

AN-1452
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADuCM3027/ADuCM3029 Flash EEPROM Emulation

Rev. A | Page 1 of 9

INTRODUCTION
Nonvolatile data storage is a necessity in many embedded
systems. Data, such as bootup configuration, calibration
constants, and network related information, is normally stored
on an electronically erasable programmable read only memory
(EEPROM) device. The advantage of using the EEPROM to store
this data is that a single byte on an EEPROM device can be
rewritten or updated without affecting the contents in the other
locations.

The ADuCM3027/ADuCM3029 are ultra low power
microcontroller units (MCUs) with integrated flash memory.
The ADuCM3027/ADuCM3029 include 512 kB of embedded
flash memory with a 72-bit wide data bus that provides two
32-bit words of data and one corresponding 8-bit error
correction code (ECC) byte per access. The ECC check is enabled
by default for the user space on the ADuCM3027/ADuCM3029
and provides assurance that the flash initialization function works
as expected. The ECC check is enabled for the entire user space
in the flash of the ADuCM3027/ADuCM3029. If there are ECC
errors reported during any read operation, the ECC engine
automatically corrects 1-bit errors and only reports on detection of
2-bit errors. When a read occurs on the flash, appropriate flags
are set in the status register of ADuCM3027/ADuCM3029. If
interrupts are generated, the source address of the ECC error

causing an interrupt is available in the FLCC0_ECC_ADDR
register for the interrupt service routine (ISR) to read.

Emulation of the EEPROM on the integrated flash reduces the
bill of material (BOM) cost by omitting the EEPROM in the
design. Therefore, the software complexity is also reduced.

BACKGROUND
Flash memory is typically organized as an array of pages. A
single page in the ADuCM3027 is 2 kB. The contents of the
page must be erased before writing data. The erase operation is
universal to the page, whereas the read or write can be
performed on a single addressable location (byte or word).

The challenges of performing the read or write on a single
addressable location are as follows:

• Byte wide data read and write operations.
• The ability to erase or update data at any location while

retaining data at other locations because flash memory
erase operates on an entire page.

This application note describes the software using the
ADuCM3027/ADuCM3029 devices and the built in flash
memory to emulate EEPROM, as shown in Figure 1.

CORE

FLASH

EEPROM
ADuCM3027/
ADuCM3029

INTERFACE

15
61

8-
00

1

Figure 1. ADuCM3027/ADuCM3029 Internal Flash and EEPROM System Overview

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
www.analog.com
www.analog.com

AN-1452 Application Note

Rev. A | Page 2 of 9

TABLE OF CONTENTS
Introduction .. 1
Background ... 1
Revision History ... 2
Working Principle... 3

EEPROM ..3
Flash ..5

Limitations ...7
Conclusion..8

REVISION HISTORY
6/2018—Rev. 0 to Rev. A
Changes to Introduction .. 1
Changes Figure 2, Initialize EEPROM Section, and Write
EEPROM Section.. 3
Change to Read EEPROM Section and Figure 3 4
Changes to Figure 4, Figure 5, and Flash Section......................... 5
Change to Limitations Section .. 7
Changes to Conclusion Section, Table 1, Table 2, Table 3, and
Table 4 .. 8
Changes to Table 5, Table 6, and Table 7 9

3/2017—Revision 0: Initial Version

Application Note AN-1452

Rev. A | Page 3 of 9

WORKING PRINCIPLE

USER CODE

write_eeprom8(addr, data) read_eeprom8(addr) erase_eeprom8()

pack_lower_data() find_current_sector() move2nextsector()

erase_flash(page_number)

read_flash(addr)write_flash(addr, data)

move2nextpage() update_tag()pack_upper_data()

FLASH FUNCTIONS

EEPROM DRIVER

15
61

8-
00

2

Figure 2. ADuCM3027/ADuCM3029 Flash EEPROM Emulation Software Structure

EEPROM emulation requires a dedicated portion of the flash
memory. Most EEPROMs can update one byte in one write
command. However, flash memory devices are equipped with
multibyte, a writing capability, and update the data accordingly,
only if erase sequences are followed between two write
operations. To emulate a byte writable and readable EEPROM
in the flash memory, it is necessary to follow a read, modify,
write sequence, which is similar to EEPROM operation.

The procedure presented in this section uses two flash pages
that can be extended to more than two pages, which are then
divided into sectors consisting of a sector tag. This sector tag
provides information about the current sector under process
and number of data bytes written onto that sector. Note that the
last location in every sector is reserved for the sector tag, which
has a size that is equal to the data bus size of the flash memory.
The sector size and the number of sectors in a flash page
depends on the size of the emulated EEPROM.

