
AN-1435
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Implementing UART Using the ADuCM3027/ADuCM3029 Serial Ports

Rev. A | Page 1 of 16

INTRODUCTION
Using the synchronous serial peripheral ports (SPORTs) on the
ADuCM3027/ADuCM3029 processor, it is possible to implement
a full duplex, asynchronous port to communicate with the
universal asynchronous receiver/transmitters (UARTs) with
minimal software overhead. This application note describes
how to implement a full UART interface for multiple standard
baud rates.

SPORT OVERVIEW
The SPORT interface supports a variety of serial data
communication protocols. In addition, the SPORTs provide a
glueless hardware interface to many industry-standard data
converters, codecs, and other processors, including digital
signal processors (DSPs).

Key features and capabilities of the SPORT interface include

• A continuously running clock.
• Serial data words from 3 bits to 32 bits in lengths, either

MSB or LSB first.
• Two synchronous transmit and two synchronous receive

data signals.
• Buffers to double the total supported data stream.
• Configurable frame synchronization signals.

Refer to https://wiki.analog.com/resources/eval/sdp/sdp-b/
peripherals/sport for further information about the SPORT
interface.

HALF SPORT_A

SPT_D0 A A
SPT_CLK A

SPT_FS A
SPT_CONVT A

HALF SPORT_B

SPT_D0 A B
SPT_CLK B

SPT_FS B
SPT_CONVT B

15
10

8-
00

1

Figure 1. SPORT Signals

http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
https://wiki.analog.com/resources/eval/sdp/sdp-b/peripherals/sport
https://wiki.analog.com/resources/eval/sdp/sdp-b/peripherals/sport
http://www.analog.com/

AN-1435 Application Note

Rev. A | Page 2 of 16

TABLE OF CONTENTS
Introduction .. 1
SPORT Overview .. 1
Revision History ... 2
Asynchronous Communication ... 3

Asynchronous SPORT Transmitter ... 3
Asynchronous SPORT Receiver ... 3

Hardware and Software Overview ... 4
Hardware Overview ... 4
Software Overview ... 4

Driver Function Prototypes .. 5

Software Flowcharts ..6
SPORT_A Block Transmission ..6
SPORT_B Block Reception ..7

Waveforms ..8
Code for the SPORT_UART_Emulator ...9

SPORT_UART_Emulator.h ...9
SPORT_UART_Emulator_Transmit.c 14
SPORT_UART_Emulator_Receive.c 15

Conclusion... 16

REVISION HISTORY
10/2017—Rev. 0 to Rev. A
Deleted Byline ... 1
Changes to SPORT_UART_Emulator.h Section 13

4/2017—Revision 0: Initial Version

Application Note AN-1435

Rev. A | Page 3 of 16

ASYNCHRONOUS COMMUNICATION
The difference between synchronous and asynchronous serial
communication is the presence of a clock signal and frame
synchronization signal. A synchronous serial port has a clock
signal and an optional frame sync signal. An asynchronous port
does not have clock and frame sync signals. In the absence of a
clock signal, the asynchronous ports must communicate at a
predetermined data rate (bit rate). In the absence of a frame
sync, the word framing information is embedded in the data
stream. A start bit marks the beginning of a transmission. A
stop bit marks the completion of a transmission. The word
length is predetermined between the receiver and transmitter.

ASYNCHRONOUS SPORT TRANSMITTER
The transmit side of the serial port must be configured for
internal clock generation with a clock rate equal to the desired
bit rate of the UART. This configuration is performed by setting
the CLKDIV bit in the clock divider register (SPORT_DIV_A)
for the SPORT_A block.

CLKDIV Bit in the SPORT_DIV_A Register =

1
2

−
× RateBaud

PCLK

where PCLK is the peripheral clock signal.

The SPORT_A clock is only used to synchronize the serial port
to the desired bit rate. The actual clock signal (SPORT_ACLK)
does not connect to anything. Configure the frame sync signal
(SPORT_AFS) to be internally generated and leave the signal
floating. The SPORT_A block must always transmit LSB first to
emulate UART transmission. Program the number of bits to be
transmitted by the SPORT_A block in the SLEN field of the
SPORT_CTL_A register. Program the total number of words to
be transferred in the SPORT_NUMTRAN_A register, with each
word size determined by the SLEN field.

