the I2C slave node address
as required by the I2C specification; however, this is not shown
in the tables in this application note.

Packet Start ID Field

The first field is the packet start ID field, which contains two
start characters (0x07 and 0x0E). These bytes are constant and
used by the loader to detect a valid data packet start.

Number of Data Bytes Field

The next field is the total number of data bytes, including
Data 1 (command function). The minimum number of data
bytes is 5, which corresponds to the command function and the
address. The maximum number of data bytes allowed is 255:
command function, 4-byte address, and 250 bytes of data.

Command Function Field (Data 1)

The command function field describes the function of the data
packet. One of five valid command functions is allowed. The
five command functions are described by one of five ASCII
characters: E, W, V, P, or R. The list of data packet command
functions is shown in Table 2.

Address Field (Data 2 to Data 5)

The address field contains a 32-bit address. High (h), upper (u),
medium (m), and lower (l), with MSB in h and LSB in l.

Data Byte Field 6 to Data Byte Field 255

User code is downloaded/verified by the bytes. The data byte
field contains a maximum of 250 data bytes.

Typically, the data must be stripped out of the Intel® HEX
extended 16-byte record format and reassembled by the host as
part of the given data format before transmission to the loader.

Rev. D | Page 3 of 6

http://www.analog.com/aduc7023?doc=AN-806.pdf
http://www.analog.com/aduc7023?doc=AN-806.pdf

AN-806 Application Note

Checksum Field

The data packet checksum is written into this field. The twos
complement checksum is calculated by summing the hex values
in the number of bytes field and the hex values in the Data 1
to Data 255 fields (if they exist). The checksum is the twos
complement value of this summation, the 8-bit sum of the
number of data bytes and Data Byte 1 to Data Byte 255, and can
be expressed as follows:

+−= ∑

−

255

1
00x0

N
NByteDataBytesDataofNumberCS

Expressed differently, the 8-bit sum of all bytes excluding the
Start ID must be 0x00.

Acknowledge of Command

After each command, the host must request an acknowledge
from the loader for a negative response, a BEL (0x07), or a
positive response, an ACK (0x06). If the loader receives an
incorrect data packet format upon verification of the checksum
byte, a BEL transmits. The loader does not give a warning if
data is downloaded over old (unerased) data or to an invalid
address. The PC interface must ensure that any location that
code is downloaded to is erased. The acknowledge indicates
that no frame error was detected. It does not indicate that the
frame had meaningful content or was executed correctly. The
only reliable check for an error free download is the verify
command.

Table 1. Data Transport Packet Format
Start ID Number of Data Bytes Data 1 CMD Data 2 to Data 5 (Address: h, u, m, l)1 Data x (x = 6 to 255) Checksum
0x07 0x0E 5 to 255 E, W, V, P, or R h, u, m, l xx CS

1 High = h, upper = u, medium = m, and lower = l.

Table 2. Data Packet Command Functions
Command Function Command Byte in Data 1 Field Loader Positive Acknowledge Loader Negative Acknowledge
Erase Page E (0x45) ACK (0x06) BEL (0x07)
Write W (0x57) ACK (0x06) BEL (0x07)
Verify V (0x56) ACK (0x06) BEL (0x07)
Protect P (0x50) ACK (0x06) BEL (0x07)
Run R (0x52) ACK (0x06) BEL (0x07)

Table 3. Erase Flash/EE Memory Command
Start ID Number of Data Bytes Data 1 CMD Data 21 Data 31 Data 41 Data 51 Data 6 (Pages) Checksum
0x07 0x0E 6 E (0x45) h u m l x pages (1 to 255) CS

1 High = h, upper = u, medium = m, and lower = l.

Table 4. Write Flash/EE Memory Command
Start ID Number of Data Bytes Data 1 CMD Data 21 Data 31 Data 41 Data 51 Data x (x = 1 to 250) Checksum
0x07 0x0E 5 + x (6 to 255) W (0x57) h u m l Data bytes CS