EEPROM
EEPROM writing and reading functions involve the processing
of the application code input, such as EEPROM data and address
information. The EEPROM application programming interface
(API) handles processing and presenting the data and address
information per the requirements of the flash interface.

Initialize EEPROM

The initialize EEPROM operation defines the size of the
EEPROM and word length of the data in an EEPROM to be
emulated. The maximum size of the emulated EEPROM is 2 kB
(one flash page) because two flash pages are reserved for
EEPROM emulation in this application software to keep the
integrity of the data. This limit can be increased if the same
application software is extended from reserving two flash pages to
reserving four flash pages. Users have a configurable word length
ranging from 8-bits to a maximum of 64-bits. See Table 1 for

details regarding the init_eeprom(uint16_t eeprom_size, uint8_t
word_length) function.

Write EEPROM

Figure 3 shows the EEPROM write operation flowchart. The
EEPROM write operation procedure is as follows:

1. Find the current sector by using the find_current_sector()
function call. This search is based on the sector tag and the
corresponding sector tag value; the value returned is the
current sector start address (which is a physical location on
the flash memory).

2. Convert the EEPROM address to the flash address with the
help of the current sector start address. Because the
ADuCM3027/ADuCM3029 flash memory has a 72-bit
wide data bus and the emulated EEPROM has an 8-bit
wide data bus, the software determines the number of
shifts required using the EEPROM address.

3. Read the data at the obtained flash address and if the data
is equal to 0xFF, then the data to be written is first packed into
two 32-bit data (pack_lower_data() and pack_upper_data())
and a 64-bit wide data is prepared to be written onto flash
memory.

4. Execute a write command on the flash controller by calling
the write_flash() function. The input parameters for this
function are the flash memory address, the least significant
bit (LSB) data packet, and the most significant bit (MSB)
data packet.

5. After the write operation to the flash memory is complete,
the sector tag of the current sector is updated by calling the
update_tag() function.

If data is already present at the obtained flash address, the data
read function does not return 0xFF. In this case, the data before
and after the obtained flash address is moved to the next or
adjacent sector by calling the move2nextsector() function. The
EEPROM data, which is converted to LSB and MSB data

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

AN-1452 Application Note

Rev. A | Page 4 of 9

packets, is written at the new flash address on the next sector.
Thus, every time a write is issued at an already written location
of the EEPROM, the data is moved to the next sector with the
location containing modified data.

If the new sector resides on the next page, a flash page erase
command is issued by calling erase_flash(page_number) to the
previous page after the data is moved. All the address registers
are updated by the move2nextpage() function.

See Table 2 for details regarding the write_eeprom(uint16_t
addr_eeprom, uint8_t data_eeprom) function.

Read EEPROM

Figure 4 shows the EEPROM read operation flowchart. The
EEPROM read operation procedure is as follows:

1. Read the EEPROM value stored at the address location by
calling the read_eeprom(addr) function.

2. In an EEPROM read request from the application code, the
software first determines the current sector, which consists
of the latest data. A flash address is obtained using the
EEPROM address and current sector start address.

3. Execute a read command by calling the read_flash()
function with the obtained flash address.

4. Process the 64-bit wide data received from the flash
address. The bits of this address are then masked, right
shifted, and provided to the application code.

See Table 3 for details regarding the read_eeprom(uint16_t
addr_eeprom) function.

POWER-ON RESET

INITIALIZE SYSTEM

READ THE CURRENT DATA
AT FLASH ADDRESS

CONVERT EERPOM
ADDRESS TO

FLASH ADDRESS

find_current_sector()

UPDATE THE DATA AT FLASH
ADDRESS IN THE NEXT SECTOR

write_flash()

ERASE PREVIOUS PAGE

move2nextpage()

update_tag() update_tag()

MOVE THE DATA FROM START
ADDRESS OF THE CURRENT

SECTOR TO THE FLASH ADDRESS
OF THE NEXT SECTOR

MOVE THE REMAINING DATA
AFTER FLASH ADDRESS FROM

CURRENT SECTOR TO THE
NEXT SECTOR

pack_upper_data()

MOVE TO NEXT SECTOR
IN THE FLASHpack_lower_data()

write_eeprom(addr, data)

APPLICATION CODE

INITIALIZE FLASH FOR
EEPROM EMULATION

IS DATA =
0xFF?

IS NEW
SECTOR
ON NEXT
PAGE?

