
REM Switch Software Driver User Guide
UG-1285

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

REM Switch Software Driver User Guide

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. L | Page 1 of 60

INTRODUCTION
This user guide is an overview of the real-time Ethernet multiprotocol (REM) switch software driver usage. For details regarding available
functions and their parameters, see the header files referenced in this user guide.

The REM switch driver is designed to provide a standard, protocol independent interface (/Common/inc/REMS_Standard.h) used for
initialization, interrupt management, timer management, and protocol independent packet transmission and receiving. Additional
functionality is accessed through protocol specific interfaces, which are designed to support the software application level stack of a
particular industrial Ethernet protocol, such as REMS_PROFINET.h.

The timer functionality provided by the REM switch is synchronized via an internal precision timer and can be used to capture external
events or generate signals that are synchronized to a protocol specific timing function, such as parallel transmission control protocol
(PTCP), IEEE 1588, and EtherCAT distributed clock, among others. Timer functions include the following:

 Input capture, which time stamps a rising or falling edge on an external signal.
 Output compare, which generates an edge on a chip output at a programmable time.

The REM switch has many features dedicated to the protocol specific operation, including multiple transmit and receive queues, internal
timer resources, and various interrupt events. The driver software manages these resources internally.

It is assumed that the user is familiar with the REM switch hardware and has reviewed the fido5100/fido5200 data sheet.

http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
https://www.analog.com

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 2 of 60

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
Configuration .. 3

Driver Contents .. 3
Build Environment... 4
Porting ... 4

Using the Driver ... 5
Standard Interface .. 5
Addressing Tables .. 8
Protocols .. 8

PROFINET .. 9
Synchronization (PTCP) ... 9
PROFINET Connection Establishment 9
RT Class 1 Connection Establishment 10
RT Class 3 Connection Establishment 10
Netload Filtering .. 10

EtherNet/IP ... 11
EtherNet/IP Initialization ... 11
Handling PHY Link States .. 11
Handling CPU Interrupts ... 12
Low Priority TCP/IP Frame Receive and Transmit
Processing .. 12
High Priority EtherNet/IP Class 1 Frame Receive and
Transmit Processing .. 13
EtherNet/IP DLR Frame Receive and Transmit Processing 13
Other Considerations for DLR ... 14
Broadcast and Multicast Filtering .. 15

Modbus/TCP .. 16
Modbus/TCP Initialization... 16
Modbus/TCP Interrupt Handling ... 16
Modbus/TCP PHY Link State Interrupt Handling 16
Modbus/TCP Received Packet Interrupt Handling 17
Modbus/TCP Packet Transmission .. 17

EtherCAT .. 18
EtherCAT Initialization .. 18
EtherCAT Interrupt Handling ... 18
EtherCAT Slave Stack to Driver Interface 20
MII Management Interface ... 20
EtherCAT SSC .. 21

POWERLINK ... 26
POWERLINK Initialization ... 26
POWERLINK Interrupt Handling .. 26
POWERLINK PHY Link State Interrupt Handling 28
POWERLINK Received Packet Interrupt Handling 28
POWERLINK Packet Transmission 28

Register Maps and Definitions ... 29
Direct Address Registers ... 35
Indirect Address Host Registers... 37

Function Reentrancy .. 54
EtherCAT fido5200 Functional Differences from the Beckhoff
ET1100 ... 56
Prebuild Steps for the IAR Tool Chain 58
Considerations when Using Six or Seven FMMUs for the
EtherCAT Driver .. 60

REVISION HISTORY
3/2020—Rev. K to Rev. L
Changes to Initialization Section ... 11
Changes to Interrupt Handling Section 18
Changes to EtherCAT Slave Stack to Driver Interface Section 20
Changes to SSC Changes Section ... 25

This Innovasic product user guide has been reformatted to the
styles and standards of Analog Devices, Inc.
8/2018—Revision K: Initial Version

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 3 of 60

CONFIGURATION
Prior to initialization or use, certain system requirements must be met for the REM switch driver to operate properly. A complete list of
system requirements is detailed in Table 1.

Table 1. System Requirements
Driver Component Requirement
Hardware 32-bit host processor or better
 50 kB to 100 kB read only memory (ROM)1
 8 kB random access memory (RAM)
Compiler 16-/32-/64-bit integer support
Software Libraries

stdint.h int8_t/uint8_t
 int16_t/uint16_t
 int32_t/uint32_t

time.h struct timespec
string.h memcpy()

 memset()
stdlib.h abs()

1 The fido1100/gcc based system uses 46 kB of ROM.

DRIVER CONTENTS
The REM switch driver is divided into the three subdirectories described in the Common section, the Porting section, and the Protocol
Specific section.

Common

The common directory includes low level portions of the driver, as well as common types of functions, such as static table support and
dynamic table management. Files of interest to the user are as follows:

• inc/REMS_Standard.h, which is an interface to standard switch functions.
• inc/REMS_Error.h, which contains error codes returned by driver routines.
• inc/REMS_DynamicTable.h, which provides management of the switch dynamic forwarding table.
• inc/REMS_StaticTable.h, which provides management of the switch static forwarding table.

Porting

The porting directory contains the files that must be modified to support a particular hardware platform. Nothing in this directory needs
to be available to the application layer.

Protocol Specific

In the protocol specific subdirectory, a separate directory is provided for each supported protocol. Any given application depends on a
single protocol. Available protocols are as follows:

• PROFINET. Only the main PROFINET header must be accessed by the software application levels of the application.
inc/REMS_PROFINET.h provides setup and operation of PROFINET functionality.

• EtherNET/IP. Only the main EtherNet/IP header must be accessed by the software application levels of the application.
inc/REMS_EthernetIP.h provides setup and operation of Ethernet/IP functionality.

• Modbus/transmission control protocol (TCP). Only the main Modbus/TCP header must be accessed by the software application
levels of the application. inc/REMS_ModbusTCP.h provides setup and operation of Modbus/TCP functionality.

• EtherCAT. Two EtherCAT header files must be accessed by the software application levels of the application, as follows:
• inc/REMS_ECATHw.h provides setup and operation of REM switch as an EtherCAT slave controller.
• inc/REMS_ECATinternals.h sets the EtherCAT distributed clock synchronization offset parameter.

All other header and source files are specific to the driver operation and organization and do not need to be accessed by software
application levels of the application.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 4 of 60

BUILD ENVIRONMENT
When building the REM switch driver, the following directories must be on the included path:

• REMS_Driver/Common
• REMS_Driver/Porting
• REMS_Driver/<ProtocolSpecificDirectory>

ProtocolSpecificDirectory is the name of one of the supported protocols, such as PROFINET. Build a single protocol for a given project.
For example, it is not possible to build a driver that supports both PROFINET and EtherCAT. When building the rest of the application
using the REM switch driver, only the common and protocol specific subdirectories must be available.

Some parameters are provided to enable debugging features and additional checks in the driver code. These parameters are as follows:

• REMS_ENABLE_DEBUG. If defined, this parameter enables the error level debug macros embedded in the code. If
REMS_ENABLE_DEBUG is set to 1, this parameter also enables informational printouts. For example, if the symbol is set on the
compiler command line, the command code may look as follows:
• -D REMS_ENABLE_DEBUG (generates error printouts)
• -D REMS_ENABLE_DEBUG = 1 (generates error and informational printouts)

• REMS_PARAMETER_CHECKS. If defined, this parameter causes the code to perform detailed checks on function parameters.
Defining this parameter on a command line may look like -D REMS_PARAMETER_CHECKS.

PORTING
Because the driver has no dependencies on any operating system resources (such as no threading and semaphores), porting is limited to
defining how the host processor communicates with the REM switch and some debugging options. All porting related code is located in
the porting directory and found in the /Porting/inc/REMS_Port.h and /Porting/src/REMS_Port.c files. The porting/examples directory
contains versions of these files that are specific to various processors.

REMS_Port.h

The REMS_DEBUG(), REMS_INFO(), and REMS_EVENT() debug macros may require platform specific customization. When enabled,
these macros are used by driver code to display error and warning events. Calling printf() implements these macros. If printf() is not
available, other logging mechanisms can be used.

The following parameters in REMS_Port.h define the hardware environment in which the driver operates:

• REMS_32_BIT_BUS. Define this parameter if the interface from the host processor to the REM switch is 32 bits wide. Otherwise,
the driver assumes the interface is 16 bits wide.

• REMS_LITTLE_ENDIAN_HOST. Define this parameter if the host processor uses little endian byte ordering for memory accesses.
Otherwise, the driver assumes the host processor uses big endian byte ordering.

• REMS_BASE_ADDRESS. This parameter must be set to the base address at which the REM switch is accessed, or the location of the
external chip select in the memory map.

• REMS_ADDR_SHIFT. This parameter indicates how far the address values are shifted depending on the size of the host processor
data bus. The default operation of the driver is to work with byte addressable memory (REMS_ADDR_SHIFT = 0). If the memory
bus addresses 16-bit words, set REMS_ADDR_SHIFT to 1. If the memory bus addresses 32-bit words, set REMS_ADDR_SHIFT to
2. If using separate address and data buses to communicate to REM, coordinate the setting of this parameter with the alignment of
the address bus to address the input of the REM. If using a multiplexed address or data bus, this parameter can be used to adjust for
the operation of the user bus processor.

• _SWAPL_() and _SWAPS_(). Use these macros to swap bytes in limited cases when reading or writing packets. These macros are
only used for control words, packet sizes, and time stamps, but not all packet data. Because the REM switch uses big endian internal
organization, these macros have no effect on a big endian host. If user processor has hardware support for endian swapping,
rewriting the macros is possible.

REMS_Port.c

Typically, only the REMS_ReadBlock() and REMS_WriteBlock() functions in this file must be modified. REMS_ReadBlock() is used by
the driver to read packet data from a first in, first out (FIFO) queue and REMS_WriteBlock() is used to write packet data to a FIFO
queue. The sample processor example code is a simple C-language implementation for a 16-bit data bus. The sample processor can be
easily adapted to a 32-bit bus by changing the short pointers to long pointers. If direct memory access (DMA) resources are available on
the user processor, they can be used within REMS_ReadBlock() and REMS_WriteBlock().

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 5 of 60

USING THE DRIVER
STANDARD INTERFACE
Basic, protocol independent functionality of the REM switch is accessible through REMS_Standard.h.

Driver Initialization

When initializing the REM switch, first call REMS_StdInit(). REMS_StdInit() checks basic communication between the host processor
and the REM switch, loads the protocol specific configuration to the device, defines the communication interface for the physical
Ethernet layers (PHYs) (media independent interface (MII) and reduced media independent interface (RMII)), and identifies which of
the REM switch interrupt outputs are associated with events of different priorities. If REMS_StdInit()returns REMS_OK, proceed to the
next step. If REMS_OK is not returned, there is a communication error to the REM switch.

After the REM switch is initialized, the media access control (MAC) addresses for the REM switch must be set. Either one or three MAC
addresses are required, depending on the protocol. PROFINET requires a host MAC address for each port, whereas other protocols
require a single host address. Call REMS_StdSetMacAddress() to call the MAC addresses.

Interrupts

The REM switch supports up to three separate interrupt lines. While fewer lines may be used, use of all three interrupt lines yields the best
performance on protocols with critical timing. The interrupt events supported by the device and driver are defined in REMS_Standard.h in the
REMS_StdIntEvent_t enumerated type. Additional interrupt events from the device are handled directly by the driver. The REM switch
hardware and driver are compatible with either edge triggered or level sensitive interrupts.

Interrupts are configured using the following routines:

• REMS_StdAssignInterrupt() determines the line and priority for an interrupt event.
• REMS_StdEnableInterrupt() enables an interrupt event.
• REMS_StdDisableInterrupt() disables an interrupt event.

Hardware events in REMS_StdIntEvent_t are available for use. Protocol specific events are typically generated by the driver based upon
the occurrence of events more complex than those in REMS_StdIntEvent. Protocol specific events are already enabled or disabled and
are already assigned to a particular interrupt line by the driver when firmware is loaded.

To define interrupt handlers for the various priorities, use a structure similar to the following. The specific handler syntax varies
depending on user environment.
/*** Handle REM Switch Interrupt Line 0. ***/

__attribute((interrupt, section (".rem"))) void LEASHstandardExternalInt0()

{

 volatile unsigned long ack;

 /* acknowledge the interrupt */

 ack = *FIDO_INTCONTROLCH0;

 HandleIntREMS(REMS_Int_Line_0);

}

Interrupt Line 1 and Interrupt Line 2 use similar handler syntaxes, with the difference being that Line 1 and Line 2 take the place of Line 0. The
main handler routine functions regardless of how interrupt events are allocated across the interrupt lines and may appear as follows:
static void HandleIntREMS(REMS_IntLine_t line)

{

 REMS_stdIntEvent_t event;

 unsigned short status;

 /* Have driver read interrupt events from REM and queue them up locally */

 REMS_StdEvaluateInterrupt(line);

 do {

 /* read events from the local queue one at a time */

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 6 of 60

 event = REMS_StdGetNextEvent(line);

 switch (event) {

 case REMS_StdInt_Port_1_LinkChange:

 case REMS_StdInt_Port_2_LinkChange:

 LTE_semSignal(linkMgtSem);

 Break;

 case REMS_StdInt_PktReady:

 /* handle a packet received on the low priority queue,

 * pass it to the TCP/IP stack */

 REM_RecievePacket();

 break;

 case REMS_StdInt_Capture_0:

 /* handle timer capture events … */

 break;

 case REMS_StdInt_Capture_1:

 break;

 case REMS_StdInt_Capture_2:

 break;

 case REMS_StdInt_Capture_3:

 break;

 /* handle timer output compare events */

 case REMS_StdInt_Compare_0:

 break;

 case REMS_StdInt_Compare_1:

 break;

 case REMS_StdInt_Compare_2:

 break;

 case REMS_StdInt_Compare_3:

 break;

 /* Handle periodic timer events (TCU) */

 case REMS_StdInt_TimerControl_0:

 break;

 case REMS_StdInt_TimerControl_1:

 break;

 case REMS_StdInt_TimerControl_2:

 break;

 case REMS_StdInt_TimerControl_3:

 break;

 /* Protocol-specific interrupt events */

 case REMS_PnetInt_CPM_Watchdog_Timeout:

 /* … tell the PROFINET stack that we timed out */

 REMS_pnetPpmRemove(0); // remove driver PPM

 REMS_pnetCpmRemove(0); // remove driver CPM

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 7 of 60

 break;

 case REMS_PnetInt_ReceivedRtData:

 /* Handle real-time PROFINET I/O data */

 REMS_PN_HandleReceiveChannel();

 break;

 case REMS_PnetInt_ProcessInputs:

 /* Signal from the driver that it is time to gather input data

 * to be sent on next PPM production */

 break;

 case REMS_PnetInt_Master_Lost:

 /* Sync Master has been lost. */

 REMS_pnetClearLldpPtcp(REMS_enetPort_1);

 REMS_pnetClearLldpPtcp(REMS_enetPort_2);

 REMS_rtc3pcm &= ~SET_MASTER_MAC;

 break;

 case REMS_PnetInt_No_Sync_Message_Received:

 case REMS_PnetInt_Jitter_Out_Of_Boundary:

 REMS_rtc3pcm &= ~SET_MASTER_MAC;

 REMS_pnetClearLldpPtcp(REMS_enetPort_1);

 REMS_pnetClearLldpPtcp(REMS_enetPort_2);

 REMS_rtc3pcm &= ~SYNC_TRUE;

 break;

 case REMS_PnetInt_Sync:

 /* system has come in to sync */

 REMS_rtc3pcm |= SET_MASTER_MAC;

 REMS_rtc3pcm |= SYNC_TRUE;

 initSync(&gPTCPSync);

 break;

 case REMS_PnetInt_Wrong_Sync_Master:

 break;

 case REMS_PnetInt_PortStateRedDown:

 /* a port has gone from Class C UP/RED to DOWN */

 break;

 case REMS_PnetInt_PortStateRedUp:

 /* a port has gone from Class C down to UP */

 break;

 case REMS_PnetInt_PortStateRedRun: */

 /* a port has gone from Class C DOWN/UP to RUN */

 break;

 default:

 break;

 }

 } while (event != REMS_Int_None); /* handle all outstanding events */

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 8 of 60

Packet Transmission and Receiving

REMS_Standard.h provides an interface by which to transmit and receive packets over the lowest priority queue. This interface leaves
the higher priority queues open for protocol specific traffic. The transmit interface allows the user to determine the port from which the
packet transmits and the receive interface indicates on which port a packet was received. These interfaces, in conjunction with the static
forwarding table, allow the use of protocols such as link layer discovery protocol (LLDP), rapid spanning tree protocol (RSTP), and
media redundancy protocol (MRP).