In the case of a SPORT transmission where the SPORT_A block
transmits to a UART device, the UART always receives the first
transfer as 0x00, which can be discarded, followed by a correct
sequence of data transmitted by the SPORT_A block. This
sequence occurs because, at the start of transfer (after configu-
ration), the UART Rx line is idle high (Logic 1) and the SPORT
data line is idle low (Logic 0). The UART interprets this Logic 0
as a start bit and receives an entire frame of Logic 0 at the
beginning of the transmission.

ASYNCHRONOUS SPORT RECEIVER
The serial port must determine where a new transmission
begins without the presence of an internal frame synchronization
signal. The transmit pin of the UART device connects to the
data line pin (SPORT_BD0) and the frame synchronization pin
(SPORT_BFS) on the SPORT_B block of the ADuCM3029/
ADuCM3027. The SPORT_B block is configured for internal
clock generation and an active low external frame sync signal.

Because the SPORT cannot guarantee any phase synchronization
with the incoming bit stream, it is necessary to oversample the
incoming asynchronous data stream. The receive clock on the
SPORT must be set to three times the desired baud rate. For
example, if the ADuCM3029/ADuCM3027 SPORT communicates
with the UART device at 9600 bps, the receive clock on the SPORT
must be set to 28,800 bps. Perform this setting by calculating
the appropriate divisor and programming the CLKDIV bit in
the clock divider register (SPORT_DIV_B) for the SPORT_B
block.

CLKDIV Bit in the SPORT_DIV_B Register =

1
32

−
×× RateBaud
PCLK

The active low frame synchronization signal (SPORT_BFS) is
polled on the active edge of the internally generated clock
(SPORT_BCLK). When the SPORT_BFS signal is asserted due
to the low level start bits of the UART packet, the SPORT_B
block starts receiving the word transmitted from the UART
device and does not check the SPORT_BFS line until all N bits
of the packet are received (N is programmed by the SLEN field
in the SPORT_CTL_B register). The SPORT uses the oversampled
start bit as a frame synchronization to begin the reception of the
incoming asynchronous data stream.

http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf

AN-1435 Application Note

Rev. A | Page 4 of 16

HARDWARE AND SOFTWARE OVERVIEW
HARDWARE OVERVIEW
Figure 2 shows the connection between the ADuCM3029/
ADuCM3027 SPORTs and the transmit (Tx) and receive (Rx)
pins of a basic UART port on another device.

SPORT_A
ADuCM3027/
ADuCM3029 SD0_A

Rx

Tx

FS_A

UART

SCK_A

SPORT_B
ADuCM3027/
ADuCM3029 SD0_B

FS_B
SCK_B

15
10

8-
00

2

Figure 2. ADuCM3029/ADuCM3027 Microcontroller Unit (MCU) to UART
Interface

SOFTWARE OVERVIEW
The software required to manage the asynchronous data
moving in and out of the SPORT is minimal. The C functions
for the SPORT transmission and reception are described in the
Code for the SPORT_UART_Emulator section. The code is
tested for multiple baud rates and multiple number of transfers
between the UART host and the ADuCM3029/ADuCM3027
SPORTs for both transfer directions.

Asynchronous SPORT Transmitter (SPORT_A Block)

On the transmit side, the N bit data to be transmitted must be
formatted into a UART transmission packet. A start bit and stop
bit must be added to the word for correct reception by the
UART device.

An example of the data format is as follows:

 For an 8-N-1 transmission format (8-bit data + 0 parity bit
+ 1 stop bit), data = 0xAA (b#1010 1010).

 Modified data = b# 1 10101010 0 1 (1 stop-bit + 8-bit data
+ 1 start bit + 1 stop bit).

A stop bit must be appended at the beginning of the transmission
because the SPORT_AD0 line retains the value of the LSB (if
the LSB is transmitted first) when a complete word is sent. The
UART Rx line must be set to idle high to avoid glitches in the
generated signal between consecutive bytes, leading to corrupt data.

Asynchronous SPORT Receiver (SPORT_B Block)

The receive side is more complex than the transmit side because
the SPORT_B block receives oversampled data. For an 8-N-1
transfer format, because the data is oversampled by a factor of 3,
the serial port must be programmed to receive 27 bits, thereby
discarding the three sampled start bits, which are accounted for
in the frame synchronization (SPORT_BFS). The 27 bits received
represent the packet transmitted by the UART device, 8 bits of
data, and 1 stop bit (oversampled by a factor of 3).