1 High = h, upper = u, medium = m, and lower = l.

Table 5. Verify Flash/EE Memory Command for ARM7 Devices
Start ID Number of Data Bytes Data 1 CMD Data 21 Data 31 Data 41 Data 51 Data x (x = 1 to 250) Checksum
0x07 0x0E 5 + x (6 to 255) V (0x56) h u m l Complemented data bytes CS

1 High = h, upper = u, medium = m, and lower = l.

Rev. D | Page 4 of 6

Application Note AN-806

Table 6. Verify Flash/EE Memory Command Step 1 for Cortex-M3 Devices

Start ID
Number of
Data Bytes

Data 1
CMD Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Checksum

0x07 0x0E 9 V (0x56) 0x80 0x00 0x00 0x00 0x..7FC 0x..7FCD 0x..7FCE 0x..7FCF CS

Table 7. Verify Flash/EE Memory Command Step 2 for Cortex-M3 Devices

Start ID
Number of
Data Bytes

Data 1
CMD Data 21 Data 31 Data 41 Data 51

Data 6
CRC

Data 7
CRC

Data 8
CRC

Data 9
CRC Checksum

0x07 0x0E 9 V (0x56) h u m l [0 to 7] [8 to 15] [16 to 23] [24 to 31] CS

1 High = h, upper = u, medium = m, and lower = l.

Table 8. Protect Flash/EE Memory Command for ARM7 Devices
Start ID Number of Data Bytes Data 1 CMD Data 21 Data 31 Data 41 Data 51 Data 6 Checksum
0x07 0x0E 6 P (0x50) h u m l Type CS

1 High = h, upper = u, medium = m, and lower = l.

Table 9. Run Command
Start ID Number of Data Bytes Data 1 CMD Data 2 Data 3 Data 4 Data 5 Checksum
0x07 0x0E 5 R (0x52) 0x00 0x00 0x00 0x01 0xA8

DATA PACKET COMMAND FUNCTIONS
Erase Command

The erase command can erase one page or up to all pages of
Flash/EE from a specific address determined by Data 2 to Data 5.
This command also specifies the number of pages to erase. If
the address is 0x00000000 and the number of pages is 0x00, the
loader interprets it as a mass erase command, erasing the entire
user code space and the Flash/EE protection.

The data packet for the erase command is shown in Table 3.
The address in h, u, m, and l is truncated to the page boundary.

Write Command

The write command specifies the number of data bytes (which
is Data 1 + Data 2 to Data 5 + Data x), the command, the address
of the first data byte to program, and the data bytes to program.
For Cortex-M3 devices, the address must start on a double
word (8-byte) boundary and end on a double word boundary. As
the bytes arrive, they are programmed into the Flash/EE memory.
The loader sends a BEL if the checksum is incorrect or if the
address received is out of range. If the host receives a BEL, the
download process aborts, and the entire download sequence
starts again.

Verify Command

The verify command for the ARM7 devices is almost identical
to the write command, as shown in Table 5. The command field
is V (0x56); however, to improve the chance of detecting errors,
the data bytes are modified: the low five bits are shifted to the high
five bits, and the high three bits are shifted to the low three bits.

Table 10. Verify Command, Bit Modifications
Original Bits Transmitted Bits Restored Bits
7 4 7
6 3 6
5 2 5
4 1 4
3 0 3
2 7 2
1 6 1
0 5 0

The loader restores the correct bit sequence and compares it to
the flash contents. If it is correct and the checksum is correct,
ACK (0x06) returns; otherwise, BEL (0x07) returns.

For Cortex-M3 devices, the verify command is a two-step
sequence for each page to be verified, as follows:

1. Send the 0x80000000 value in the value field and the last
four bytes of the page in the data bytes field.

2. Send the page address in the value field and the result of
the SIGN command of the page in the data bytes field.

After receiving these two packets, the loader checks whether the
value received in Step 1 is correct and then obtains the SIGN value
for the page and compares it to the value from Step 2. If both values
are correct, an ACK is subsequently returned. An error in either
value results in a BEL. For details on the SIGN command, see the
appropriate device data sheet or hardware reference manual.