As noted in the Porting section, the routines that read and write packet data to and from the REM switch can be customized to take
advantage of DMA resources on the host processor.

Synchronized Timer Signals

The timer control unit (TCU) controls the external timer signals on the REM switch. These signals come directly from the REM switch.
They are also synchronized directly to the network. The TCU can be called using the functions REMS_StdGetTcuTimersAvailable() and
REMS_StdSetTcuIoParams(). Both functions allow the TCU to generate a timer signal that fits the needs of the system. Both functions
are defined in REMS_Standard.h.

REMS_StdGetTcuTimersAvailable() is used to get the number of TCU timer signals that are available to the application.

REMS_StdSetTcuIoParams() allows the user to specify parameters for the timer in use. Call this function to set pulse parameters on the
indicated timer channel.

ADDRESSING TABLES
Static Forwarding Table

The static forwarding table is used to manage the handling of packets with a multicast destination MAC address. The interface for
managing the table is located in REMS_StaticTable.h. By default, the REM switch forwards any multicast packet from the receiving
Ethernet port to the other Ethernet port, but does not forward the packet to the host processor. The user can add a specific multicast
MAC address to the static table to alter the forwarding of the multicast packet.

REMS_AddStaticTableEntry() defines the rule to apply to packets with a given address, and also indicates whether the packets override
port state settings.

The static forwarding table also provides functions to remove an entry and to flush all entries from the table. The number of entries in
the static forwarding table varies by protocol, as shown in Table 2. The static forwarding table only applies to packets received from an
Ethernet port.

Table 2. Static Forwarding Table Entries
Protocol Number of Entries in Static Forwarding Table
PROFINET 8
EtherNet/IP 6
Modbus/TCP 8
EtherCAT 0

Dynamic Forwarding Table

The dynamic forwarding table is used to manage the handling of packets with a unicast destination MAC address. This table operates
automatically and does not require input from the application. A common operation for the dynamic forwarding table is to change the
aging time for entries in the table, which affects how long a forwarding rule for an address stays in the table without being refreshed by a
packet received from that address. The dynamic forwarding table is also often used to flush the table on a network topology change.

These functions, along with the ability to add or delete an address in the table, are available in REMS_DynamicTable.h. The current
dynamic table implementation allows aging time between 12 sec to 12 minutes. The dynamic forwarding table is set to 512 items by
default, and is not used by EtherCAT.

PROTOCOLS
At the time of this release of the driver, the supported protocols are EtherCAT, PROFINET, Modbus/TCP, Ethernet/IP, and
POWERLINK. These are described in the PROFINET section, the EtherNet/IP section, the Modbus/TCP section, the EtherCAT section,
and the POWERLINK section.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 9 of 60

PROFINET
The current version of the driver supports a relative forwarder device of Version 2.3 of the PROFINET Specification, Conformance
Class B and Class C (IRT).

Manage the standard setup of the TCP/IP stack as usual. LLDP and discovery and configuration protocol (DCP) packets are relayed to
the host via the low priority queue, which is interfaced through REMS_Standard.h. The integrator must differentiate traffic as necessary.
Parallel TCP (PTCP) line delay and synchronization traffic is handled entirely by the driver. The interface for input/output (I/O) data is
described in the RT Class 1 Connection Establishment section and the RT Class 3 Connection Establishment section.

Most parameters are dependent on the specifics of the connection process. Ensure that the PROFINET transmit and receive delay values
of the device are set at initialization time. Ensure that these are the same delay values advertised in the GSDML file of the device and in
LLDP packets transmitted by the device. These delay values are constants for a particular hardware design, which are dependent on the
PHYs chosen. The receive value represents the time between the arrival of a packet on the cable side of the receive PHY and the time
stamp in the REM switch. The transmit value represents the time between the time stamp in the REM switch device and the packet being
transmitted on the cable side of the PHY.

PHYs targeting the PROFINET IRT market include estimates of this timing in the respective device datasheet.

Some adjustments must be made to the PHY values to account for timing within the REM switch. The PHY transmit delay takes an
additional 64 ns in the REM switch, and the receive delay in the REM switches 8 ns less than the PHY receive delay. Use the
REMS_pnetSetDelayValues() function to provide these values to the driver.

After the delay values are set, call REMS_syncStartBridge(). Calling this function initializes the basic message processing and data
structures for line delay calculation and synchronization.

SYNCHRONIZATION (PTCP)
The PTCP function is handled primarily in the driver. Line delay processing takes place without intervention from the software
application levels. Either based on parameters from nonvolatile memory or data provided in the connection request, call
REMS_syncStartSlave() when appropriate. This function provides the parameters necessary for the driver to validate synchronization
packets and synchronize to the proper master. At this point, the driver begins the process of synchronization.

The following functions are useful to the software application levels:

• REMS_syncCableDelay() returns the calculated cable delay per port in LLDP packets.
• REMS_getSyncMasterAddr() returns the MAC address of the synchronization master for presentation as master in LLDP packets.
• REMS_getPeerDelays() returns the transmit and receive delays of the peer per port for presentation as master in LLDP packets.

The following events are generated through the interrupt interface to inform the software application levels of changes to the
synchronization state:

• REMS_PnetInt_Sync indicates that the local machine is synchronized with the master.
• REMS_PnetInt_Wrong_Sync_Master indicates that a synchronization packet has been received from the wrong master, which does

not affect the synchronization state.
• REMS_PnetInt_Master_Lost indicates that a preliminary timeout occurred, and the machine enters the tsync state, which is a state

in the PROFINET specification.
• REMS_PnetInt_No_Sync_Message_Received indicates that the machine timed out and is no longer synchronized.
• REMS_PnetInt_Jitter_Out_Of_Boundary indicates that the difference between local time and the time in the received

synchronization packet is too great, and that the machine is no longer synchronized.

PROFINET CONNECTION ESTABLISHMENT
REMS_pnetConnectionStart() must be called when a connect.req frame is received. This parameter provides the driver with the MAC
address, application relation (AR) type, and start up mode of the I/O controller necessary for a connection. The application then must
initialize a provider protocol machine (PPM) and consumer protocol machine (CPM). The REMS_pnetPpmInsert() and REMS_
pnetCpmInsert() functions are provided for PPM and CPM initialization. There is no order requirement with when initializing the PPM
and CPM. To start the PPM, call REMS_pnetPpmStart().

If the connection is closed for any reason, such as a consumer watchdog timeout, the PPM and CPM must be removed using the
REMS_pnetPpmRemove() and REMS_pnetCpmRemove() functions, respectively.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 10 of 60

RT CLASS 1 CONNECTION ESTABLISHMENT
For a PROFINET RT Class 1 connection, there are no additional parameters required. The application only must call
REMS_pnetUserDataValid() when the device is ready to send the ApplicationReady.req frame.

RT CLASS 3 CONNECTION ESTABLISHMENT
For a PROFINET RT Class 3 connection, the application must call REMS_IrBeginEnddata_PortAssignment() for both ports when the
PDIR data index Write.req frame is received. The application can then call REMS_pnetUserDataValid() when the device is ready to send
the ApplicationReady.req frame. The application also manages the RT_Class_3 port state machine. Use the REMS_pnetSetPortRedState()
function to set the switch port state to off, up, or run to match the LLDP frames. Finally, call REMS_pnetReadyForRTClass3 when the
device is fully synchronized and ready for a Class 3 connection.

NETLOAD FILTERING
The PROFINET REM switch driver provides frame filtering capabilities for net load management. All filtering is disabled by default.
Two types of filtering can be applied by the REM switch PROFINET firmware. In the first type, careful filtering is applied to eliminate
certain classes of frames that are not directed to the local device, such as broadcast address resolution protocol (ARP) requests that do
not match the local IP address. In the second type, frames directed to the local device are dropped if the host processor is asked to
process high volume of packets. In such a case, priority is given to frames necessary to maintain the PROFINET connection.

The following functions are provided for enabling and configuring these filters:

• REMS_pnetResetQueue0filterCount() resets the Q0 (lowest priority) frame counter. The first time this function is called, the driver
sets a counter that is decremented with every received frame on Q0. The frame count starts at 10 frames and if the counter reaches 0,
the driver starts dropping frames that do not have a source MAC address matching the controller of an established connection. The
REMS_pnetResetQueue0filterCount() function must then be called periodically to reset the Q0 filter count. Call this function in the
lowest priority thread to ensure all threads are serviced under heavy net load. Under normal conditions, the counter never reaches 0
and no frames are dropped.

• REMS_pnetSetLldpFilter() sets the MAC address of the neighbor port for a given device port. This function adjusts the low priority
filtering to allow all frames from another MAC address. This function allows neighbor LLDP frames through, even if the frame
counter reaches 0.

• REMS_pnetSetDcpName() sets the device name for DCP device identify request frame filtering. This function enables the filtering
of all name of station identify request frames that do not match the given name of station.

• REMS_pnetSetDcpAlias() sets the alias name for DCP device identify request frame filtering. This function enables the filtering of
all alias name identify request frames that do not match the given alias name.

• REMS_pnetSetArpFilter() sets the IP address for ARP filtering. This function enables the filtering of all ARP requests that do not
match the device IP address.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 11 of 60

ETHERNET/IP
The REM EtherNet/IP driver can be used to develop a device capable of supporting priority channel-based Ethernet/IP communications
and, when combined with the DLR support library, beacon-based device level ring (DLR) redundancy. The REM switch is Open
DeviceNet Vendors Association, Inc. (ODVA) conformant.

Additional capabilities of the REM switch include the following:

• Cut through operation
• IEEE-1588 end to end transparent clock
• Common industrial protocol (CIP) compliant quality of service (QOS) handling of EtherNet/IP Class 1 I/O frames (DSCP)

The creation of a complete EtherNet/IP device using the REM switch and this driver also requires a TCP/IP protocol stack and an
EtherNet/IP protocol stack, both provided by the user. In addition, to support the DLR protocol details, combine this driver with the
DLR support library. See the DLR support library user guide for more information on how to use the library.

The REM switch manages the Ethernet Layer 2 communications and switching, and also manages selected details of other protocol
frames. Specifically, the REM switch detects EtherNet/IP Class 1 I/O frames that are directed to this device. Using one of the priority
queues internal to the REM switch hardware, the REM switch redirects these frames to a higher priority queue. In addition, the REM
switch detects DLR frames and redirects them to an independent queue. As such, there are three independent channels through which
Ethernet frames can flow to the system software.

This version of the REM driver provides a static MAC address lookup table that contains space for six entries. This version of the REM
driver for EtherNet/IP supports DLR as a DLR ring node only. This version does not support CIP synchronization.

The handling of DLR multicast frames does not require the use of the static table, regardless of whether the DLR is enabled.

ETHERNET/IP INITIALIZATION
To initialize the REM EtherNet/IP driver, complete the following steps:

1. Configure the external interrupt input pins on the host processor.
2. Call REMS_StdInit as follows:

REMS_StdInit(REMS_MII, 0, REMS_Int_Line_0, REMS_Int_Line_1, REMS_Int_Line_2);

1. For the three priority levels, select the PHY mode (currently MII), 0 (the second argument is reserved, allowing for user
specification), and the designation of the REM interrupt lines.

3. Optional. Call REMS_EipSetFilterCounters to provide the broadcast and multicast storm filter values. If this function is not called,
the filters remain disabled.

4. Call REMS_StdSetMacAddress to communicate the system MAC address to the REM switch. This function takes three MAC
addresses as parameters. When using EtherNet/IP, only one MAC address is necessary, and the second and third arguments can be
zeros.

5. Call REMS_StdSetPortState once for each port to set the port state to REMS_PORT_FORWARDING.
6. Optional. Call REMS_EipSetDSCPValues to set the differential services code point (DSCP) QOS values. If this function is not called,

the REM switch contains suitable default values for these settings and fully conforms to the ODVA requirements set forth in the CIP
specification Volume 2 Section 5-7.4.2.

After completing these steps, the REM switch is fully configured and is ready to begin communications. There are two other
considerations: handling the PHY link states and handling central processing unit (CPU) interrupts, which are discussed in the following
sections.

HANDLING PHY LINK STATES
To function correctly, the REM switch must be told the external speed and duplex settings for each port. Because EtherNet/IP devices
can be used in either 100 Mbps or 10 Mbps networks, do not assume a 100 Mbps full duplex. The REM driver provides a function named
REMS_StdSetSpeedAndDuplex to change the speed and duplex settings. The REM medium priority interrupt events for port link change
(REMS_Int_Port_1_Link_Change or REMS_Int_Port_2_Link_Change) must be used to trigger the process of reading the PHYs to
determine the link speed and duplex, typically using the management data input/output (MDIO) serial management interface. After the
medium priority interrupt events take place, call REMS_StdSetSpeedAndDuplex to update the switch settings.

The PHYs used with the REM switch are required to supply a link status output that can be routed to the REM switch input with the
same name. This process triggers REMS_Int_Port_n_Link_Change. This PHY output must be the link status, not link activity or status.
A typical PHY has a low active output (generally intended to drive a light emitting diode (LED)) that is often set by default to also act as

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 12 of 60

an activity indicator. If unchanged, this output continually toggles as communications proceed, triggering erroneous link up and link
down interrupts. The PHY configuration must be changed so that this toggling does not occur.

The REM switch and driver do not provide any MDIO hardware or subroutines. The system designer must supply these subroutines.

HANDLING CPU INTERRUPTS
During the REM initialization process, calling REMS_StdInit designates the REM interrupt lines high, medium, or low priority. The
REM switch and driver then assign these interrupt lines to the various interrupt events as described in Table 3.

