Binary to BCD Modulo 360° Converter

Bn $1155 / 6 / 4$

FEATURES
Binary Angle to Modulo 360° BCD Output
Rounding Errors $<0.005^{\circ}$
All TTL Levels
Fast Parallel Operation

The BDM $161516 / 1617$ onferters are coli s ate converters which take as inputs angular pta in binary form and give out angular data in Binary Coded Decimal fom-nod lo 360° The code converters are available in two versions. Che first is scaled in degrees and decimal fractions of degrees and second version is scaled in degrees and minutes.
The BDM 1615 and 1616 accept 14 bit binary inputs and give data in degrees and decimal fractions of a degree, and degrees and minutes respectively.
The BDM 1617 accepts a 16 bit binary input and gives out data in degrees and decimal fractions of a degree.
Rounding errors are $<0.02^{\circ}$ for the BDM 1615 and $<0.005^{\circ}$ for the BDM 1617.

All the converters take in parallel data and give out parallel data; the time of operation is $<0.5 \mu \mathrm{~s}$.
With most synchro/resolver to digital converters the output digital angle is given in natural binary form with the bit weighting being $180^{\circ}, 90^{\circ}, 45^{\circ}$ etc. While this natural binary form of angular information is suited for digital computer interfacing and direct angular transmission in serial form, it is not suited for direct conversion to visual digital displays or for use in computers using BCD coding. The BDMs (Binary Decimal Modules) $1615 / 1616 / 1617$ have been designed to meet this interface requirement.

Tu 5 of the main applications for the BDMs are depicted in Figure 1 and 2. F 1 shows the BDM being used to convet the binary angular information from a synchro to digital converter into a suitable ford arming the visual display

Figure 1.

Figure 2.

SPECIFICATIONS
 required temperature range; the code is 500 for 0 to $+70^{\circ} \mathrm{C}$

PIN CONNECTIONS AND OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