Then, the actual data is extracted from the oversampled data by
bit manipulation operations. The middle bit, which is the correct
value, is extracted from the 3-bit sequence in the received data
for every transmitted bit from the UART device. The extracted
bits are assembled to form a byte of data.

DATA FORMAT:
UART

START BIT

000

3 ZEROES

STOP BIT

111

3 ONES

DATA BYTE = 8 BITS

LSB

xxx

1

yyy

2

xxx

3

yyy

4

xxx

5

yyy

6

xxx

MSB

yyy

BYTE REPRESENTED BY 24 BITS
EQUIVALENT BIT PATTERN

FOR SPORT0

15
10

8-
00

3

Figure 3. Expected Data Formats for UART Frame and SPORT Receive Frame

http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf

Application Note AN-1435

Rev. A | Page 5 of 16

DRIVER FUNCTION PROTOTYPES
The following functions work with 8-bit asynchronous data, but
can easily be changed to support other data widths. The C
functions for the use case are detailed in the Code for the
SPORT_UART_Emulator section.

The SPORT_UART_Tx_Initialise function configures and sets
up the SPORT_A block on the ADuCM3029/ADuCM3027
processor for UART transmission emulation. The SPORT_A
internal clock is derived from the PCLK, which is configured to
6.5 MHz (default). The desired baud rate is set for the transmission,
along with configuration using the SPORT_CTL_A register. An
interrupt to signal that the transmit data buffer is empty is
configured using the SPORT_IEN_A register. The number of
words to be transferred is programmed using the SPORT_
NUMTRAN_A register, before enabling the SPORT_A block.

The SPORT_UART_Rx_Initialise function configures and sets
up the SPORT_B block on the ADuCM3029/ADuCM3027
processor for UART reception emulation. The SPORT_B block
is configured to oversample the incoming data stream by a factor
of 3. The frame synchronization is configured for an external, low,
active state. An interrupt to signal that the receive data buffer is
full is configured using the SPORT_IEN_B register. Also, the
SLEN field of the SPORT_CTL_B register is configured to the
following before enabling the SPORT_B block:

3 × (Word Size + Number of Stop Bits) − 1

The SPORT_UART_Tx_Transfer function creates the UART
transmission data format by modifying the data in location
pointed to by the buffer. The modified data is then output on
the SPORT_A_TX register for transmission. The function uses
bit masking and shifting operations.

The SPORT_UART_Rx_Transfer function receives the over-
sampled data from the SPORT_B_RX register. A bit manipulation
operation extracts the middle bits of every 3-bit sequence of the
SPORT_B_RX data (3 bits received for every 1 bit transmitted
by the UART device). The extracted bits are assembled into
a byte sized data. The function returns the assembled byte,
representing the actual received data. The following code
example shows how to extract the data from the 27-bit SPORT
registers into 8-bit UART data:

/* Receive data into the RX buffer */

temp = *pREG_SPORT0_RX_B;

/* Extract the 8 bits from the 27 bits
received */

value = 0;

value += ((temp >> 23) & (1 << 0));

value += ((temp >> 19) & (1 << 1));

value += ((temp >> 15) & (1 << 2));

value += ((temp >> 11) & (1 << 3));

value += ((temp >> 7) & (1 << 4));

value += ((temp >> 3) & (1 << 5));

value += ((temp >> 1) & (1 << 6));

value += ((temp >> 5) & (1 << 7));

/* Return the assembled byte */

return value;

http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf

AN-1435 Application Note

Rev. A | Page 6 of 16

SOFTWARE FLOWCHARTS
SPORT_A BLOCK TRANSMISSION
The SPORT_A block emulates the UART Tx port. To use the
SPORT_A block to emulate the UART Tx port, the SPORT
block must be initialized for transmission and must be enabled.

When enabled, check the SPORT_STAT register if there is
pending data to be transmitted. If there is data to be transmitted,
create the UART data packet from the pending data, then write
the data packet to the SPORT transmit register.

CONFIGURE SPORT_A BLOCK
FOR TRANSMISSION

ENABLE SPORT_A BLOCK

YES

YES

NO

NO

WAIT FOR Tx
EMPTY IRQ

READ SPORT_A STAT
REGISTER

IS SPORTA_DATA REQ
ASSERTED?

CREATE DATA TRANSMIT PACKET

i > SPORT_A_NUMTRAN?