YES NO

NO

YES

15
61

8-
00

3

Figure 3. EEPROM Write Operation

Application Note AN-1452

Rev. A | Page 5 of 9

POWER-ON RESET

INITIALIZE SYSTEM

read_eeprom(addr)

find_current_sector()

RETURN VALUE

CONVERT EEPROM ADDRESS
TO FLASH ADDRESS

READ THE CURRENT DATA
AT FLASH ADDRESS

PROCESS 64-BIT DATA TO RECEIVE
THE REQUIRED EEPROM DATA

APPLICATION CODE

INITIALIZE FLASH
FOR EEPROM EMULATION

15
61

8-
00

4

Figure 4. EEPROM Read Operation

Erase EEPROM

Figure 5 shows the EEPROM erase operation flowchart. The
EEPROM erase operation is as follows:

1. Erase the entire EEPROM space allotted in the flash
memory by calling the erase_eeprom() function.

POWER-ON RESET

INITIALIZE SYSTEM

erase_eeprom()

ERASE ALL THE PAGES IN THE
ALLOTED FLASH MEMORY

APPLICATION CODE

INITIALIZE FLASH FOR
EEPROM EMULATION

15
61

8-
00

5

Figure 5. EEPROM Erase Operation

All the pages in the flash memory dedicated to EEPROM
emulation are erased. Therefore, exercise caution while using
this operation in the application code.

See Table 4 for details regarding the erase_eeprom() function.

FLASH
The ADuCM3027/ADuCM3029 processors include 128 kB and
256 kB of embedded flash memory, which are available for
access through the flash controller. The embedded flash
memory has a 72-bit wide data bus, providing two 32-bit words
of data and one corresponding 8-bit ECC byte per access. The
memory is organized in pages of 2 kB each, plus 256 bytes
reserved for the ECC. ECC is, by default, enabled on the entire
user space of flash in the ADuCM3027/ADuCM3029. A write
to a location of flash updates the data as well as the ECC byte on
that location. Because flash memory cannot change the bit value
from Logic 0 to Logic 1 without an erase procedure, only one
write operation is allowed. Therefore, ECC bytes update just
one time. The next write to the same location without an erase
procedure leads to ECC error generation.

Flash Write

The flash memory operates by setting bits to 1 when erased, and
selectively clearing bits to 0 when writing (programming) data.
No write operation is capable of setting any bit to 1 from 0. For
this reason, generalized write accesses must be prefixed by an
erase operation.

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

AN-1452 Application Note

Rev. A | Page 6 of 9

A keyhole write is an indirect write operation in which the user
code programs memory mapped registers with target address
and data values, then commands the flash controller to perform a
write operation in the background. The flash controller supports
write access to the flash memory only through keyhole writes.
This constraint on write access enables the flash controller to
guarantee that writes occur properly as atomic double word
(64-bit data) operations.

LSB and MSB data packets that are created using EEPROM data
are provided to keyhole data registers. After the assertion of a
write command, the flash controller initiates a 64-bit data dual
word write to the given flash address.

Note that word (32-bit), half word (16-bit), and byte (8-bit)
writes are not supported.

See Table 5 for details regarding the write_flash(uint32_t addr,
uint32_t lower_data, uint32_t upper_data) function.

Flash Erase

When there is a page change during an EEPROM write, a page
erase command is asserted on the previous page by calling the
erase_flash(page) function. Before a page erase, data movement
occurs as explained in the Write EEPROM section.

See Table 6 for details regarding the erase_flash(uint8_t PAGE)
function.

Flash Read

Flash memory is available to be read only after an automatic
initialization process. Reading the flash memory returns a 64-bit
data double word.

Flash address information is provided to the flash controller,
which returns read data. This data is further processed by the
EEPROM interface to achieve the EEPROM value.

See Table 7 for details regarding the read_flash(uint32_t addr)
function.

Application Note AN-1452

Rev. A | Page 7 of 9

LIMITATIONS
In real EEPROMs, if one location is updated, only one erase
cycle is counted, followed by a write operation to that particular
address while other locations remain unchanged.

In this emulated EEPROM, updating one location causes
movement of data from the current sector to the next sector
that consumes the EEPROM size number of write cycles.
Therefore, every time a location is updated, data is moved to the
next sector and, if that sector resides on the next page, a page
erase occurs. This behavior decreases the effective endurance of
the flash memory.

To overcome these limitations,

• Use caution when selecting the EEPROM size for
emulation. A small EEPROM size decreases the write
cycles during data movement, which indirectly increases
the endurance of the flash memory.