Table 3. Interrupt Priorities
Priority Event Purpose
High REMS_Int_Queue_1_Packet_Ready EtherNet/IP Class 1 frame received

Medium REMS_Int_Port_1_Link_Change Port 1 link up or down detect
Medium REMS_Int_Port_2_Link_Change Port 2 link up or down detect
Medium REMS_Int_Port_1_0 Port 1 unintended loop detected
Medium REMS_Int_Port_1_1 Port 1 DLR beacon timeout
Medium REMS_Int_Port_2_0 Port 2 unintended loop detected
Medium REMS_Int_Port_2_1 Port 2 DLR beacon timeout
Low REMS_Int_Queue_0_Packet_Ready TCP/IP frame received
Low REMS_Int_Queue_2_Packet_Ready DLR frame received

The user determines how to set up the host low level interrupt request line (IRQ) handler. After being set up, the IRQ handler can call a
REM event handler function. The IRQ handler must have access to the REM interrupt line being used and may use various REM driver
functions to perform the following sequence:

1. At the start of the handler, call REMS_StdEvaluateInterrupt one time only to obtain a complete list of all events currently pending
for the interrupt line of interest. This function not only retrieves this event list but also acknowledges all the pending and enabled
interrupt events detected within the REM hardware. All detected events must be handled in the same interrupt.

2. In a while loop, repeatedly call REMS_StdGetNextEvent to get the next pending event until the event returned is REMS_Int_None.
For each event retrieved, call the appropriate code to handle that event. This process is described in detail in the Low Priority
TCP/IP Frame Receive and Transmit Processing, High Priority EtherNet/IP Class 1 Frame Receive and Transmit Processing, and
EtherNet/IP DLR Frame Receive and Transmit Processing sections.

See the Interrupts section for general examples of this process. For EtherNet/IP, the user must handle interrupt events.

LOW PRIORITY TCP/IP FRAME RECEIVE AND TRANSMIT PROCESSING
The setup and utilization of the TCP/IP stack is up to the user. This user guide describes how to use the REM driver to connect the REM
switch hardware to the stack using the following three mechanisms, which the user stack must contain:

• A buffer pool for placing received frames.
• A mechanism for notifying if frames have been received.
• A way to register a callback function that the stack uses to transmit a frame when desired.

Receive

When a low priority frame arrives, the REM hardware triggers the low priority interrupt line and issues a REMS_Int_Queue_0_Packet_Ready
event. The user handler must be ready to detect this event, as well as perform the following sequence:

1. Get a buffer from the buffer pool of the TCP/IP stack.
2. Use the REMS_StdReadPacket or REMS_StdReadPacketWithTimestamp REM driver functions to read the data from the switch

queue into that buffer. Note that the difference between these two functions involves the return of the ingress timestamp, which is
the time at which the packet was received.

3. Use the notification mechanism of the TCP/IP stack to tell the TCP/IP stack a received frame is ready.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 13 of 60

Transmit

To transmit a low priority TCP/IP frame, no REM interrupt or event handler is used. Assuming a transmit handler function can be
registered with the TCP/IP stack, the user must only write this function and register the function with the stack. The function must
perform the following sequence:

1. Get the frame from the TCP/IP stack.
2. Call either REMS_StdXmitTaggedPacket, REMS_StdXmitPacket, or REMS_StdXmitPacketWithControlFlag, as required to send

data through the switch queue. The difference between the first two functions involves the use of an IEEE-802.1Q VLAN tag. Many
TCP/IP stacks do not have the capability of tagging the frames themselves. If this is the case, use the tagged version and supply the
tag data to the REM driver separately. The driver inserts the tag at the location designated. The third function allows the command
of an egress timestamp insertion or capture. If an egress timestamp insertion is called, the hardware overwrites packet data at the
location with the current timestamp as the packet is transmitted. Likewise, if a timestamp capture is called, the hardware captures the
timestamp when the packet is transmitted. The commands and insertion sizes used to create the control flags are defined in REMS_Basic.h.

HIGH PRIORITY ETHERNET/IP CLASS 1 FRAME RECEIVE AND TRANSMIT PROCESSING
The REM hardware detects EtherNet/IP Class 1 I/O frames and directs them to a dedicated high priority receive queue. To ensure
undisturbed handling of this data, this queue is used for no other purpose. Because the frames used to set up the EtherNet/IP Class 1
connection (such as register session and forward open) are not Class 1 I/O frames, those frames are not directed to the high priority
queue. This communication takes place in a low priority queue.

If the user EtherNet/IP stack can make use of the independent flow of this data, connecting EtherNet/IP stack to this queue to create a
high priority I/O channel is simple. If the user stack does not have this capability, follow the steps described in the Low Priority TCP/IP
Frame Receive and Transmit Processing section.

Receive

When a high priority Class 1 I/O frame arrives, the REM hardware triggers the high priority interrupt line and issues a
REMS_Int_Queue_1_Packet_Ready event. The user handler must be able to detect this event, as well as perform the following sequence:

1. Get a buffer from the buffer pool of the EtherNet/IP stack.
2. Use the REMS_Class1ReadPacket REM driver function to read the data from the switch queue into that buffer.
3. Use the notification mechanism of the EtherNet/IP stack to inform the EtherNet/IP stack that a received frame is ready.

Transmit

To transmit a high priority Class 1 I/O frame, use of an REM interrupt or event handler is not necessary. Assuming a transmit handler
function can be registered with the EtherNet/IP stack, the user must only write this function and register it. The function must perform
the following sequence:

1. Retrieve the frame from the EtherNet/IP stack.
2. Call either REMS_Class1XmitTaggedPacket or REMS_Class1XmitPacket to send data through the switch queue. The difference

between these two functions involves the use of an IEEE-802.1Q VLAN tag. Many TCP/IP stacks do not have the capability of
tagging the frames themselves. If this is the case, use the tagged version and supply the tag data to the REM driver separately. The
driver inserts the tag at the location designated.

ETHERNET/IP DLR FRAME RECEIVE AND TRANSMIT PROCESSING
The REM hardware detects EtherNet/IP DLR frames and directs these frames to a dedicated receive queue. To ensure the undisturbed
handling of this data, this queue is used for no other purpose.

Receive

When an EtherNet/IP DLR frame arrives, the REM hardware triggers the low priority interrupt line and issues a REMS_Int_Queue_2_
Packet_Ready event. The user handler must be able to detect this event, as well as perform the following tasks:

1. Get a buffer from the buffer pool of the EtherNet/IP DLR stack.
2. Use the REMS_DlrReadPacket REM driver function to read the data from the switch queue into that buffer.
3. Use the notification mechanism of the EtherNet/IP DLR stack to inform the EtherNet/IP DLR stack that a received frame is ready.

The DLR support library uses a software queuing mechanism to receive these frames. This queue is created by the board support package
files and is referred to by the g_DLR_PacketQueue variable name. The frames, when received, are added to this queue and are retrieved
when the DLR library calls the BSP_Get_DLR_Packet board support package function. This process takes place when the
RING_EVENT_RECEIVE_MSG event is processed within the EtherIpRingProtocol_ProcessEvents function.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 14 of 60

Transmit

To transmit an EtherNet/IP DLR frame, no REM interrupt or event handler is used. Assuming a transmit handler function can be
registered with the Ethernet/IP DLR stack, the user must only write this function and register it. The function must perform the
following sequence:

1. Get the frame from the EtherNet/IP DLR stack
2. Call REMS_DlrXmitPacket to send data through the switch queue.

The DLR support library has a function to transmit DLR frames when necessary. The function is integrated in the DLR library and, in
this case, does not need to be registered. The function is called BSP_Put_DLR_Packet and can be found in the DLR library board support
package file, BspEnetSwitch.c.

OTHER CONSIDERATIONS FOR DLR
By default, on power up, the REM switch disables all DLR features. It is necessary to specifically enable REM switch DLR features by
using the REM driver function REMS_DlrEnable.

It is also necessary to use the DLR support library to implement the software details of the DLR protocol itself. The initialization of the
support library is described in the DLR support library user guide. After the REM switch or driver and the DLR library are initialized,
route the received DLR frames to the DLR support library.

DLR Frame Handling by Frame Type

When the DLR is enabled, all DLR frames are routed by the REM switch. There is no need to use an entry in the static routing table. The
specific routing of the DLR frames is described in Table 4.

Table 4. DLR Frame Routing
Destination MAC Frame Forward Port to Port Forward to Host
01-21-6C-00-00-01 Beacon Always Conditional
01-21-6C-00-00-02 Neighbor_Check_Request Never Always
01-21-6C-00-00-02 Neighbor_Check_Response Never Always
01-21-6C-00-00-02 Sign On Never Always
01-21-6C-00-00-03 Announce Always Always
01-21-6C-00-00-03 Locate_Fault Always Always
01-21-6C-00-00-03 Flush_Tables Always Always
01-21-6C-00-00-04 Advertise Always Always
01-21-6C-00-00-05 Learning Update Always Always
MAC of Active Super Link_Status Always Always

Handling DLR Beacon Frames

The REM switch sends beacon frames to the host only if the DLR ring state changes or if the active DLR supervisor MAC changes. When
one of these events occurs, expect one frame from each port. When the beacon frames are received and successfully processed by the user
code or DLR stack, extract the beacon interval and timeout data and use them to program the TCU by using the REMS_EipStartTcu
REM driver function. After the TCU is started, call REMS_EipEnableBTOIrq to enable the beacon timeout interrupt. This interrupt is
routed to the medium priority interrupt and the REM events. REMS_Int_Port_1_1 and REMS_Int_Port_2_1 are used to indicate this
interrupt. Each port independently monitors for beacon timeouts.

Successful processing of the beacon frames means that a valid beacon frame has been received from both ports, and both frames indicate
that the system has made the transition into ring normal state. Only start the TCU once. At this point, the REM switch begins to process
received beacon frames to monitor for timeouts, active supervisor MAC changes, or ring state changes.

Handling Unintended Loop Detect

The external ports on the REM switch examine the source MAC of each received frame to detect frames with a source MAC that matches
that of the system. If the external ports detect a matching frame, an Ethernet loop exists. These frames are not forwarded to the other
port, but instead generate a medium priority interrupt to the host. The interrupt events generated are REMS_Int_Port_1_0 and
REMS_Int_Port_2_0. These events allow the user DLR stack to report the detection of an unintentional loop.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 15 of 60

Handling Port Link Change

When an Ethernet link up or link down event occurs, the DLR library must be informed. The event itself is an interrupt that the REM
switch generates to the host CPU (see Table 3). The EtherIpRingProtocol_HandleLinkStateChange DLR library function is called in
response. See the DLR library user guide for more information.

BROADCAST AND MULTICAST FILTERING
When using the EtherNet/IP protocol, the REM switch can be set to limit the rate of broadcast and multicast frames that are routed
through the switch. This setup is referred to as broadcast or multicast storm protection. This protection is implemented with an
adjustable threshold that allows the REM switch to only accept n number of frames in t milliseconds.

To set up this protection, the REM switch counts the broadcast and multicast frames accepted until it reaches n and then begins to
discard them. Each frame type (broadcast or multicast) is counted separately so there are two independent filters. The host CPU can
enable this filtering by calling REMS_EipSetFilterCounters to set the packet limits. There is no specific mechanism to set the time period,
and it is only necessary to periodically signal the switch to reset the limit counters. The REM switch driver function that resets the limit
counters is named REMS_EipServiceBcastMcastFilter. Because this signal resets both counters, there is only one time interval shared
between both filters. Although it is possible to use one of the periodic timers of the REM switch for this purpose, the creation and
maintenance of such a function is user dependent.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 16 of 60

MODBUS/TCP
This REM switch driver software provides a mechanism that allows the exchange of I/O data information and Modbus/TCP configuration with
the REM switch. Use this software driver with the REM switch to implement a priority channel in a Modbus/TCP device.

To complete a Modbus/TCP device, a TCP/IP protocol stack and a Modbus/TCP slave stack is required. These stacks are not provided as
part of this software package. This driver package handles communication between the application and stacks and the REM switch.

The REM switch ensures Layer 2 switch functionality (such as broadcast and multicast frame routing, static table, and dynamic table)
and also prioritizes Modbus/TCP traffic above all other traffic. The REM switch expects packets from the driver to be written to different
host write queues depending on their priority. Packets written to the high priority queue are transmitted before any packets that are
written to the standard priority queue. In this way, the application can write standard, nonModbus/TCP packets to the standard priority
queue and can write Modbus/TCP packets to the high priority queue to ensure that Modbus/TCP packets are transmitted with
preference over standard packets.

Similarly, the REM switch examines all received unicast frames intended for the device to determine if they are Modbus/TCP frames. If
the packet is determined to be a Modbus/TCP packet, the packet is routed to the high priority host read queue. All other traffic is routed
to the standard priority host read queue. As such, the attached host processor can give preference to Modbus/TCP packets over all other
packets, ensuring that Modbus/TCP packets always arrive at the host processor, regardless of network loading.

MODBUS/TCP INITIALIZATION
The software initialization procedure of the REM switch and driver for Modbus/TCP is as follows:

1. Configure the external interrupt input pins on the host processor.
2. Assert the REM switch reset line and wait for the switch to become ready.
3. Call REMS_StdInit(). Provide the PHY mode (currently MII), the clock enable flag (set to 0), and the REM switch interrupt lines

you want to use for the three priority levels.
4. Call REMS_StdSetMacAddress() to set the MAC address for the system. There are three MAC address parameters to this function.

For Modbus/TCP, supply the same MAC address for each of the three MAC address parameters.

MODBUS/TCP INTERRUPT HANDLING
When REMS_StdInit() is called, the interrupt outputs are assigned high, medium, and low priority positions according to the passed in
parameters. The REM switch driver assigns interrupt sources to interrupt lines, as shown in Table 5. The low level interrupt handler
must be aware of which REM switch interrupt line caused the interrupt and then call the REM switch event handler function (as shown
in the Interrupts section). After the event handler function is called, all pending interrupts are evaluated and handled individually in a loop.

Table 5. Interrupt Sources for Modbus/TCP
Priority Event Purpose
Low REMS_StdInt_Port_1_LinkChange Port 1 link up/down
Low REMS_StdInt_Port_1_LinkChange Port 2 link up/down
Low REMS_Int_Queue_1_Packet_Ready Standard priority packet received
High REMS_Int_Queue_0_Packet_Ready Modbus/TCP packet received

MODBUS/TCP PHY LINK STATE INTERRUPT HANDLING
The REM switch determines link up or down from a signal supplied to it by the PHYs, but the link speed and duplex settings must be
written to the REM switch by the host processor. The REM switch does not determine these settings on its own. When the EtherNet link
becomes active (REMS_StdInt_Port_1_LinkChange or REMS_StdInt_Port_2_LinkChange interrupt event occurs), the application reads
the link speed and duplex from the PHYs. The link speed and duplex are then written to the REM switch using
REMS_StdSetSpeedAndDuplex() to keep the REM switch updated with the current link settings. The REM switch and driver do not
provide MDIO hardware or driver subroutines. The system designer is responsible for providing a mechanism to deliver link and duplex
information to the REM switch.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 17 of 60

MODBUS/TCP RECEIVED PACKET INTERRUPT HANDLING
When the REM switch triggers the REMS_Int_Queue_0_Packet_Ready or REMS_Int_Queue_1_Packet_Ready event, a high or standard
priority packet for the device has arrived and is ready for the host processor to read from the REM switch memory. The interrupt handler
then supplies the new packet to the TCP/IP stack. Depending on the architecture of the TCP/IP stack to which the packet is supplied, the
process of supplying the stack may appear as follows:

1. Check for a free buffer from the TCP/IP stack.
2. If a free buffer is found, use REMS_StdReadPacket() for standard priority packets or REMS_Read_ModbusTCP_Packet() for

Modbus/TCP packets to read the new packet from the REM switch memory into the buffer.
3. Supply the buffer to the TCP/IP stack to begin processing.