DISABLE SPORT_A BLOCK

WRITE PACKET TO
SPORT_A_Tx REGISTER

INCREMENT TRANSFER
COUNTER i

15
10

8-
00

4

Figure 4. SPORT_A Block Transmission Flowchart

Application Note AN-1435

Rev. A | Page 7 of 16

SPORT_B BLOCK RECEPTION
The SPORT_B block emulates the UART Rx port. To use the
SPORT_B as the UART Rx port, the SPORT_B block must first
be initialized for reception and must be enabled.

When the SPORT is enabled, check the SPORT_STAT register
for pending data in the SPORT_B data register. If there is a data,
retrieve the data and extract the 8-bit UART data.

CONFIGURE SPORT_B BLOCK
FOR TRANSMISSION

ENABLE SPORT_B BLOCK

YES

NO

WAIT FOR Rx
FULL IRQ

READ SPORT_B STAT
REGISTER

IS SPORTB_DATA REQ
ASSERTED?

RECEIVE 27-BIT DATA FROM
SPORTB_Rx INTO TEMP VARIABLE

ASSEMBLE THE EXTRACTED BITS INTO A BYTE
AND STORE IT IN THE ALLOTTED DATA BUFFER

EXTRACT THE ACTUAL 8-BIT DATA
FROM 27 BITS RECEIVED

15
10

8-
00

5

Figure 5. SPORT_B Block Reception Flowchart

AN-1435 Application Note

Rev. A | Page 8 of 16

WAVEFORMS
Figure 6 shows the waveforms for transmission from the
SPORT_A block and reception on the UART device at 9600 bps,
for a single frame of 8-bit data (0x96), and additional formatting
bits required for UART transmission emulation.

15
10

8-
00

6

1

2

3

SPTA_CLK

SPTA_FS

SPTA_D0

Figure 6. SPORT_A Block Transmission and UART Device Reception for a
Single Frame

Figure 7 shows the waveforms for transmission from the UART
device and reception on the SPORT_B block at 9600 bps, for a
single frame of 8-bit data (0x96) (with a start bit and a stop bit),
sampled at 3 times the transmission baud rate for proper
emulation of UART reception.

15
10

8-
00

7

1

2

3

SPTB_CLK

SPTB_FS

SPTB_D0

Figure 7. UART Device Transmission and SPORT_B Block Reception for a
Single Frame

The red traces in the figures indicate a single frame of transfer.

Application Note AN-1435

Rev. A | Page 9 of 16

CODE FOR THE SPORT_UART_EMULATOR
The code shown in this section provides an example for the
following use cases:

• Transmission from the SPORT_A block and reception by
the UART.

• Transmission from the UART and reception by the
SPORT_B block.

The data format used for a single frame of transfer is 8-N-1 (1
start bit, 8 bits of data, 0 parity bits, and 1 stop bit). These cases
are tested at PCLK = 26 MHz and multiple baud rates.

SPORT_UART_EMULATOR.H
/* SPORT Based UART Emulator Application */

/* SPORT_A emulates Transmission Side while SPORT_B emulates Reception Side */

/* Two Use Cases

(a) Transmission from SPORT_A and Reception by UART

(b) Transmission from UART and Reception by SPORT_B */

/* Tested with PCLK = 26 MHz and Baud Rates - 9600bps, 19200bps, 38400bps, 57600bps, 115200bps,
230400bps */

/* Define the word_size and baud_rate for UART before proceeding */

#include "system.h"

#include "startup.h"

#include "stdint.h"

/* Definitions used for supporting both use cases */

#define SLEN_TX (word_size + stopbits + paritybit + 1)

#define SLEN_RX (3 * (word_size + stopbits + paritybit) - 1)

#define FSDIV_TX (word_size + stopbits + paritybit + 2)

#define SYS_PCLK 26000000

#define TRAN_SIZE 3

#define baud_rate 9600

#define word_size 8

#define stopbits 1

/* Global Variables used for both use cases */

uint32_t temp;

uint8_t flag = 0;

uint8_t tbuf[TRAN_SIZE];

uint8_t rbuf[TRAN_SIZE];

int i=0; /* Transfer Loop Counter */

uint16_t res;

/* Definitions for Functions used for both use cases */

void Change_CLKDIV(int pVal, int hVal);

void SPORT_UART_Tx_Initialise();

void SPORT_UART_Rx_Initialise();

void SPORT_UART_Tx_Transfer(uint8_t *buf);

uint8_t SPORT_UART_Rx_Transfer();