• Avoid unnecessary writes to the EEPROM. By doing so, the
effective endurance of the flash memory increases. For
example, the system must issue writes only during a power
fail sequence. A RAM buffer can be used for storing the
data during normal operations. Note that the software
handles some of the unnecessary writes to the emulated
EEPROM. For example, if the data to be written is 0xFF and
the current data at that particular location is 0xFF, no write
is issued to the flash memory.

AN-1452 Application Note

Rev. A | Page 8 of 9

CONCLUSION
The application note intends to match the physical difference
between the EEPROM and the flash memory using the
ADuCM3027/ADuCM3029. This emulated EEPROM is similar
to a real EEPROM that overcomes the problems related to, for
example, silicon area, input and output bus resources, and
manufacturing costs.

This application note provides the user with a large EEPROM
size (from 8 bytes to 2 kB (one page)) because this application
software reserves two flash pages for EEPROM emulation. If the

software is extended to four flash pages, the maximum EEPROM
size is 4 kB with a configurable word length of 8 bits to 64 bits.

Because there is a trade-off between the size of the emulated
EEPROM and the endurance of the flash memory, select the
appropriate size to enhance the hardware efficiency. In addition
to this approach, the software handles some of the unnecessary
writes to the ADuCM3027/ADuCM3029 flash device, which
effectively increases the endurance.

Table 1. Initialize EEPROM Function Description—init_eeprom(uint16_t eeprom_size, uint8_t word_length)
Parameter Description Return Value
eeprom_size Size of the EEPROM to emulate. No error. Write complete.
 Error. The given address is out of the available EEPROM

memory space.
word_length Length of the data word to be written in the emulated EEPROM.

Valid values are 8, 16, 32 or 64.
No error. Write complete.

 Error. The given address is out of the available EEPROM
memory space.

Table 2. Write EEPROM Function Description—write_eeprom(uint16_t addr_eeprom, uint8_t data_eeprom)1
Parameter Description Return Value
addr_eeprom Logical address in the EEPROM space where data is written. No error. Write complete.
 Error. The given address is out of the available EEPROM

memory space.
data_eeprom Data written to the EEPROM space, pointed by addr_eeprom. No error. Write complete.
 Error. The given address is out of the available EEPROM

memory space.

1 This function writes data to the EEPROM.

Table 3. Read EEPROM Function Description—read_eeprom(uint16_t addr_eeprom)1
Parameter Description Return Value
addr_eeprom Logical address in the EEPROM space where data is read. Value. The 8-bit data is returned to the application code.
 Error. The given address is out of available EEPROM memory space.

1 This function reads data from the EEPROM.

Table 4. Erase EEPROM Function Description—erase_eeprom()1
Parameter Return Value
Not applicable No error. Erase complete.
 Error. The flash controller is busy and cannot perform the erase action.

1 This function erases the EEPROM memory space. All the data is lost if this function is called.

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

Application Note AN-1452

Rev. A | Page 9 of 9

Table 5. Write Flash Function Description—write_flash(uint32_t addr, uint32_t lower_data, uint32_t upper_data)1
Parameter Description Return Value
addr The address in the flash memory space allotted

for the EEPROM emulation.
No error. Write complete.

 Error. The given address is out of the available EEPROM memory space.
 Not applicable.
lower_data The lower 32 bits of the double word. No error. Write s complete.
 Error. The given address is out of the available EEPROM memory space.
 Not applicable.
upper_data The highest 32 bits of the double word. No error. Write complete.
 Error. The given address is out of the available EEPROM memory space.
 Not applicable.

1 This function receives the translated EEPROM address and data from the write_eeprom() function and issues a write command to the flash controller.

Table 6. Erase Flash Function Description—erase_flash(uint8_t PAGE)1
Parameter Description Return Value
Page The page number of the allotted flash memory space. No error. Page wise erase complete.
 Error. The given page value is out of the allotted flash memory space.

1 This function performs a page wise erase in the allotted flash memory space.

Table 7. Read Flash Function Description—read_flash(uint32_t addr)1
Parameter Description Return Value
addr The address in the flash memory space allotted

for EEPROM emulation.
Read data. The data available at the desired address is returned to the
function.

 Error. The translated address is out of the allotted flash memory space.

1 This function receives the translated EEPROM address from the read_eeprom() function and issues a read command to the flash controller.

©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
 AN15618-0-6/18(A)

www.analog.com

	Introduction
	Background
	Revision History
	Working Principle
	EEPROM
	Initialize EEPROM
	Write EEPROM
	Read EEPROM
	Erase EEPROM

	Flash
	Flash Write
	Flash Erase
	Flash Read

	Limitations
	Conclusion