All received TCP/IP packets with a source or destination port number of 502 generate a REMS_Int_Queue_0_Packet_Ready interrupt
event. All other received packets generate a REMS_Int_Queue_1_Packet_Ready interrupt event. Because the REMS_Int_Queue_0
_Packet_Ready interrupt event has a higher priority than the REMS_Int_Queue_1_Packet_Ready interrupt event, Modbus/TCP packets
inherently arrive at the host processor at a higher priority than other packets.

MODBUS/TCP PACKET TRANSMISSION
Transmission of frames can be initiated at any time. The system designer registers a packet transmission routine with the TCP/IP stack
to connect the TCP/IP stack to the Ethernet driver. This process is also true when using the REM switch. When it is time to transmit a
packet, the TCP/IP stack calls the packet transmission routine to retrieve the packet from the TCP/IP stack and supply the packet to the
REM switch for transmission using REMS_StdXmitPacket()or REMS_Xmit_ModbusTCP_Packet(). REMS_StdXmitPacket() writes the
packet to the REM switch using the standard priority queue while REMS_Xmit_ModbusTCP_Packet() writes the packet to the REM
switch using the high priority queue. In this way, Modbus/TCP packets transmit from the device at a higher priority than standard packets.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 18 of 60

EtherCAT
The EtherCAT driver provides a software interface by which an application layer and EtherCAT slave stack can initialize and use the
REM switch as an EtherCAT slave controller (ESC). When this driver is used, the Beckhoff EtherCAT slave stack code (SSC) can be
integrated with minimal porting effort because the driver is designed to interact directly with the SSC.

To create a finished EtherCAT device, an EtherCAT slave stack must be supplied by the user. The driver is designed to directly integrate
with the Beckhoff EtherCAT SSC. The REM switch, in combination with this driver, acts as an ESC that supports distributed clocks,
eight synchronization managers, hereafter referred to as SyncManager) and eight Fieldbus Memory Management Units (FMMUs) with
10 kB of RAM.

ETHERCAT INITIALIZATION
To initialize an EtherCAT slave stack, perform the following actions:

1. Disable PHYs and power down both PHYs via MDIO to prevent any network traffic from entering until the REM switch and the
system are completely initialized and ready for EtherCAT communication.

2. Restore electrically erasable programmable read only memory (EEPROM) emulation data. Retrieve the emulated EEPROM data
from nonvolatile memory. The REM switch does not have attached EEPROM so the EEPROM must be emulated by the application.
This requirement means that the application must provide functions for the EtherCAT master to read and write EEPROM. See the
EEPROM Emulation section for more details.

3. Reset the REM switch. This reset ensures proper system startup and that the host processor software and the REM switch firmware
are synchronized. Initialize the REM switch. Perform the standard REM switch initialization by calling REMS_StdInit(). Use MII for
the PHY mode and leave the clock enabled. A call to REMS_StdInit() may appear as follows:
REMS_StdInit(REMS_MII, 0, REMS_Int_Line_0, REMS_Int_Line_1, REMS_Int_Line_2);

4. Set the synchronization offset value. Call REMS_ecatSetSyncOffsetValue() to inform the driver of the delay across the PHYs. This
information is used to compensate for the propagation delay across the PHYs, because this information relates to maintaining
synchronization using distributed clocks. No other functions declared in REMS_ECATinternals.h need to be called by the
application. This driver assumes that both ports have identical PHYs and thus that the PHY delay values are the same.

5. Enable PHYs. Power up both PHYs via MII. Now that the REM switch is ready for network communication, the PHYs can be
enabled, which allows packets to reach the REMS.

6. Initialize the EtherCAT slave stack. If the Beckhoff EtherCAT SSC is being used, call MainInit(). Otherwise, initialize the EtherCAT
slave stack appropriate for the user system.

7. Start the EtherCAT slave stack main processing. If the Beckhoff EtherCAT SSC is being used, call MainLoop() according to the conditions
provided in the associated documentation from Beckhoff Automation. Otherwise, start the EtherCAT slave stack that is in use.

ETHERCAT INTERRUPT HANDLING
The REM switch provides the ability to have three prioritized interrupt lines.

The REM switch chip and this driver communicate frequently. The driver reads and writes to the REM switch and the REM switch
requests interrupts to the driver for reads, writes, and other actions. Not all of these interrupts must be handled by the application. Most
are handled internally by the driver. The remainder of the interrupts must be handled by the application, as shown in Table 6.

Table 6. Interrupt Handling for EtherCAT
Priority Event Purpose
Low REMS_StdInt_Port_1_LinkChange Port 1 link up and down detect
Low REMS_StdInt_Port_2_LinkChange Port 2 link up and down detect
Low REMS_EcatInt_MII_MGT_Event New media independent interface management interface (MIIMI)

command to be handled
Low REMS_EcatInt_Reset_Requested The EtherCAT master requests the device to reset
Low REMS_EcatInt_AL_Event_Change Equivalent to process data interface (PDI) interrupt
High REMS_EcatInt_SYNC0_Event Equivalent to SYNC0 interrupt
High REMS_EcatInt_SYNC1_Event Equivalent to SYNC1 interrupt

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 19 of 60

A recommended function structure for handling interrupts from the REM switch follows. This example shows interrupts being internally
handled by the driver and interrupts that are supplied to the application for handling. This function is intended to be called directly from
the host processor interrupt service routine.
void HandleIntREMS(REMS_IntLine_t line)

{

 REMS_stdIntEvent_t event;

 REMS_StdEvaluateInterrupt(line);

 do {

 // Interrupts for the driver are evaluated and handled here

 event = REMS_StdGetNextEvent(line);

 // Interrupts for the application are handled here

 switch (event) {

 case REMS_StdInt_Port_1_LinkChange:

 case REMS_StdInt_Port_2_LinkChange:

 // Call link change handler here

 break;

 case REMS_EcatInt_AL_Event_Change:

 PDI_Isr(); // Call stack handler

 break;

 case REMS_EcatInt_SYNC0_Event:

 Sync0_Isr(); // Call stack handler

 break;

 case REMS_EcatInt_SYNC1_Event:

 Sync1_Isr(); // Call stack handler

 break;

 case REMS_EcatInt_MII_MGT_Event:

 // Signal external process to handle MIIMI command here

 break;

 case REMS_EcatInt_Reset_Requested:

 // Reset host processor

 break;

 default:

 break;

 }

 } while (event != REMS_Int_None);

}

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 20 of 60

The driver requires the host processor to be configured for level sensitive interrupts on the interrupt lines. The application waits to
acknowledge the actual interrupt until after HandleIntREMS() returns. If additional REM switch interrupts are generated while the
current interrupts are being processed, the external CPU interrupt line remains high. When the CPU interrupt is acknowledged, a new
CPU interrupt is requested, which ensures that all interrupt requests are processed.

EtherCAT SLAVE STACK TO DRIVER INTERFACE
Although this driver can be used with any stack, the driver is designed to work with Version 5.11 and Version 5.12 of the EtherCAT slave
stack from Beckhoff Automation. All porting layer functions that the EtherCAT slave stack expects, such as HW_EscRead(), are defined
in this driver.

When using the EtherCAT SSC tool, the HW_ACCESS_FILE configuration parameter allows the user to specify the header file that
contains the low level hardware access functions. Use this parameter in the SSC tool to specify the REMS_ECATHw.h file in this driver.
The value for the HW_ACCESS_FILE parameter in the SSC tool may appear as follows:
#include “inc/REMS_ECATHw.h”

Included in the driver package is a sample SSC tool settings file called SSC_Tool_Settings.esp. Open this file with the SSC tool for an
example of the settings that can generate the EtherCAT SSC.

EEPROM Emulation

The host processor is responsible for emulating the EEPROM that typically connects directly to the ESC. This emulation includes
handling EEPROM read commands, write commands, and reload commands. A reload command is issued at system startup. The
EtherCAT master commands the reload command at any time. While servicing the reload command, certain data from EEPROM must
be placed in the EEPROM data register in packed form.

MII MANAGEMENT INTERFACE
Most ESCs can access registers on the connected PHYs via the MDIO and MDC lines. The REM switch does not have these signals, and
thus does not have the ability to directly read or write registers on connected PHYs.

ESC Register 0x0510 to Register 0x0515 allow the EtherCAT master to command the ESC to access the registers on the connected PHYs.
Because the REM switch does not have the MDIO and MDC signals, the REM switch cannot fulfill the PHY register read or write requests. To
accomplish the PHY register read or write, the REM switch requests that the host processor perform the PHY register read or write in its
place.

When an EtherCAT master generates a PHY register read or write, the REM switch generates a REMS_EcatInt_MII_MGT_Event event.
This event signals the host processor to perform the PHY register read or write in the place of the ESC, and then provides the results of
the operation. The application layer software must perform the action and indicate if the operation is successful or failed, as well as the
result of the operation if successful. In this process, the MIIMI is emulated.

Similarly, ESC Register 0x0301 and Register 0x0303 contain the number of receive errors that occurred. The REM switch does not have
an RX_ERR pin to connect the RX_ERR signal from the PHYs. To report receive errors, the REM switch must periodically request the
host processor to read the receive error register on the PHYs to keep Register 0x0301 and Register 0x0303 updated. The REM switch
accomplishes this read through the MIIMI emulation mechanism. The REM switch generates a REMS_EcatInt_MII_MGT_Event event
to begin the read of the receive error register on the indicated PHY.

When the EtherCAT master issues an MIIMI request, or when the REM switch attempts to periodically read a receive error register from
a connected PHY, a REMS_EcatInt_MII_MGT_Event event is generated. When this event is generated, the application calls
REMS_ecatMiiEventParams(), declared in REMS_ECATHw.h, to obtain the parameters for the MIIMI command. After the command
parameters are obtained, the command can be executed.

When the application responds to a REMS_EcatInt_MII_MGT_Event event, the application may be responding to one of two functions. To
determine whether the application is responding to a PHY register read or write from the EtherCAT master or to a periodic read of a PHY
receive error register, examine the values in the variables populated by REMS_ecatMiiEventParams() after the application returns. The
suggested process for responding to a REMS_EcatInt_MII_MGT_Event event is as follows:

1. Call REMS_ecatMiiEventParams() to retrieve the parameters for the REMS_EcatInt_MII_MGT_Event event.
2. Map the indicated PHY address to the actual PHY address. The EtherCAT master assumes that the PHY connected to Port 0 has

Address 0 on the MDIO bus, and that the PHY connected to Port 1 has Address 1 on the MDIO bus. If this is not the case, remap
the PHY addresses so that the intended PHY is accessed. The REM switch makes this same assumption when issuing periodic reads
of the receive error registers.

3. Optional. Verify that the PHY register that is to be read or written is supported on the indicated PHY. Set a local error variable if not.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 21 of 60

a) If the REM switch is requesting the receive error register value from PHY 0, read the receive error register on the PHY attached
to Port 0. Call REMS_ecatMiiReadComplete() and indicate if any errors occurred, the value of the receive error register if no
errors occurred, and that the periodic receive error register read is complete (why parameter = 0).

b) If the REM switch requests the receive error register value from PHY 1, read the receive error register on the PHY attached to
Port 1. Call REMS_ecatMiiReadComplete() and indicate if any errors occurred, the value of the receive error register if no
errors occurred, and that the periodic receive error register read is complete (why parameter = 0).

c) If the EtherCAT master requests a PHY register read, read the indicated register address from the PHY at the remapped MDIO bus
address. Call REMS_ecatMiiReadComplete() and indicate if any errors occurred, the value the value requested from the indicated
register on the indicated PHY if no errors occurred, and that the standard PHY register read is complete (why parameter = 1).

d) If the EtherCAT master requests a PHY register write, write the indicated PHY register value to the indicated PHY register at
the remapped MDIO bus address. Call REMS_ecatMiiWriteComplete() and indicate if any errors occurred.

Because the transaction on the MDIO/MDC lines can take a relatively large amount of time, avoid performing the PHY read or write
inside the interrupt service routine that handles the REMS_EcatInt_MII_MGT_Event event.

It is possible to receive a REMS_EcatInt_MII_MGT_Event event while REMS_EcatInt_AL_Event_Change,
REMS_EcatInt_SYNC0_Event, and REMS_EcatInt_SYNC1_Event are disabled. Because of this ability, it is recommended to ensure that a
REMS_EcatInt_MII_
MGT_Event event is not serviced while the other events are disabled. The relatively large amount of time the MDIO transaction takes
may prevent other events from being handled quickly enough during standard operation.

EtherCAT SSC
The EtherCAT SSC driver operates with the EtherCAT slave stack from Beckhoff Automation. There is no need to review this section if
using a different slave stack.

SSC Tool Settings

The SSC tool settings file used to create the SSC for the RapID platform is included in this package. The user can modify this existing file
or create a new settings file. Some settings in the SSC tool are restricted to maintain compatibility with this driver and ease integration.
These settings are described in Table 7.

Table 7. SSC Tool Restricted Settings
Parameter Restriction Description
Generic

EXPLICIT_DEVICE_ID 0 (fixed) Explicit device identification is not supported.
ESC_SM_WD_SUPPORTED 0 (fixed) Using the SyncManager watchdog on the REM switch is a poor choice due to

PDI type.
ESC_EEPROM_ACCESS_SUPPORT 0 (fixed) The host processor emulates EEPROM, therefore no access functions must

be provided. Host processor can access the emulated EEPROM values
directly.

Hardware
EL9800_HW 0 (fixed) EL9800 hardware is not used.
MCI_HW 0 (fixed) The stack does not expect a MCI to the ESC.
FC1100_HW 0 (fixed) FC1100 hardware is not used.
_PIC18 0 (fixed) EL9800 hardware is not used.
_PIC24 0 (fixed) EL9800 hardware is not used.
EXT_DEBUGGER_INTERFACE 0 (fixed) EL9800 hardware is not used.
UC_SET_ECAT_LED 1 (fixed) Host µC must provide run and error LEDs.
ESC_SUPPORT_ECAT_LED 0 (fixed) REM switch does not provide support for run and error LEDs.
ESC_EEPROM_EMULATION 1 (fixed) Host processor must emulate required EEPROM.
EEPROM_READ_SIZE 4 (fixed) REM switch EEPROM data register size is fixed at 4 bytes.
ESC_CONFIG_DATA 0x08040066204E

(fixed)
Ensures information reloaded from EEPROM on boot is correct.

