

8-Bit High-Speed **Multiplying D/A Converter**

DAC08

1.0 **SCOPE**

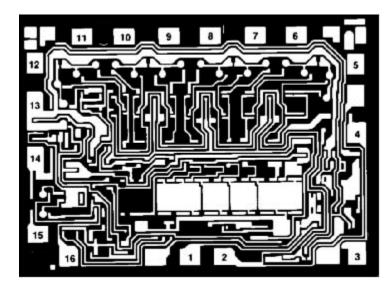
This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/aerospace is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/DAC08

2.0 Part Number. The complete part number(s) of this specification follow:

> Part Number Description DAC08-000C 8-Bit High-Speed Multiplying D/A Converter DAC08R000C Radiation guaranteed 8-Bit High-Speed Multiplying D/A Converter


3.0 **Die Information**

3.1 **Die Dimensions**

Die Size	Die Thickness	Bond Pad Metalization
63 mil x 87 mil	$19 \text{ mil} \pm 2 \text{ mil}$	Al/Cu

1. V_{LC}

3.2 **Die Picture**

2.	I _{OUT}
3.	V-
4.	I _{OUT}
5.	B1 (MSB)
6.	B2
7.	B3
8.	B4
9.	B5
10.	B6
11.	B7
12.	B8 (LSB)
13.	V+
14.	V_{REF^+}
15.	$V_{\text{REF-}}$
16.	COMP

ASD0012821

Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

DAC08

3.3 Absolute Maximum Ratings 1/

Supply Voltage (V+ to V-) Logic Inputs Logic Control Voltage (V _{LC}) Analog Current Outputs (at V- = 15V) Reference Input (V _{REF+} to V _{REF-}) Reference Input Differential Voltage (V _{REF+} to V _{REF-}) Reference Input current (I _{VREF+}) Storage Temperature Range Ambient Operating Temperature Range (T _A) Junction Temperature (T _J).	V- to (V- plus 36V dc) V- to V+ 4.25mA V- to V+ ±18V dc 5mA -65°C to +125°C -55°C to +125°C
--	--

Absolute Maximum Ratings Notes:

<u>1/</u> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 25/2
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics						
Parameter	Symbol	Conditions <u>1/</u>	Limit Min	Limit Max	Units	
	I+			3.8		
Power Supply	I-	$V_s = \pm 15V; I_{REF} \le 2mA$	-7.8		m/	
Full Range Current	I _{FR}	$V_{\text{REF}} = 10V,$ R ₁₄ , R ₁₅ = 5kΩ	1.94	2.04	mA	
Output Voltage Compliance	Voc	Full Range Current Change < 1/2 LSB	-10	18	v	
Zero Scale Current	Izs			2	μΑ	
Full Range Symmetry	FRS	I _{FR} – I _{FR}		±8	μΑ	
	I _{OR1}	$V_{REF} = 15V, V- = -10V, R_{14}, R_{15} = 5k\Omega$	2.1		— mA	
Output Current Range	I _{OR2}	$V_{REF} = 25V, V- = -12V, R_{14}, R_{15} = 5k\Omega$	4.2			
	PSSI _{FS+}	V+ = 4.5V to 18V, V- = -18V; I _{REF} = 1mA		±0.01	$\frac{\%\Delta^{3}}{\%\Delta^{3}}$	
Power Supply Sensitivity	PSSI _{FS} -	V- = -4.5V to -18V, V+ = +18V; I _{REF} = 1mA		±0.01	$\frac{\%\Delta}{\%\Delta}$	
Reference Bias Current	Ivref-		0	-3	μΑ	
	VIL	Logic "0", V _{LC} = 0V		0.8	- v	
Logic Input Levels	VIH	Logic "1", V _{LC} = 0V	2			
Logic Input Current	l _{iL}	$V_{IN} = -10V, V_{LC} = 0V$		-10	μΑ	
(Each Bit)	Ін	$V_{IN} = 18V, V_{LC} = 0V$		+10		
Logic Input Swing	Vis	I _{FR} = 1.94mA (min) I _{FR} = 2.04mA (max)	-10	+18	V	
Resolution			8		Bit	
Monotonicity			8		Bit	
Nonlinearity	NL		T	±0.1	%F	

Table I Notes:

1. $V_S = \pm 15V$, $I_{REF} = 2mA$, and $T_A = +25^{\circ}C$, unless otherwise specified.