Rev. D | Page 5 of 6

AN-806 Application Note

Protect Flash/EE Memory Command

To use this command, follow this three-step sequence for the
ARM7 devices:

1. Initiate the command. The type must be 0x00 and h, u, m,
and l can be any value.

2. Send the address of the group of pages to protect. Repeat
this step for each group of pages. Type must be 0x0F.

3. Send the key in h, u, m, and l; type must be 0x01. FEEADR
takes the value of h and u, and FEEDAT takes the value of
m and l. If no keys are required, h, u, m, and l must be
0xFFFFFFFF.

For example, to protect Page 0 to Page 7 against writing, set the
read protection and use key to 0x12345678.

Send the following commands:

1. Start sequence:
0x07 0x0E 0x06 0x50 0xXXXXXXXX 0x00 CS

2. Protection:
0x07 0x0E 0x06 0x50 0x00000000 0x0F CS (Page 0 to Page 3)
0x07 0x0E 0x06 0x50 0x00000800 0x0F CS (Page 4 to Page 7)
0x07 0x0E 0x06 0x50 0x0000F800 0x0F CS (read protection)

3. Key and end of sequence:
0x07 0x0E 0x06 0x50 0x12345678 0x01 CS

Note that the protection command is only available in Revision 0
and later versions of the loader. In Revision 0, FEEADR = ml
and FEEDAT = ml. In later versions, FEEADR = hu.

This protocol does not allow Flash/EE memory to be unprotected.
To remove the protection, use a mass erase command.

The ADuCM320 does not support the protect command. Use a
normal write command to Address 0x1FFE8 to Address 0x1FFF7
and/or Address 0x3FFE8 to Address 0x3FFF7 as described in the
ADuCM320 Hardware Reference Manual, instead of the protect
command. Note that the values at Address 0x1FFF4 and
Address 0x3FFF4, used for user read protection as described in
the ADuCM320 Hardware Reference Manual, also disable the page
erase and write commands to prevent removing the protection.

Run Command

After the host has transmitted all data packets to the loader, the
host can send a final packet instructing the loader to exit and
start executing user code.

For ARM7 devices, implement the following two remote runs:

• A software reset, with h, u, m, l = 0x1
• A jump to user code, with h, u, m, l = 0x0

Table 9 shows an example of a remote run or reset. Executing a
software reset is recommended because it resets all peripherals.
However, when the P0.0 pin is permanently grounded and
Address 0x80014 clears, it can be necessary to use a jump to user
code. Note that after a jump to user code, the I2C peripheral
memory mapped registers (MMRs) do not contain default
values.

Cortex-M3 devices support the software reset; however, these
devices do not support the jump to user code.

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2006–2015 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN05646-0-3/15(D)

Rev. D | Page 6 of 6

http://www.analog.com/aducm320?doc=an-806.pdf
http://www.analog.com/ug-498?doc=an-806.pdf
http://www.analog.com/ug-498?doc=an-806.pdf
http://www.analog.com

	INTRODUCTION
	TABLE OF CONTENTS
	REVISION HISTORY
	I2C DOWNLOAD PROTOCOL
	RUNNING THE MICROCONTROLLER LOADER
	Downloader Entry for the ARM7 Core Devices
	Downloader Entry for the Cortex-M3 Devices

	THE PHYSICAL INTERFACE
	DEFINING THE DATA TRANSPORT PACKET FORMAT
	Node Address
	Packet Start ID Field
	Number of Data Bytes Field
	Command Function Field (Data 1)
	Address Field (Data 2 to Data 5)
	Data Byte Field 6 to Data Byte Field 255
	Checksum Field
	Acknowledge of Command

	DATA PACKET COMMAND FUNCTIONS
	Erase Command
	Write Command
	Verify Command
	Protect Flash/EE Memory Command
	Run Command