MAKE_PTR_TO_ESC Empty (fixed) ESC is not interfaced as memory.
EtherCAT State Machine

BOOTSTRAPMODE_SUPPORTED 0 (fixed) REM switch does not support bootstrap mode.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 22 of 60

Parameter Restriction Description
Application

TEST_APPLICATION 0 (fixed) Do not use this setting to create a real application.
EL9800_APPLICATION 0 (fixed) EL9800 hardware is not used.
SAMPLE_APPLICATION 0 (fixed) Does not use the sample application.
SAMPLE_APPLICATION_INTERFACE 0 (fixed) Does not use the sample application.

Application.ProcessData1
MIN_PD_WRITE_ADDRESS Not applicable Not applicable
DEF_PD_WRITE_ADDRESS Not applicable Not applicable
MAX_PD_WRITE_ADDRESS Not applicable Not applicable
MIN_PD_READ_ADDRESS Not applicable Not applicable
DEF_PD_READ_ADDRESS Not applicable Not applicable
MAX_PD_READ_ADDRESS Not applicable Not applicable
MAX_PD_INPUT_SIZE Not applicable Not applicable
MAX_PD_OUTPUT_SIZE Not applicable Not applicable

Mailbox1
MIN_MBX_WRITE_SIZE Not applicable Not applicable
DEF_MBX_WRITE_SIZE Not applicable Not applicable
MAX_MBX_WRITE_SIZE Not applicable Not applicable
MIN_MBX_READ_SIZE Not applicable Not applicable
DEF_MBX_READ_SIZE Not applicable Not applicable
MAX_MBX_READ_SIZE Not applicable Not applicable

1 When selecting minimum or maximum addresses for process data reads and writes, maximum process data input/output sizes and minimum, default, and maximum

addresses for mailboxes, bear in mind that the REM switch has 10 kB of RAM that can be used. This space is available to accommodate space for the input mailbox,
output mailbox, triple buffered input process data, and triple buffered output process data. Pick all of the minimum, maximum, and default values so that there is
enough RAM available for all operations. The SSC tool settings file sets the ALLOCMEM (size), FREEMEM (pointer), APPL_AllocMailboxBuffer (size), and
APPL_FreeMailboxBuff (pointer) parameters to application specific functions. Unless the system requires something different, malloc() and free() can be used for these
parameters.

SSC Changes

To obtain correctly functioning code, minor changes are made to the SSC after the SSC tool produced the source code. The majority of
these changes relate to the SSC not running correctly on a big endian host processor. These changes are detailed in this section. The user
may or may not need to make the same changes when configuring the SSC tool, and the following changes are provided as a reference
material.

In ecatappl.c, lines 889 to 891, added:
else
{{
EEPROMReg &= ~ESC_EEPROM_ERROR_CRC;
}}

In ecatslv.c, lines 2110 to 2114, added:
DISABLE_ESC_INT();

In ecatslv.c, lines 2186 to 2190, added:
ENABLE_ESC_INT();

In eoeappl.c, lines 145-150, replaced:
switch (((ETHERNET_FRAME *) pFrame)->FrameType)

with:
switch (SWAPWORD(((ETHERNET_FRAME *) pFrame)->FrameType))

In eoeappl.c, lines 182 to 189, added:
else
{
 if(pSendFrame != NULL)
 {
 FREEMEM(pSendFrame);

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 23 of 60

 pSendFrame = NULL;
 }
}

In eoeappl.c, lines 298 to 305, replaced:
if (SWAPWORD(pEoeInit->Flags1) & EOEINIT_CONTAINSMACADDR)

with:
pEoeInit->Flags1 = SWAPWORD(pEoeInit->Flags1);
 if (pEoeInit->Flags1 & EOEINIT_CONTAINSMACADDR)

In esc.h, lines 91 to 95, replaced:
#define ESC_EEPROM_ERROR_MASK 0x7800

with:
#define ESC_EEPROM_ERROR_MASK 0x6000

In mailbox.h, lines 101 to 114, replaced:
#define MBX_OFFS_TYPE 0 /**< \brief Protocol type offset*/
#define MBX_MASK_TYPE 0x0F00 /**< \brief Protocol type mask*/
#define MBX_SHIFT_TYPE 8 /**< \brief Protocol type shift*/
#define MBX_OFFS_COUNTER 0 /**< \brief Protocol counter offset*/
#define MBX_MASK_COUNTER 0xF000 /**< \brief Protocol counter mask*/
#define MBX_SHIFT_COUNTER 12 /**< \brief Protocol counter shift*/

with:

// ORIGINAL ^^^
#define MBX_OFFS_TYPE 0 /**< \brief Protocol type offset*/
#define MBX_MASK_TYPE 0x000F /**< \brief Protocol type mask*/
#define MBX_SHIFT_TYPE 0 /**< \brief Protocol type shift*/
#define MBX_OFFS_COUNTER 0 /**< \brief Protocol counter offset*/
#define MBX_MASK_COUNTER 0x00F0 /**< \brief Protocol counter mask*/
#define MBX_SHIFT_COUNTER 4 /**< \brief Protocol counter shift*/

In objdef.c, lines 890 to 895, replaced:
if((((UINT16)pVarPtr) & 0x1) == 0x1)

with:
if((((UINT32)pVarPtr) & 0x1) == 0x1)

In sdoserv.c, lines 508 to 513, replaced:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET] &= 0xFF00;

with:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET] &= 0x00FF;

In sdoserv.c, lines 527 to 540, replaced:
 pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

 |= SDOHEADER_SIZEINDICATOR | SDOHEADER_TRANSFERTYPE

 | completeAccess | ((MAX_EXPEDITED_DATA –

((UINT8)objLength)) << SDOHEADERSHIFT_DATASETSIZE) | SDOSERVICE_INITIATEUPLOADRES;

with:
 pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET] |= SWAPWORD(SDOHEADER_SIZEINDICATOR |
SDOHEADER_TRANSFERTYPE |completeAccess | ((MAX_EXPEDITED_DATA - ((UINT8)objLength)) <<
SDOHEADERSHIFT_DATASETSIZE) |
SDOSERVICE_INITIATEUPLOADRES);

In sdoserv.c, lines 555 to 564, replaced:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET] |= SDOHEADER_SIZEINDICATOR |
completeAccess | SDOSERVICE_INITIATEUPLOADRES;

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 24 of 60

with:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

|= SWAPWORD(SDOHEADER_SIZEINDICATOR | completeAccess | SDOSERVICE_INITIATEUPLOADRES);

In sdoserv.c, lines 572 to 577, replaced:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

|= SDOSERVICE_DOWNLOADSEGMENTRES;

with:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

|= SWAPWORD(SDOSERVICE_DOWNLOADSEGMENTRES);

In sdoserv.c, lines 583 to 588, replaced:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

|= SDOSERVICE_INITIATEDOWNLOADRES;

with:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

|= SWAPWORD(SDOSERVICE_INITIATEDOWNLOADRES);

In sdoserv.c, lines 597 to 602, replaced:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

= SDOSERVICE_ABORTTRANSFER;

with:
pSdoRes->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

= SWAPWORD(SDOSERVICE_ABORTTRANSFER);

In sdoserv.c, lines 629 to 634, replaced:
UINT8 sdoHeader = pSdoInd->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

 & SDOHEADER_COMMANDMASK;

with:
UINT8 sdoHeader = (pSdoInd->SdoHeader.Sdo[SDOHEADER_COMMANDOFFSET]

 & SDOHEADER_COMMANDMASK) >> SDOHEADER_COMMANDSHIFT;

In sdoserv.c, lines 658 to 672, replaced:
index = pSdoInd->SdoHeader.Sdo[SDOHEADER_INDEXHIOFFSET]

 & SDOHEADER_INDEXHIMASK;
 index <<= 8;
 index += pSdoInd->SdoHeader.Sdo[SDOHEADER_INDEXLOOFFSET]

 >> SDOHEADER_INDEXLOSHIFT;
/*the variable subindex contains the requested subindex of the SDO service */
 subindex = pSdoInd->SdoHeader.Sdo[SDOHEADER_SUBINDEXOFFSET]

 >> SDOHEADER_SUBINDEXSHIFT;

with:
index = pSdoInd->SdoHeader.Sdo[SDOHEADER_INDEXHIOFFSET] & SDOHEADER_INDEXHIMASK;

index += (pSdoInd->SdoHeader.Sdo[SDOHEADER_INDEXLOOFFSET]

>> SDOHEADER_INDEXLOSHIFT) & SDOHEADER_INDEXLOMASK;

/*the variable subindex contains the requested subindex of the SDO service */

subindex = (UINT8)(pSdoInd->SdoHeader.Sdo[SDOHEADER_SUBINDEXOFFSET] >>
SDOHEADER_SUBINDEXSHIFT) & SDOHEADER_SUBINDEXMASK;

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 25 of 60

In sdoserv.h, lines 94 to 116, replaced:
#define SDOHEADER_COMMANDOFFSET 0 /**< \brief Memory offset for the command*/
#define SDOHEADER_INDEXLOOFFSET 0 /**< \brief Memory offset for the low Byte of
the object index*/
#define SDOHEADER_INDEXHIOFFSET 1 /**< \brief Memory offset for the high Byte of
the object index*/
#define SDOHEADER_SUBINDEXOFFSET 1 /**< \brief Memory offset for subindex*/
#define SDOHEADER_COMMANDMASK 0xFF /**< \brief Mask to get the command Byte*/
#define SDOHEADER_INDEXLOSHIFT 8 /**< \brief Shift to get the low Byte of the
object index*/
#define SDOHEADER_INDEXHIMASK 0xFF /**< \brief Mask to get the high byte of
the object index*/
#define SDOHEADER_SUBINDEXSHIFT 8 /**< \brief Shift to get the subindex*/

with:
#define SDOHEADER_COMMANDOFFSET 0

/**< \brief Memory offset for the command*/
#define SDOHEADER_INDEXLOOFFSET 0

/**< \brief Memory offset for the low Byte of the object index*/
#define SDOHEADER_INDEXHIOFFSET 1

/**< \brief Memory offset for the high Byte of the object index*/
#define SDOHEADER_SUBINDEXOFFSET 1

/**< \brief Memory offset for subindex*/
#define SDOHEADER_COMMANDMASK 0xFF00

/**< \brief Mask to get the command Byte*/
#define SDOHEADER_COMMANDSHIFT 8

 /**< \brief Shift to get the command Byte*/
#define SDOHEADER_INDEXLOSHIFT 0

/**< \brief Shift to get the low Byte of the object index*/
#define SDOHEADER_INDEXLOMASK 0x00FF

/**< \brief Mask to get low Byte of the object index*/
#define SDOHEADER_INDEXHIMASK 0xFF00

/**< \brief Mask to get the high byte of the object index*/
#define SDOHEADER_SUBINDEXSHIFT 0

 /**< \brief Shift to get the subindex*/
#define SDOHEADER_SUBINDEXMASK 0x00FF

/**< \brief Mask to get the subindex*/

In coeappl.c, line 411, replaced
TOBJ1C00 sSyncmanagertype = {0x04, {0x0102, 0x0304}};

with:
TOBJ1C00 sSyncmanagertype = {0x04, {0x0201, 0x0403}};

Interrupt Enable and Disable

Depending on the SSC tool settings used, the user application may be required to implement the ENABLE_ESC_INT() and
DISABLE_ESC_INT() functions. It is important that implementation of these functions does not completely disable all interrupts
coming from the REM switch. The REM switch occasionally requests interrupts that are internally handled by the driver. The purpose of
ENABLE_ESC_INT() and DISABLE_ESC_INT() is to enable and disable the REMS_EcatInt_AL_Event_Change,
REMS_EcatInt_SYNC0_Event, and REMS_EcatInt_SYNC1_Event events. As long as these events are disabled after a call to
DISABLE_ESC_INT() and enabled after a call to ENABLE_ESC_INT(), the user system behaves properly.

Application Programming Interface (API) Usage

In the application, a maximum of two operational threads are allowed. One thread can act as the standard, background thread. This
thread can use all API functions except those ending in Isr. The other thread is limited to API functions ending in Isr. The EtherCAT
slave stack meets this requirement. If using the EtherCAT slave stack, it is recommended to call MainLoop() in the background of the
application and call PDI_Isr(), Sync0_Isr(), and Sync1_Isr() from the interrupt handler. PDI_Isr(), Sync0_Isr(), and Sync1_Isr() only use
API functions that end in Isr.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 26 of 60

POWERLINK
To set up a POWERLINK device, a TCP/IP protocol stack and a POWERLINK slave stack are necessary. It is recommended to use the
open-source openPOWERLINK stack. This driver package is developed and tested using this POWERLINK slave stack.

This REM switch driver and firmware software is developed with the REM switch hardware and the openPOWERLINK stack to handle all
aspects of the POWERLINK protocol while operating as a controlled node (CN). The operating features include operation as a 100 Mbps, half-
duplex, two-port hub and REM switch firmware and hardware assisted poll request (PREQ) and poll response (PRES) autoresponse.

In addition, it is possible to add standard TCP/IP features, such as a web server. Because the POWERLINK protocol tightly controls
when traffic is allowed to enter the network, the openPOWERLINK stack primarily manages this operation with the REM switch
firmware providing autoresponse features during the asynchronous phase.

POWERLINK INITIALIZATION
To initialize a POWERLINK device, perform the following actions:

1. Configure the external interrupt input pins on the host processor.
2. Assert the REM switch reset line and wait for it to become ready.
3. Call REMS_StdInit() and provide the PHY mode (currently MII), the clock enable flag (set to 0), and the REM switch interrupt lines

for use as the three priority levels.
4. Call REMS_StdAssignInterrupt and REMS_StdEnableInterrupt to establish the REM switch hardware interrupt configuration:

REMS_StdAssignInterrupt(REMS_Int_Port_1_Link_Change, REMS_Int_Line_0);
REMS_StdAssignInterrupt(REMS_Int_Port_2_Link_Change, REMS_Int_Line_0);
REMS_StdAssignInterrupt(REMS_Int_Queue_0_Packet_Ready, REMS_Int_Line_1);
REMS_StdEnableInterrupt(REMS_Int_Port_1_Link_Change);
REMS_StdEnableInterrupt(REMS_Int_Port_2_Link_Change);
REMS_StdEnableInterrupt(REMS_Int_Queue_0_Packet_Ready);

5. Call REMS_StdSetMacAddress() to set the MAC address for the system. There are three MAC address parameters for this function.
For POWERLINK, supply the same MAC address for each of the MAC address parameters.

6. Call REMS_StdSetPortState() for each of the switch ports with REMS_PORT_FORWARDING and the port number as the
arguments.

POWERLINK INTERRUPT HANDLING
When REMS_StdInit() is called, the interrupt outputs are assigned high, medium, and low priority positions according to the passed
in parameters. The REM switch driver assigns interrupt sources to interrupt lines as shown in Table 8.