DAC08

Parameter	Symbol	Conditions <u>1/</u>	Sub- groups	Limit Min	Limit Max	Units	
	I+	V _s = ±15V or +5V, -15V	1, 2, 3		3.8		
		$V_s = \pm 5V$, $I_{REF} = 1mA$					
Power Supply		M, D, L, R			4.0	mA	
<u>2</u> /		$V_{s} = \pm 15V \text{ or} +5V, -15V$	1, 2, 3	-7.8			
	I-	$V_S = \pm 5V$; $I_{REF} = 1mA$	1, 2, 3	-5.8			
		M, D, L, R <u>3</u> /	1	-8.0			
Full Range Current	I _{FR}	$V_{\text{REF}} = 10V,$ R ₁₄ , R ₁₅ = 5kΩ	1, 2, 3	1.94	2.04	mA	
runnange current	IFN	M, D, L, R <u>3</u> /	1	1.925	2.04		
Output Voltage Compliance <u>4</u> /	Voc	Full-Scale Current Change < 1/2 LSB	1, 2, 3	-10	+18	V	
Zana Gaala Gumaat	1		1, 2, 3		2		
Zero Scale Current	Izs	M, D, L, R <u>3</u> /	1		2	μΑ	
Full Range Symmetry <u>4</u> /	I _{FRS}	I _{FR} – I _{FR}	1, 2, 3		±8	μΑ	
	IOR1	$V_{REF} = 15V, V - = -10V;$ $R_{14}, R_{15} = 5k\Omega$	1.2.2	2.1			
Output Current Range <u>4</u> /	I _{OR2}	$V_{REF} = 25V, V - = -12V;$ R ₁₄ , R ₁₅ = 5k Ω	1, 2, 3 4.2			- mA	
	PSSI _{FS+}	$V_{+} = 4.5V_{+} = 1.8V_{-}$			±0.01	$\frac{\%\Delta I_{O}}{\%\Delta V}$	
Power Supply Sensitivity <u>4</u> / -	PSSI _{FS-}	V- = -4.5V to -18V, V+ = 18V, I _{REF} = 1mA	- 1, 2, 3 -		±0.01	$\frac{\%\Delta I_{O}}{\%\Delta V}$	
Reference Bias Current <u>4</u> /	VREF-		1, 2, 3	0	-3	μΑ	
		Logic "0", $V_{LC} = 0V$	1, 2, 3		0.8	F** -	
	VIL	M, D, L, R <u>3</u> /	1		0.8		
Logic Input Levels	V _{IH}	Logic "1", $V_{LC} = 0V$	1, 2, 3	2.0		- V	
		M, D, L, R <u>3</u> /				1	
		$V_{IN} = -10V, V_{LC} = 0V$	1, 2, 3		-10		
Logic Input Current		M, D, L, R <u>3</u> /			-30	μΑ	
(Each Bit) <u>4</u> /	І н —	$V_{IN} = 18V, V_{LC} = 0V$	1, 2, 3		10		
		M, D, L, R <u>3</u> /			10		
Logic Input Swing <u>4</u> /	Vis	$I_{FR} = 1.94 \text{mA} \text{ (min)}$ $I_{FR} = 2.04 \text{mA} \text{ (max)}$	1, 2, 3	-10	+18	V	
Monotonicity <u>4</u> /			1, 2, 3	8		Bits	
			1, 2, 3		±0.19	%FS	
Nonlinearity	Nonlinearity NL M, D, L, R <u>3</u> /				±0.45	1	
Full Scale Tempco <u>4</u> /	TCI _{FS}		8		±80	ppm/°C	

1.

 $V_S = \pm 15V$, $I_{REF} = 2mA$, unless otherwise specified. When the device is used in an un-biased state at high temperature only, and subsequently biased, the device supply currents may rise 30% above 2. specification for as long as 30 seconds. Devices tested at 100K.

3.

4. This parameter not tested post irradiation.

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)								
Devenueter	Gumbal	Sub-	Post Burn In Limit		Post Life	Test Limit	Life Test	11
Parameter	Symbol	groups	Min	Max	Min	Max	Delta	Units
	I _{FR}			2.25	1.00	2.04	0.01	
`Full Range Current	IFR	1	1 1.93 2.05	2.05	1.92	2.06	0.01	mA
Zero Scale Current	Izs	1		2.5		3	0.5	
	Izs	1		2.3		5	0.5	μA

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
А	Initiate	20-DEC-01
В	Update web address	Aug. 5, 2003
С	Add radiation limits same as SMD	Aug. 25, 2003
D	Update header/footer & add to 1.0 Scope description.	March 3, 2008
Е	Add Junction Temperature (T _J)+150°C to Absolute Max. Ratings	April 2, 2008
F	Updated Section 4.0c note to indicated pre-screen temp testing being performed.	June 6 2009
G	Update fonts and sizes to ADI standards	Nov. 15, 2011

© 2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 11/11

www.analog.com

ASD0012821 Rev. G | Page 5 of 5