AN-1435 Application Note

Rev. A | Page 10 of 16

/* Description: Function to change the PCLKDIV and HCLKDIV

 Input Parameters: int pVal - Value of PCLK Divisor

 int hVal - Value of HCLK Divisor

 Return: void

*/

void Change_CLKDIV(int pVal, int hVal)

{

 uint32_t uiTemp;

 // Change PCLKDIVCNT

 uiTemp = *pREG_CLKG0_CLK_CTL1;

 uiTemp &= ~(BITM_CLKG_CLK_CTL1_PCLKDIVCNT);

 uiTemp |= (pVal << BITP_CLKG_CLK_CTL1_PCLKDIVCNT);

 *pREG_CLKG0_CLK_CTL1 = uiTemp;

 // Change HCLKDIVCNT

 uiTemp = *pREG_CLKG0_CLK_CTL1;

 uiTemp &= ~(BITM_CLKG_CLK_CTL1_HCLKDIVCNT);

 uiTemp |= (hVal << BITP_CLKG_CLK_CTL1_HCLKDIVCNT);

 *pREG_CLKG0_CLK_CTL1 = uiTemp;

}

/* Description: Function to initialize and configure the SPORT_A for UART Transmission Emulation

 Input Parameters: void

 Return: void

*/

void SPORT_UART_Tx_Initialise()

{

 float value;

 value = ((SYS_PCLK / (2 * baud_rate)) - 1);

 /* Configure the GPIO pins as alternate functions for SPORT_A_Tx */

 *pREG_GPIO2_CFG |= (1 << BITP_GPIO_CFG_PIN00) | (1 << BITP_GPIO_CFG_PIN02);

 *pREG_GPIO1_CFG |= (1<< BITP_GPIO_CFG_PIN15);

 *pREG_GPIO0_CFG |= (1<< BITP_GPIO_CFG_PIN12);

 *pREG_GPIO0_PE |= (1 << 12);

 /* Disable the SPORT_A_Tx before the configuration*/

 *pREG_SPORT0_CTL_A &= ~(1 << BITP_SPORT_CTL_A_SPEN);

 /* Configure CLk Divider */

 *pREG_SPORT0_DIV_A |= ((uint16_t) value << BITP_SPORT_DIV_A_CLKDIV) |

 ((FSDIV_TX) << BITP_SPORT_DIV_A_FSDIV);

 /* Configure the Data interrupts and the Transfer Complete interrupts */

 *pREG_SPORT0_IEN_A |= (1<< BITP_SPORT_IEN_A_TF) | (1<< BITP_SPORT_IEN_A_DATA);

Application Note AN-1435

Rev. A | Page 11 of 16

 /* Program Number of Transfers */

*pREG_SPORT0_NUMTRAN_A = TRAN_SIZE;

 /* Write the CTL register */

*pREG_SPORT0_CTL_A | = ((SLEN_TX) << BITP_SPORT_CTL_A_SLEN)

 | (1 << BITP_SPORT_CTL_A_ICLK)

 | (1 << BITP_SPORT_CTL_A_IFS)

 | (1<< BITP_SPORT_CTL_A_FSR)

 | (1 << BITP_SPORT_CTL_A_SPTRAN)

 | (1 << BITP_SPORT_CTL_A_LSBF);

 /* Enable SPORT_A */

*pREG_SPORT0_CTL_A |= (1<< BITP_SPORT_CTL_A_SPEN);

}

/* Description: Function to initialize and configure the SPORT_B for UART Reception Emulation

Input Parmaeters: void

Return: void

*/

void SPORT_UART_Rx_Initialise()

{

 float value;

 value = ((SYS_PCLK /(2 * 3 * baud_rate)) - 1);

 /* Configure the GPIO pins as alternate functions for SPORT_B_Rx */

*pREG_GPIO0_CFG |= (2 << BITP_GPIO_CFG_PIN00)

 | (2 << BITP_GPIO_CFG_PIN01)

 | (2 << BITP_GPIO_CFG_PIN02)

 | (2 << BITP_GPIO_CFG_PIN03);

 /* Configure Clk Divider */

*pREG_SPORT0_DIV_B |= ((uint16_t) value << BITP_SPORT_DIV_B_CLKDIV);

 /* Use external FS */

 /* Configure Data interrupts and Transfer Complete Interrupt */

*pREG_SPORT0_IEN_B = (1<< BITP_SPORT_IEN_B_TF) | (1<< BITP_SPORT_IEN_B_DATA);