Table 8. Interrupt Priorities for POWERLINK
Priority Event Purpose
Low REMS_StdInt_Port_1_LinkChange Port 1 link up or down
Low REMS_StdInt_Port_2_LinkChange Port 2 link up or down
High REMS_Int_Queue_0_Packet_Ready Packet received

The low level interrupt handler must be aware of which REM switch interrupt line caused the interrupt. The low level interrupt handler
may then call the REM switch event handler function. After this function is called, all pending interrupts are evaluated and can be
handled individually in a loop. The recommended REM switch interrupt handler for POWERLINK is as follows:
/* Low level hardware ISR's: */

void REMS_Interrupt_Line0(void)

{

 HandleIntREMS(0);

}

void REMS_Interrupt_Line1(void)

{

 HandleIntREMS(1);

}

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 27 of 60

void REMS_Interrupt_Line2(void)

{

 HandleIntREMS(2);

}

/* Common code to handle interrupts: */

void HandleIntREMS(REMS_IntLine_t line)

{

 tOplkError rv;

 REMS_CommonEnetPort_t rcvPort;

 static unsigned char dummyBuffer[1500];

 static int dummyCount;

 REMS_stdIntEvent_t event;

 REMS_StdEvaluateInterrupt(line);

 do {

 event = REMS_StdGetNextEvent(line);

 switch (event) {

 case REMS_StdInt_Port_1_LinkChange:

 case REMS_StdInt_Port_2_LinkChange:

 /* manage PHY link state as described below */

 break;

 case REMS_Int_Queue_0_Packet_Ready:

 rv = edrv_receiveBuffer();

 if (rv) {

 // ERROR CASE, read the frame and dump it...

 REMS_StdReadPacket(&rcvPort, &dummyBuffer, &dummyCount);

 }

 break;

 /* Add other interrupt event cases here as needed */

 default:

 break;

 }

 } while (event != REMS_Int_None);

}

loop.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 28 of 60

POWERLINK PHY LINK STATE INTERRUPT HANDLING
When the REM switch detects a link up or down event from the PHY (because the link signal output from the PHY is required to be
connected to REM switch link status input), the link speed and duplex settings must be written to the REM switch by the host processor.
The REM switch does not determine these settings on its own. As a result, when the Ethernet link is functional (when either the
REMS_StdInt_Port_1_LinkChange or the REMS_StdInt_Port_2_LinkChange interrupt event occurs), read the link speed, duplex from
the PHYs, and write to the REM switch using REMS_StdSetSpeedAndDuplex(). In the case of POWERLINK, fix the speed and duplex at
100 Mbps half duplex operation. An error is likely to occur if the PHY reports something other than 100 Mbps half duplex.

POWERLINK RECEIVED PACKET INTERRUPT HANDLING
When a packet is received, the REM switch issues a REMS_Int_Queue_0_Packet_Ready interrupt to the processor. In response, call
edrv_receiveBuffer(). This function asks the POWERLINK stack for a buffer and, using REMS_StdReadPacket(), reads the packet from
the hardware. The remainder of the function is responsible for passing the packet into the stack logic, at which point stack logic takes
over control of functionality.

Functions such as edrv_receiveBuffer() are not typically present in the standard REMs driver package, because it is specific to
openPOWERLINK and is one part of a porting layer the user must provide. An example version is provided in the
porting_layer_helpers directory for edrv-fido1100.c. There are several functions contained in this file that the user may use.

POWERLINK PACKET TRANSMISSION
Because the REM switch POWERLINK implements an autoresponse, POWERLINK is always monitoring received packets. If
POWERLINK detects a frame that requires an immediate response, it provides a response with no software intervention. This response
allows for a very fast response, but requires that the response frame must already be on-board. The openPOWERLINK stack accounts for
this factor and uses the edrv_sendTxBuffer() and edrv_updateTxBuffer() functions. Transmission of frames to the REM switch device is
still accomplished with REMS_StdXmitPacket().

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 29 of 60

REGISTER MAPS AND DEFINITIONS
Table 9 and Table 10 detail the register mapping and definitions for the fido5100 and fido5200. The user of the REM switch typically
does not need to modify any values in these registers because the API described in this user guide interacts with the registers as required.
Note that the register maps and definitions provided in this user guide are provided as reference. It is not intended for the user to read
and write registers in the exact ways defined, but to use the API defined in the driver source code.

For direct address registers, when accessing registers, the contents are swapped when read and unswapped when written. When accessing
memory, the contents are swapped when read or written.

Table 9. Direct Address Register Definitions

Region Address Name Description Reset
Register
Width Access

Host Registers 0x00 Host Queue 0 read register Host priority read
queues

0x00000000 16/321 R

Host Registers 0x00 Host Queue 0 write register Host priority write
queues

N/A2 16/321 W

Host Registers 0x04 Host Queue 1 read register Host priority read
queues

0x00000000 16/321 R

Host Registers 0x04 Host Queue 1 write register Host priority write
queues

N/A2 16/321 W

Host Registers 0x08 Host Queue 2 read register Host priority read
queues

0x00000000 16/321 R

Host Registers 0x08 Host Queue 2 write register Host priority write
queues

N/A2 16/321 W

Host Registers 0x0C Host Queue 3 read register Host priority read
queues

0x00000000 16/321 R

Host Registers 0x0C Host Queue 3 write register Host priority write
queues

N/A2 16/321 W

Reserved 0x10 to
0x14

N/A2 N/A2 N/A2 N/A2 N/A2

Host Registers 0x18 Host Read Queue 0 data head Host controlled queues 0x00000000 16/321 R
Host Registers 0x18 Host Write Queue 0 data head Host controlled queues N/A 16/321 W
Host Registers 0x1C Host Read Queue 1 data head Host controlled queues 0x00000000 16/321 R
Host Registers 0x1C Host Write Queue 1 data head Host controlled queues N/A 16/321 W
Host Registers 0x20 Queue status register Interrupt management 0x7F00 16 R
Host Registers 0x24 Timer status register Interrupt management 0x0000 16 R/W
Host Registers 0x28 Universal input/output controller (UIC) interrupt status

register
Interrupt management 0x0000 16 R/W

Host Registers 0x2C Composite interrupt status register Interrupt management 0x0000 16 R/W
Host Registers 0x30 Host indirect address register Register map 0x00 16 R/W
Host Registers 0x34 Host indirect read data register Register map N/A2 16 R

Host Registers 0x34 Host indirect write data register Register map N/A2 16 W

Host Registers 0x38 Host Write Queue 1 completion register Host controlled queues 0x00 16 R
Host Registers 0x3C Host Write Queue 0 completion register Host controlled queues 0x00 16 R

1 Registers with a variable width are memory queues and their width is dependent on the host interface of the fido5100 or fido5200.
2 N/A means not applicable.

Table 10. Indirect Address Host Register Definitions

Region Address Name Definition
Reset
Value

Register
Width Access

Host
Registers

0x00 Host control register Host control register 0x6200 16 R/W

Host
Registers

0x01 Protocol register Switch type register NVM1 16 R

Host
Registers

0x02 Version register ID register 0x0531 16 R

Host
Registers

0x03 Part number register ID register 0x3300 16 R

Host
Registers

0x04 Original equipment manufacturer
(OEM) ID register

Switch type register NVM1 16 R

http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 30 of 60

Region Address Name Definition
Reset
Value

Register
Width Access

Host
Registers

0x05 Host space reservation register Host controlled queues 0x0000 8 R/W

Host
Registers

0x06 Buffer list stack pointer Buffer management 0x0000 8 R

Host
Registers

0x07 Buffer list max stack index Buffer management 0x0000 8 R

Host
Registers

0x08 Port configuration register Port interface N/A2 16 R/W

Host
Registers

0x09 Port cyclical redundancy check (CRC)
offset register

Port interface 0x0000 16 W

Host
Registers

0x0A Port 1 CRC16 header register Port interface 0x0000 16 R/W

Host
Registers

0x0B Port 2 CRC16 header register Port interface 0x0000 16 R

Host
Registers

0x0C Port 1 CRC16 start register Port interface 0x0000 16 R/W

Host
Registers

0x0D Port 2 CRC16 start register Port interface 0x0000 16 R/W

Host
Registers

0x0E Activity LED control register LED requirements 0x0000 16 R/W

Reserved 0x0F N/A2 N/A2 N/A2 N/A2 N/A2
Reserved 0x10 to

0x17
N/A2 N/A2 N/A2 N/A2 N/A2

Host
Registers

0x18 Host Write Queue 0 address register Host controlled queues 0x0000 16 R/W

Host
Registers

0x19 Host Read Queue 0 address register Host controlled queues 0x0000 16 R/W

Host
Registers

0x1A Host Write Queue 1 address register Host controlled queues 0x0000 16 R/W

Host
Registers

0x1B Host Read Queue 1 address register Host controlled queues 0x0000 16 R/W

Host
Registers

0x1C Host read queue control Host priority read queues 0x0000 16 R/W

Reserved 0x1D N/A2 N/A2 N/A2 N/A2 N/A2
Host

Registers
0x1E Host write queue control Host priority write queues 0x0000 16 R/W

Reserved 0x1F N/A2 N/A2 N/A2 N/A2 N/A2
Host

Registers
0x20 Atomic Communication Register 0 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x21 Atomic Communication Register 1 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x22 Atomic Communication Register 2 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x23 Atomic Communication Register 3 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x24 Atomic Communication Register 4 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x25 Atomic Communication Register 5 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x26 Atomic Communication Register 6 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x27 Atomic Communication Register 7 Atomic communication registers 0x0000 16 R/W

Host
Registers

0x28 Atomic writer status register Atomic communication registers 0x0000 16 R/W

Reserved 0x29 to
0x2F

N/A2 N/A2 N/A2 N/A2 N/A2

Host
Registers

0x30 Queue interrupt mask register Interrupt management 0x0000 16 R/W

Reserved 0x31 N/A2 N/A2 N/A2 N/A2 N/A2
Host

Registers
0x32 Timer interrupt setup register Interrupt management 0x0000 16 R/W

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 31 of 60

Region Address Name Definition
Reset
Value

Register
Width Access

Host
Registers

0x33 Timer control unit interrupt setup
register

Interrupt management 0x0000 16 R/W

Host
Registers

0x34 Timer interrupt mask register Interrupt management 0x0000 16 R/W

Host
Registers

0x35 Link status interrupt setup register Interrupt management 0x0000 16 R/W

Host
Registers

0x36 UIC interrupt setup register Interrupt management 0x0000 16 R/W

Host
Registers

0x37 UIC interrupt mask register Interrupt management 0x0000 16 R/W

Reserved 0x38 to
0x39

N/A2 N/A2 N/A2 N/A2 N/A2

Host
Registers

0x3A Host queue packet ready interrupt
setup register

Interrupt management 0x0000 16 R/W

Host
Registers

0x3B Host queue space available interrupt
setup register

Interrupt management 0x0000 16 R/W

Reserved 0x3C to
0x3F

N/A2 N/A2 N/A2 N/A2 N/A2

Timers 0x40 Time control unit control register TCU control register 0x0000 16 R/W
Timers 0x41 Timer Register 0, Bits[15:0] Timer register 0x0000 16 R/W, Auto-

Increment
(AINC) 0

Timers 0x41 Timer Register 1, Bits[31:16] Timer register 0x0000 16 R/W, AINC 1

Timers 0x41 Timer Register 2, Bits[47:32] Timer register 0x0000 16 R/W, AINC 2

Timers 0x41 Timer Register 3, Bits[63:48] Timer register 0x0000 16 R/W, AINC 3

Timers 0x42 Timer Addend Register A 0, Bits[15:0] Timer Addend Register A 0x0000 16 R/W, AINC 0

Timers 0x42 Timer Addend Register A 1, Bits[31:16] Timer Addend Register A 0x8000 16 R/W, AINC 1

Timers 0x43 Timer Addend Register B count,
Bits[15:0]

Timer Addend Register B count 0x0000 16 R/W, AINC 0

Timers 0x43 Timer Addend Register B count,
Bits[31:16]

Timer Addend Register B count 0x0000 16 R/W, AINC 1

Timers 0x44 Timer Addend Register B 0, Bits[15:0] Timer Addend Register B 0x0000 16 R/W, AINC 0

Timers 0x44 Timer Addend Register B 1, Bits[31:16] Timer Addend Register B 0x0000 16 R/W, AINC 1

Timers 0x45 I/O control register Timer I/O control register 0x0000 16 R/W
Timers 0x46 TCU start compare register TCU start register 0xFFFFFFFF 32 W, AINC
Timers 0x47 Port 1 delay register P1 delay 0x0000 16 R/W
Timers 0x48 Port 2 delay register P2 delay 0x0000 16 R/W
Timers 0x49 Timer Periodic Interrupt 0 Timer Periodic Interrupt 0 0x000000

00
32 W, AINC

Timers 0x4A Timer Periodic Interrupt 1 Timer Periodic Interrupt 1 0x000000
00

32 W, AINC

Timers 0x4B Port 1 Egress Time Register B 0,
Bits[0:15]

Egress time register 0x0000 16 R, AINC 0

Timers 0x4B Port 1 Egress Time Register B 1,
Bits[16:31]

Egress time register 0x0000 16 R, AINC 1

Timers 0x4B Port 1 Egress Time Register B 2,
Bits[32:47]

Egress time register 0x0000 16 R, AINC 2

Timers 0x4B Port 1 Egress Time Register B 3,
Bits[48:63]

Egress time register 0x0000 16 R, AINC 3

Timers 0x4C Port 2 Egress Time Register B 0,
Bits[0:15]

Egress time register 0x0000 16 R, AINC 0

Timers 0x4C Port 2 Egress Time Register B 1,
Bits[16:31]

Egress time register 0x0000 16 R, AINC 1

Timers 0x4C Port 2 Egress Time Register B 2,
Bits[32:47]

Egress time register 0x0000 16 R, AINC 2

Timers 0x4C Port 2 Egress Time Register B 3,
Bits[48:63]

Egress time register 0x0000 16 R, AINC 3

Timers 0x4D Time Control Unit Memory Register A Timer control unit memory register N/A2 16 W

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 32 of 60

Region Address Name Definition
Reset
Value

Register
Width Access

Timers 0x4E Time Control Unit Memory Register B Timer control unit memory register N/A2 16 W

Timers 0x4F Timer control unit error addend
register

Timer control unit error addend 0x0000 16 R/W

Timers 0x50 Timer Input Capture Register A 0,
Bits[15:0]

Timer input capture register 0x0000 16 R, AINC 0

Timers 0x50 Timer Input Capture Register A 1,
Bits[31:16]

Timer input capture register 0x0000 16 R, AINC 1

Timers 0x50 Timer Input Capture Register A 2,
Bits[47:32]

Timer input capture register 0x0000 16 R, AINC 2

Timers 0x50 Timer Input Capture Register A 3,
Bits[63:48]

Timer input capture register 0x0000 16 R, AINC 3

Timers 0x51 Timer Input Capture Register B 0,
Bits[15:0]

Timer input capture register 0x0000 16 R, AINC 0

Timers 0x51 Timer Input Capture Register B 1,
Bits[31:16]

Timer input capture register 0x0000 16 R, AINC 1

Timers 0x51 Timer Input Capture Register B 2,
Bits[47:32]

Timer input capture register 0x0000 16 R, AINC 2

Timers 0x51 Timer Input Capture Register B 3,
Bits[63:48]

Timer input capture register 0x0000 16 R, AINC 3

Timers 0x52 Timer Input Capture Register C 0,
Bits[15:0]

Timer input capture register 0x0000 16 R, AINC 0

Timers 0x52 Timer Input Capture Register C 1,
Bits[31:16]

Timer input capture register 0x0000 16 R, AINC 1

Timers 0x52 Timer Input Capture Register C 2,
Bits[47:32]

Timer input capture register 0x0000 16 R, AINC 2

Timers 0x52 Timer Input Capture Register C,
Bits[63:48]

Timer input capture register 0x0000 16 R, AINC 3

Timers 0x53 Timer Input Capture Register D 0,
Bits[15:0]

Timer input capture register 0x0000 16 R, AINC 0

Timers 0x53 Timer Input Capture Register D 1,
Bits[31:16]

Timer input capture register 0x0000 16 R, AINC 1

Timers 0x53 Timer Input Capture Register D 2,
Bits[47:32]

Timer input capture register 0x0000 16 R, AINC 2

Timers 0x53 Timer Input Capture Register D 3,
Bits[63:48]

Timer input capture register 0x0000 16 R, AINC 3

Timers 0x54 Timer Output Compare Register A 0,
Bits[15:0]

Timer output compare register N/A2 16 W, AINC 0

Timers 0x54 Timer Output Compare Register A 1,
Bits[31:16]

Timer output compare register N/A2 16 W, AINC 1

Timers 0x54 Timer Output Compare Register A 2,
Bits[47:32]

Timer output compare register N/A2 16 W, AINC 2

Timers 0x54 Timer Output Compare Register A 3,
Bits[63:48]

Timer output compare register N/A2 16 W, AINC 3

Timers 0x55 Timer Output Compare Register B 1,
Bits[15:0]

Timer output compare register N/A2 16 W, AINC 0

Timers 0x55 Timer Output Compare Register B 1,
Bits[31:16]

Timer output compare register N/A2 16 W, AINC 1

Timers 0x55 Timer Output Compare Register B 2,
Bits[47:32]

Timer output compare register N/A2 16 W, AINC 2

Timers 0x55 Timer Output Compare Register B 3,
Bits[63:48]

Timer output compare register N/A2 16 W, AINC 3

Timers 0x56 Timer Output Compare Register C 0,
Bits[15:0]

Timer output compare register N/A2 16 W, AINC 0

Timers 0x56 Timer Output Compare Register C 1,
Bits[31:16]

Timer output compare register N/A2 16 W, AINC 1

Timers 0x56 Timer Output Compare Register C 2,
Bits[47:32]

Timer output compare register N/A2 16 W, AINC 2

Timers 0x56 Timer Output Compare Register C 3,
Bits[63:48]

Timer output compare register N/A2 16 W, AINC 3

Timers 0x57 Timer Output Compare Register D 0,
Bits[15:0]

Timer output compare register N/A2 16 W, AINC 0

Timers 0x57 Timer Output Compare Register D 1,
Bits[31:16]

Timer output compare register N/A2 16 W, AINC 1

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 33 of 60

Region Address Name Definition
Reset
Value

Register
Width Access

Timers 0x57 Timer Output Compare Register D 2,
Bits[47:32]

Timer output compare register N/A2 16 W, AINC 2

Timers 0x57 Timer Output Compare Register D 3,
Bits[63:48]

Timer output compare register N/A2 16 W, AINC 3

Timers 0x58 Port 1 Egress Time Register A 0,
Bits[0:15]

Egress time register 0x0000 16 R, AINC 0

Timers 0x58 Port 1 Egress Time Register A 1,
Bits[16:31]

Egress time register 0x0000 16 R, AINC 1

Timers 0x58 Port 1 Egress Time Register A 2,
Bits[32:47]

Egress time register 0x0000 16 R, AINC 2

Timers 0x58 Port 1 Egress Time Register A 3,
Bits[48:63]

Egress time register 0x0000 16 R, AINC 3

Timers 0x59 Port 2 Egress Time Register A 0,
Bits[0:15]

Egress time register 0x0000 16 R, AINC 0

Timers 0x59 Port 2 Egress Time Register A 1,
Bits[16:31]

Egress time register 0x0000 16 R, AINC 1

Timers 0x59 Port 2 Egress Time Register A 2,
Bits[32:47]

Egress time register 0x0000 16 R, AINC 2

Timers 0x59 Port 2 Egress Time Register A 3,
Bits[48:63]

Egress time register 0x0000 16 R, AINC 3

Timers 0x5A Port 1 peer delay register [15:0] Port interface 0x0000 16 W, AINC 0

Timers 0x5A Port 1 peer delay register [31:16] Port interface 0x0000 16 W, AINC 1

Timers 0x5A Port 1 peer delay register [47:32] Port interface 0x0000 16 W, AINC 2

Timers 0x5A Port 1 peer delay register [63:48] Port interface 0x0000 16 W, AINC 3

Timers 0x5B Port 2 peer delay register [15:0] Port interface 0x0000 16 W, AINC 0

Timers 0x5B Port 2 peer delay register [31:16] Port interface 0x0000 16 W, AINC 1

Timers 0x5B Port 2 peer delay register [47:32] Port interface 0x0000 16 W, AINC 2

Timers 0x5B Port 2 peer delay register [63:48] Port interface 0x0000 16 W, AINC 3

Timers 0x5C Timer update compare register,
Bits[15:0]

Timer update compare register 0xCA00 16 R/W, AINC 0

Timers 0x5C Timer update compare register,
Bits[31:16]

Timer update compare register 0x3B9A 16 R/W, AINC 1

Reserved 0x5D to
0x5F

N/A2 N/A2 N/A2 N/A2 N/A2

EtherCAT
Lookup

0x60 Address lookup control register EtherCAT lookup interface 0x0000 16 R/W

EtherCAT
Lookup

0x61 Max valid address register EtherCAT lookup interface 0x3000 16 R/W

EtherCAT
Lookup

0x62 Write offset register EtherCAT lookup interface 0x0000 16 R/W

EtherCAT
Lookup

0x63 FMMU list programming register EtherCAT lookup interface N/A2 16 W

EtherCAT
Lookup

0x64 Sync manager programming register EtherCAT lookup interface N/A2 16 W

EtherCAT
Lookup

0x65 Sync manager control/state register EtherCAT lookup interface N/A2 16 W

EtherCAT
Lookup

0x66 Sync manager program index register EtherCAT lookup interface N/A2 16 W

EtherCAT
Lookup

0x67 Sync manager atomic status register EtherCAT lookup interface N/A2 16 R

EtherCAT
Lookup

0x68 Sync Manager 0 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT
Lookup

0x69 Sync Manager 1 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT
Lookup

0x6A Sync Manager 2 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT
Lookup

0x6B Sync Manager 3 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT 0x6C Sync Manager 4 atomic read/write EtherCAT lookup interface 0x00 16 R/W

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 34 of 60

Region Address Name Definition
Reset
Value

Register
Width Access

Lookup register

EtherCAT
Lookup

0x6D Sync Manager 5 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT
Lookup

0x6E Sync Manager 6 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

EtherCAT
Lookup

0x6F Sync Manager 7 atomic read/write
register

EtherCAT lookup interface 0x00 16 R/W

Reserved 0x70 to
0x7F

N/A2 N/A2 N/A2 N/A2 N/A2

MAC 1 0x80 Interframe gap set register MAC interframe gap set register 0x0012 16 R/W

MAC 1 0x81 Full duplex control register MAC full duplex register 0x0001 16 R/W
MAC 1 0x82 Maximum retry register MAC maximum retry register 0x0010 16 R/W
Reserved 0x83 N/A2 N/A2 N/A2 N/A2 N/A2
MAC 1 0x84 CRC check enable register MAC CRC check enable register 0x0001 16 R/W
MAC 1 0x85 Receive interframe gap control

register
MAC receive interframe gap set
register

0x0012 16 R/W

MAC 1 0x86 Maximum receive length register MAC receive maximum length
register

0x2710 16 R/W

MAC 1 0x87 Minimum receive length register MAC receive minimum length register 0x0040 16 R/W
Reserved 0x88 N/A2 N/A2 N/A2 N/A2 N/A2
MAC 1 0x89 Statistic register read register (LSB) MAC CPU read data out (DOUT) low

register, Bits[15:0]
N/A2 16 R, AINC 0

MAC 1 0x89 Statistic register read register (MSB) MAC CPU read DOUT high register,
Bits[31:16]

N/A2 16 R, AINC 1

Reserved 0x8A N/A2 N/A2 N/A2 N/A2 N/A2
Reserved 0x8B N/A2 N/A2 N/A2 N/A2 N/A2
MAC 1 0x8C Speed register MAC speed register 0x0004 16 R/W
Reserved 0x8D to

0xAF
N/A2 N/A2 N/A2 N/A2 N/A2

MAC 2 0xB0 Interframe gap set register MAC interframe gap set register 0x0012 16 R/W
MAC 2 0xB1 Full duplex control register MAC full duplex register 0x0001 16 R/W
MAC 2 0xB2 Max retry register MAC maximum retry register 0x0010 16 R/W
Reserved 0xB3 N/A2 N/A2 N/A2 N/A2 N/A2

MAC 2 0xB4 CRC check enable register MAC CRC check enable register 0x0001 16 R/W
MAC 2 0xB5 Receive interframe gap control

register
MAC receive interframe gap set
register

0x0012 16 R/W

MAC 2 0xB6 Maximum receive length register MAC receive maximum length
register

0x2710 16 R/W

MAC 2 0xB7 Minimum receive length register MAC receive minimum length
register

0x0040 16 R/W

Reserved 0xB8 N/A2 N/A2 N/A2 N/A2 N/A2
MAC 2 0xB9 Statistic register read register (LSB) MAC CPU read DOUT low register,

Bits[15:0]
Not
applicable

16 R, AINC 0

MAC 2 0xB9 Statistic register read register (MSB) MAC CPU read DOUT high register,
Bits[31:16]

N/A2 16 R, AINC 1

Reserved 0xBA Spare MAC register N/A2 N/A2 N/A2 N/A2
Reserved 0xBB Spare MAC register N/A2 N/A2 N/A2 N/A2
MAC 2 0xBC Speed register MAC speed register 0x0004 16 R/W
Reserved 0xBD to

0xFF
Spare N/A2 N/A2 N/A2 N/A2

1 NVM means nonvolatile memory.
2 N/A means not applicable.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 35 of 60

DIRECT ADDRESS REGISTERS

Table 11. Host Queue n Read Registers—Address 0x00, Address 0x04, Address 0x08, and Address 0x0C
Bit 31 to Bit 0

Data

Reads from the direct address registers retrieve data from the queue that was read from the memory and pointed to by the current value
of the read queue address register. These registers are read only. Writes have no effect.

Table 12. Host Queue n Write Registers—Address 0x00, Address 0x04, Address 0x08, and Address 0x0C
Bit 31 to Bit 0

Data

Table 13. Host Read Queue n Data Head—Address 0x18 and Address 0x1C
Byte A Byte B Byte C Byte D
Bit 31 to Bit 24 Bit 23 to Bit 16 Bit 15 to Bit 8 Bit 7 to Bit 0

Queue Head Data

Register 0x18 and Register 0x1C return the data currently at the head of the corresponding queue. There is special handling for this data
based on bus width and Endian selection, shown in Table 14.

Table 14. Host Read Queue Data Head Special Handling
Size_32 Little Endian (LE) Bus Description Handling1
0 0 16-bit big endian Return [A:B] on first access, [C:D] on second access
0 1 16-bit little endian Return [B:A] on first access, [D:C] on second access
1 0 32-bit big endian Return [A:B:C:D]
1 1 32-bit little endian Return [D:C:B:A]

1 A colon indicates the order in which the data is read. For instance, A:B means that Byte A is read before Byte B.

Table 15. Host Write Queue n Data Head—Address 0x18 and Address 0x1C
Byte A Byte B Byte C Byte D
Bit 31 to Bit 24 Bit 23 to Bit 16 Bit 15 to Bit 8 Bit 7 to Bit 0

Queue Head Data

The host writes Register 0x18 and Register 0x1C, and data is forwarded to switch memory as described in Table 14. There is special
handling for this data based on bus width and Endian selection, as shown in Table 16.

Table 16. Host Write Queue Data Head Special Handling
Size_32 LE Bus Description Handling1
0 0 16-bit big endian Write [A:B] on first access, write [C:D] on second access
0 1 16-bit little endian Write [B:A] on first access, write [D:C] on second access
1 0 32-bit big endian Write [A:B:C:D]
1 1 32-bit little endian Write [D:C:B:A]

1 A colon indicates the order in which the data is read. For instance, A:B means that Byte A is read before Byte B.

Table 17. Queue Status Register—Address 0x20
Bit 15 to Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 to Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Q3 R Q2 R Q1 R Q0 R Reserved Q3 NE Q2 NE Q1 NE Q0NE

Table 18. Bit Descriptions for Queue Status Register
Bits Bit Name Settings Description
[15:12] Reserved Reserved.
[11:8] Qx R Queue 0 to Queue 3 are ready.
 0 Packet data is not ready to be written.
 1 Packet data is ready to be written.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 36 of 60

Bits Bit Name Settings Description
[7:4] Reserved Reserved.
[3:0] Qx NE Queue 0 to Queue 3 not empty. This bit indicates that there is data that has yet to be read from the

corresponding queue.
 0 No packets or buffers ready to read from the queue.
 1 Packet in progress, or a packet is waiting to be read.

Table 19. Timer Status Register, Upper Byte—Address 0x24
Bit 15 Bit 14 Bit 13 Bit 12 to Bit 11 Bit 10 Bit 9 Bit 8
TCU Interrupt 2 TCU Interrupt 1 TCU Interrupt 0 TCU Pin 3 event TCU Pin 2 event TCU Pin 1 event TCU Pin 0 event

Table 20. Timer Status Register, Lower Byte—Address 0x24
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Compare 3 Compare 2 Compare 1 Compare 0 Capture 3 event Capture 2 event Capture 1 event Capture 0 event

Table 21. UIC Interrupt Status Register, Upper Byte—Address 0x28
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 to Bit 8
Port 2 link status change Port 1 link status change Timer Periodic Interrupt 1 Timer Periodic Interrupt 0 Reserved

Table 22. UIC Interrupt Status Register, Lowe Byte—Address 0x28
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Host UIC

Interrupt 3
Host UIC
Interrupt 2

Host UIC
Interrupt 1

Host UIC
Interrupt 0

Port 2 UIC
Interrupt 1

Port 2 UIC
Interrupt 0

Port 1 UIC
Interrupt 1

Port 1 UIC
Interrupt 0

Table 23. Composite Interrupt Status Register, Upper Byte—Address 0x2C
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reserved Interrupt Line 2

disable
Interrupt Line 1
disable

Interrupt Line 0
disable

Reserved Interrupt Line 2
asserted

Interrupt Line 1
asserted

Interrupt Line 0
asserted

Table 24. Composite Interrupt Status Register, Lower Byte—Address 0x2C
Bit 7 to Bit 3 Bit 2 Bit 1 Bit 0

Reserved UIC interrupt active Timer interrupt active Queue interrupt active

Register 0x2C is R/W. When a write occurs, Bit 12 to Bit 14 are modified and they are only modified if the written bit is a 1.