 /* Program Number of Transfers */

*pREG_SPORT0_NUMTRAN_B = 2;

 /* Write to CTL register */

*pREG_SPORT0_CTL_B | = ((SLEN_RX) << BITP_SPORT_CTL_B_SLEN)

 | (1 << BITP_SPORT_CTL_B_ICLK)

 | (1 << BITP_SPORT_CTL_B_FSR)

 | (1 << BITP_SPORT_CTL_B_LFS);

 /* Enable SPORT_B to receive data */

AN-1435 Application Note

Rev. A | Page 12 of 16

 *pREG_SPORT0_CTL_B |= (1<< BITP_SPORT_CTL_B_SPEN);

}

/* Decription: Function to transmit data from SPORT_A_TX register to UART Device after
formatting

 Input Parameters: uint8_t *buf - Value of the data to be transmitted

 Return : void

*/

void SPORT_UART_Tx_Transfer(uint8_t *buf)

{

 uint16_t res;

 /* Place a start and a stop bit */

 uint16_t tx_mask, tx_startbits, tx_stopbits;

 /* Create Masks for transmitting the word

 Example: if word_size = 8

 tx_mask = b'11111111

 tx_startbits = b'01111111100

 tx_stopbits = b'10000000001

 */

 tx_mask = (1 << word_size) - 1;

 tx_startbits = tx_mask << 2;

 tx_stopbits = ((0x0C) << (word_size + paritybit)) | 1;

 /* Remove all the bits that won't be transmitted */

 (*buf) &= tx_mask;

 res = (*buf) << 2; /* Make space for the start bit and previous stop bit */

 res &= tx_startbits; /* Add the start bit */

 res |= tx_stopbits; /* Add the stop bits */

 /* Put this value into the SPORTA_TX register */

 *pREG_SPORT0_TX_A = res;

}

/* Description: Function to receive data into SPORT_B_RX register from UART Device,

 extract the sampled bits and return the assembled data for storage.

 Input Parameters: void

 Return: uint8_t value - Assembled Received Data for storage

*/

uint8_t SPORT_UART_Rx_Transfer()

{

 /* Oversample by 3 and extract the middle bit of every transmittted bit */

 uint32_t value;

 /* Get the received middle stop bit */

Application Note AN-1435

Rev. A | Page 13 of 16

 uint8_t rxd_stop;

 /* Receive data into Rx Buffer */

 temp = *pREG_SPORT0_RX_B;

 /* Extract the 8 bits from the 27 bits received */

 value = 0;

 switch (word_size)

 {

 case 8: value += ((temp >> 23) & (1 << 0)); // bit 0

 value += ((temp >> 19) & (1 << 1)); // bit 1

 value += ((temp >> 15) & (1 << 2)); // bit 2

 value += ((temp >> 11) & (1 << 3)); // bit 3

 value += ((temp >> 7) & (1 << 4)); // bit 4

 value += ((temp >> 3) & (1 << 5)); // bit 5

 value += ((temp << 1) & (1 << 6)); // bit 6

 value += ((temp << 5) & (1 << 7)); // bit 7

 break;

 case 7: value += ((temp >> 20) & (1 << 0));

 value += ((temp >> 16) & (1 << 1));

 value += ((temp >> 12) & (1 << 2));

 value += ((temp >> 8) & (1 << 3));

 value += ((temp >> 4) & (1 << 4));

 value += ((temp >> 0) & (1 << 5));

 value += ((temp << 4) & (1 << 6));

 break;

 case 6: value += ((temp >> 17) & (1 << 0));

 value += ((temp >> 13) & (1 << 1));

 value += ((temp >> 9) & (1 << 2));

 value += ((temp >> 5) & (1 << 3));

 value += ((temp >> 1) & (1 << 4));

 value += ((temp << 3) & (1 << 5));

 break;

 case 5: value += ((temp >> 14) & (1 << 0));

 value += ((temp >> 10) & (1 << 1));

 value += ((temp >> 6) & (1 << 2));

 value += ((temp >> 2) & (1 << 3));

 value += ((temp << 2) & (1 << 4));

 break;

 }

 return value;

}

/* Interrupt Handler Routine for SPORT_A_TX */

void SPORT0A_Int_Handler()

{

AN-1435 Application Note

Rev. A | Page 14 of 16

 if ((i < (TRAN_SIZE)) && (*pREG_SPORT0_STAT_A & BITM_SPORT_STAT_A_DATA))

 {

 SPORT_UART_Tx_Transfer(&tbuf[i++]);

 }

 if(i >= TRAN_SIZE)

 {

*pREG_SPORT0_CTL_A &= ~(1<< BITP_SPORT_CTL_A_SPEN);

 }

}

/* Interrupt Handler Routine for SPORT_B_RX */

void SPORT0B_Int_Handler()

{

 if((i < TRAN_SIZE) && (*pREG_SPORT0_STAT_B & BITM_SPORT_STAT_B_DATA))

 {

 rbuf[i++] = SPORT_UART_Rx_Transfer();

 }

 if((i >= TRAN_SIZE) && ((*pREG_SPORT0_STAT_B & BITM_SPORT_STAT_B_TFI)))

 {

*pREG_SPORT0_CTL_B &= ~(1<< BITP_SPORT_CTL_B_SPEN);

 NVIC_DisableIRQ(SPORT_B_EVT_IRQn);

 }

}

SPORT_UART_EMULATOR_TRANSMIT.C
#include "SPORT_UART_Emulator.h"

/* Main Function for Use Case (a) Transmission from SPORT_A and Reception by UART */

int main()

{

 /* Change PCLK to 26 MHz */

 Change_CLKDIV(1, 1);

 /* Enable the NVIC IRQ ID for SPORT A handler */

 NVIC_EnableIRQ(SPORT_A_EVT_IRQn);

 /* Create Data pattern for transmit buffer */

 for (int i=0; i < TRAN_SIZE; i++)

 {

 tbuf[i] = 0x13 + (0x19 << (i % 5)) + (0x6D << (i % 3));

 }

 /* Configure the SPORT_A for use case */

 SPORT_UART_Tx_Initialise();

 while(1) {}

}

Application Note AN-1435

Rev. A | Page 15 of 16

SPORT_UART_EMULATOR_RECEIVE.C
#include "SPORT_UART_Emulator.h"

/* Main Function for Use Case (b) Transmission from UART and Reception by SPORT_B */

int main()

{

 /* Change PCLK to 26 MHz */

 Change_CLKDIV(1, 1);

 /* Enable the NVIC IRQ ID for SPORTB_Rx handler */

 NVIC_EnableIRQ(SPORT_B_EVT_IRQn);

 /* Configure the SPORT_B for use case */

 SPORT_UART_Rx_Initialise();

 while(1) {}
}

AN-1435 Application Note

Rev. A | Page 16 of 16

CONCLUSION
This application note describes how to use the SPORT
communication protocol on the ADuCM3029/ADuCM3027
processor to emulate a full duplex UART communication, which
can be then used to interface with any standard UART device.

The use case presented in this application note is tested in core
and direct memory access (DMA) modes for all standard baud
rates. Reliable results are observed for baud rates up to 115,200 bps
on the SPORT transmission cycle and up to 57,600 bps on the
SPORT reception cycle. Data sizes ranging from 5 bits to 8 bits for
transfers in both directions are tested for proper operation.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.

AN15108-0-10/17(A)

http://www.analog.com/ADuCM3029?doc=AN-1435.pdf
http://www.analog.com/ADuCM3027?doc=AN-1435.pdf
http://www.analog.com/

	INTRODUCTION
	SPORT OVERVIEW
	TABLE OF CONTENTS
	REVISION HISTORY

	ASYNCHRONOUS COMMUNICATION
	ASYNCHRONOUS SPORT TRANSMITTER
	ASYNCHRONOUS SPORT RECEIVER

	HARDWARE AND SOFTWARE OVERVIEW
	HARDWARE OVERVIEW
	SOFTWARE OVERVIEW
	Asynchronous SPORT Transmitter (SPORT_A Block)
	Asynchronous SPORT Receiver (SPORT_B Block)

	DRIVER FUNCTION PROTOTYPES
	SOFTWARE FLOWCHARTS
	SPORT_A BLOCK TRANSMISSION
	SPORT_B BLOCK RECEPTION

	WAVEFORMS
	CODE FOR THE SPORT_UART_EMULATOR
	SPORT_UART_EMULATOR.H
	SPORT_UART_EMULATOR_TRANSMIT.C
	SPORT_UART_EMULATOR_RECEIVE.C

	CONCLUSION