Table 25. Bit Descriptions for Composite Interrupt Status Register
Bits Bit Name Settings Description
15 Reserved Reserved.
[14:12] Interrupt Line x

disable
 Interrupt Line x disable. These bits are reset to 0 and toggled by writing 1.

 0 Interrupt line operates normally, matching the state of the corresponding interrupt Line x
asserted.

 1 Interrupt line is deasserted, regardless of interrupt status.
11 Reserved Reserved.
10 Interrupt Line 2

asserted
 Interrupt Line 2 asserted. This bit mirrors the status of the line before the disable mask.

9 Interrupt Line 1
asserted

 Interrupt Line 1 asserted. This bit mirrors the status of the line before the disable mask.

8 Interrupt Line 0
asserted

 Interrupt Line 0 asserted. This bit mirrors the status of the interrupt before the disable mask.

[7:3] Reserved Reserved.
2 UIC interrupt

active
 UIC interrupt active. A status bit is asserted in the UIC status register.

1 Timer interrupt
active

 Timer interrupt active. A status bit is asserted in the timer status register.

0 Queue interrupt
active

 Queue interrupt active. A bit is asserted in the queue status register.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 37 of 60

Table 26. Host Indirect Address Register—Address 0x30
Bit 15 Bit 14 to Bit 13 Bit 12 to Bit 8 Bit 7 to Bit 0
AINC reset Reserved MAC internal address Register address

Table 27. Bit Descriptions for Indirect Address Register
Bits Bit Name Settings Description
15 AINC reset Auto-increment reset. Always reads as 0. For timer capture registers or counters, this flag can be

used as the signal the capture the timer value. If the register address does not indicate a multiple
access register, this bit has no effect.

 0 If the lower address is for a register that requires multiple accesses, the auto-increment value for the
address is left unchanged so that reading of the overall register value continues where it was most
recently started.

 1 If the lower address is for a register that requires multiple accesses (such as a 64-bit timer value), the
auto-increment value for the address is set to zero.

[14:13] Reserved Reserved.
[12:8] MAC internal

address
 This bit is a subset of the MAC registers that are indirectly addressed within the MAC, which provides

the indirect address value.

[7:0] Register
address

 This bit indicates the register to be accessed on the next read or write to the indirect data registers.

Table 28. Host Indirect Read Data Register—Address 0x34
Bit 15 Bit 14 to Bit 13 Bit 12 to Bit 8 Bit 7 to Bit 0
AINC reset Reserved MAC internal address Register address

Register 0x34 reads the contents that are pointed to by the host indirect address register.

Table 29. Host Indirect Write Data Register—Address 0x34
Bit 15 Bit 14 to Bit 13 Bit 12 to Bit 8 Bit 7 to Bit 0
AINC reset Reserved MAC internal address Register address

Register 0x34 writes to the contents that are pointed to by the host indirect address register.

Table 30. Host Write Queue n Completion Register—Address 0x38 and Address 0x3C
Bit 31 to Bit 0
Data

When read, Register 0x38 and Register 0x3C indicate that the current write to the host controlled queue is complete, regardless of the
boundary. This action causes the hardware to write out all data to memory. For example, if 32 bits of the current 64-bit memory word is
written. These four bytes are written to memory. The other four bytes already in memory are left unchanged.

INDIRECT ADDRESS HOST REGISTERS

Table 31. Host Control Register, Upper Byte—Address 0x00
Bit 15 to Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Reserved RMII clock enable Host signal Buffer lock Reserved Clock out enable Port 2 mode

Table 32. Host Control Register, Lower Byte—Address 0x00
Bit 7 Bit 6 to Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Port 2 mode Port 1 mode UICs ready Port 2 signal Port 1 signal Programming complete (PGC) Software reset (SWR)

Table 33. Bit Descriptions for Host Control Register
Bits Bit Name Settings Description
[15:14] Reserved Reserved.
13 RMII clock

enable
 RMII clock out enable. The register write occurs immediately, but this write is not applied until the

reference clock is low. Any high pulses on the reference clock are 40 ns.
 0 Disable RMII clock output.
 1 Enable 50 MHz clock output.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 38 of 60

Bits Bit Name Settings Description
12 Host signal This bit is latched in the host UIC FIFO status register. This bit is cleared by hardware.
 0 Reset.
 1 Written to 1 by the host to alert the host UIC to read a specific location in buffer space. This acts as an

interrupt.

11 Buffer lock Buffer lock.
 0 The host can write to the host space reservation register.
 1 The host cannot write to the head register.
10 Reserved Reserved.
9 Clock out

enable
 Clock out enable. The register write occurs immediately, but the write is not applied until the

reference clock is low. Any high pulses on the reference clock are 40 ns.
 0 Disable clock output.
 1 Enable 25 MHz clock output.
[8:5] Port x mode Port x interface mode.
 00 10/100 MII Mbps.
 01 10/100 RMII Mbps.
 10 Not defined.
 11 Not defined.
4 UICs ready UIC firmware loaded. This flag is asserted high when the hardware finishes loading the firmware to the

respective UICs. This process begins when the host writes the PGC flag.

3 Port 2 signal Port 2 signal. This bit is latched to the Port 2 UIC FIFO status register, and is cleared by hardware.
 0 Reset.
 1 Written to 1 by the host to alert the Port 2 UIC to read a specific location in buffer space. This bit acts as

an interrupt.
2 Port 1 signal Port 1 signal. This bit is latched to the Port 1 UIC FIFO status register, and is cleared by hardware.
 0 Reset.
 1 Written to 1 by the host to alert the Port 1 UIC to read a specific location in buffer space. This bit acts as

an interrupt.
1 PGC Programming complete. This bit must be set to 1 when the host finishes writing the program of the

switch into memory following reset.
0 SWR Software reset. When this bit is set to 1, the flag causes the switch to enter a reset state. The switch

must be reprogrammed after this and the PGC flag must be set again.

Table 34. Protocol Register—Address 0x01
Bit 15 to Bit 7 Bit 6 to Bit 0

Protocol high value Protocol low value

Register 0x01 is one time programmable. The exact mechanism for this programming depends on the technology chosen.

Table 35. Version Register—Address 0x02
Bit 15 to Bit 11 Bit 10 to Bit 1 Bit 0
Version Manufacturer ID LSB

Register 0x02 is fixed and read only.

Table 36. Part Number Register—Address 0x03
Bit 15 to Bit 0
Part Number = 0x3300

Register 0x03 is fixed and read only.

Table 37. OEM ID Register—Address 0x04
Bit 15 to Bit 0
Value

Register 0x04 has a customer specific value that allows software to be licensed or sold.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 39 of 60

Table 38. Host Space Reservation Register—Address 0x05
Bit 15 to Bit 8 Bit 7 to Bit 0
Reserved Reserved buffer count

Register 0x05 is used to reserve space in the internal memory of the switch for protocol specific data structures.

The reserved buffer count is the number of 256-byte buffers to reserve. The value written to this register is used to initialize the head
register.

When the buffer lock flag in the host control register is set, then writes to the address registers of the host controlled queues are limited
to the space provided. Writes to the registers and auto-increment (as queues are written or read) are not allowed beyond the reserved
region.

For example, suppose that the host space reservation register is written with a value of 0xA. This value reserves the range from 0x0 to
0x0AFF for use in the host interface. Following the setting of the buffer lock to 1, the maximum address accessible through the host
controlled queues (read or write) is Location 0x0AFF.

Register 0x05 must be written to a value of at least 1. This register must be written prior to enabling any host queues or Ethernet queues.

Table 39. Buffer List Stack Pointer—Address 0x06
Bit 7 to Bit 0
Stack index

The stack pointer is the address of the next element to be returned from the free list.

Table 40. Buffer List Maximum Stack Index—Address 0x07
Bit 7 to Bit 0
Maximum stack index

The maximum stack register contains the maximum value reached by the stack index register (high watermark).

Table 41. Port Configuration Register—Address 0x08
Bit 15 Bit 14 Bit 13 to Bit 9 Bit 8 to Bit 7 Bit 6 to Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Port 2

link
status

Port 1
link
status

Reserved Preamble
mode Port
2

Preamble
mode Port 1

Transmit
data
queue
enabled

16-bit
CRC
check
enabled

Egress/ingress
timestamp
enabled

Correction
time
management
enabled

Multi-
CRC
check
enabled

Table 42. Port CRC Offset Register—Address 0x09
Bit 7 to Bit 0
Secondary CRC offset

There is a single copy of Register 0x09 that applies to both ports. This register is accessible from the host interface.

Secondary CRC offset is the offset in bytes (plus 8 bytes for a time stamp) from the beginning of a received packet to which to compare
the current CRC to 0xFFFFFFFF.

For example, if the last byte of the dual CRC is the 20th byte of data, the offset is 20 + 8 = 28, and 0x1C hex is the value placed in the
offset register.

Table 43. Port n 16-Bit CRC Header Register—Address 0x0A and Address 0x0B
Bit 15 to Bit 0
Index

Register 0x0A and Register 0x0B hold the index in the packet of the location of the 16-bit CRC of the header for PROFINET.

Table 44. Port n 16-Bit CRC Start Register—Address 0x0C and Address 0x0D
Bit 15 to Bit 0
Index

Register 0x0C and Register 0x0D hold the index into the packet of the location to start a new 16-bit CRC for the final subframe for
PROFINET.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 40 of 60

Table 45. Activity LED Control Register—Address 0x0E
Bit 15 to Bit 10 Bit 9 Bit 8 Bit 7 to Bit 2 Bit 1 Bit 0
Reserved Port 2 output Port 2 mode Reserved Port 1 output Port 1 mode

Table 46. Bit Descriptions for LED Control Register
Bits Bit Name Settings Description
[15:10] Reserved Reserved.
9 Port 2 output Port 2 output. Reset value of 0x0000.
 0 Output deasserted. LED off, output high.
 1 Output asserted. LED on, output low.
8 Port 2 mode Port 2 mode.
 0 Automatic mode.
 1 Host controlled mode.
[7:2] Reserved Reserved.
1 Port 1 output Port 1 output.
 0 Output deasserted. LED off, output high.
 1 Output asserted. LED on, output low.
0 Port 1 mode Port 1 mode.
 0 Automatic mode.
 1 Host controlled mode.

For a given port, if the mode is automatic, a hardware state machine controls the output state. If the mode is host controlled, the output
bits of the respective port in the control register determine the state of the output. To set the behavior for the control of the LED outputs,
do the following:

• When activity is present on a port (transmit or receive of packets), the LED is driven on.
• When no activity is present on a port, the LED is maintained in the off state.
• On time is no less than 100 ms.
• Activity is any transmit or receive activity on the given port.

The implementation of the blinking is as follows:

1. A 24-bit down counter clocked by the internal 125 MHz clock is used for control. If the counter is nonzero, it decrements.
2. If the down counter is 0, the LED output is disabled (high).
3. If the down counter is nonzero, the LED output is enabled (low).
4. On the rising edge of Pin P1_RXDV or Pin P2_RXDV on the fido5100 and fido5200, the counter is loaded to full scale (0xFFFFFF).
5. On the rising edge of Pin P1_TXEN or Pin P2_TXEN on the fido5100 and fido5200, the counter is loaded to full scale (0xFFFFFF).

The result is an LED output that is asserted for 224 × 8 ns (134 ms) on the detection of any transmit or receive activity on a port. If activity
is continuous, the LED is on continuously.

Table 47. Host Write Queue 0 Address—Address 0x18
Bit 15 to Bit 1 Bit 0
Write 0

Table 48. Host Read Queue 0 Address—Address 0x19
Bit 15 to Bit 1 Bit 0
Read address 0

The LSB of the address register is one byte and all valid addresses are word aligned. Bit 0 is used to indicate that the data is ready to be read.

Table 49. Bit Descriptions for Host Read Queue 0 Address Register
Bits Bit Name Settings Description
[15:1] Read address Contains the address to be read, assuming the LSB is 0.
0 0 The value of this bit determines whether there is valid data in the read register.
 0 The valid data is present in the read register.
 1 The valid data is not present in the read register. The host can poll this flag prior to beginning a read.

http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 41 of 60

Table 50. Host Write Queue 1 Address—Address 0x1A
Bit 31 to Bit 16 Bit 15 to Bit 2 Bit 1 Bit 0
Reserved Write address 0 0

All accesses on Register 0x1A are limited to the bus width. When the host writes this register, the write queue is flushed. The next write
takes place to this address, then subsequent writes to the queue go to the write addresses that were just passed in. The current address of
the queue is what is returned on a read from this register.

Table 51. Host Read Queue 1 Address—Address 0x1B
Bit 31 to Bit 16 Bit 15 to Bit 2 Bit 1 Bit 0
Reserved Read address 0 0

Two LSBs of the register are always set to zero, and all reads are long word aligned.

Table 52. Bit Descriptions for Host Read Queue 1 Address Register
Bits Bit Name Settings Description
[31:16] Reserved Reserved.
[15:2] Read address Contains the address to be read, assuming the LSB is 0.
[1:0] 0 The value of this bit determines whether there is valid data in the read register.
 0 The valid data is present in the read register.
 1 The valid data is not present in the read register. The host can poll this flag prior to beginning a read.

Table 53. Host Read Queue Control Register, Upper Byte—Address 0x1C
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Enable Queue 3 Flush Queue 3 FCP 3 QNE 3 Enable Queue 2 Flush Queue 2 FCP 2 QNE 2

Table 54. Host Read Queue Control Register, Lower Byte—Address 0x1C
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Queue 1 Flush Queue 1 FCP 1 QNE 1 Enable Queue 0 Flush Queue 0 FCP 0 QNE 0

Table 55. Bit Descriptions for Host Read Queue 1 Address Register
Bits Bit Name Settings Description
15, 11,

7, 3
Enable
Queue x

 Enable queue.

 0 Hardware queue is operational.
 1 Hardware puts all registers in a reset state.
14, 10,

6, 2
Flush
Queue x

 When these bits are set to 1, the hardware treats the current packet read as if it completed and drops any
pending packets. This signal is forwarded to the UIC flush register. These bits are cleared by hardware
once flush is complete.

13, 9,
5, 1

FCP x Flush current packet. When these bits are set to 1, the hardware treats the current packet read as if it
completed and moves on to the next message if present. If the end of a packet is currently in the queue
and a second one started, the last data of the packet in the queue is lost. The second packet is also
marked as complete and flushed. These bits are cleared by hardware.

12, 8,
4, 0

QNE x Queue not empty. Same as flag in read queue status register for this queue. This reflects the actual state,
the bit in Q status is an interrupt flag that is set on transition and cleared by the host.

Table 56. Host Write Queue Control Register, Upper Byte—Address 0x1E
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Enable Queue 3 Flush Queue 3 FCP 3 Queue Ready 3 Enable Queue 2 Flush Queue 2 FCP 2 Queue Ready 2

Table 57. Host Write Queue Control Register, Lower Byte—Address 0x1E
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Queue 1 Flush Queue 1 FCP 1 Queue Ready 1 Enable Queue 0 Flush Queue 0 FCP 0 Queue Ready 0

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 42 of 60

Table 58. Bit Descriptions for Host Write Queue Control Register
Bits Bit Name Settings Description
15, 11, 7, 3 Enable Queue x Enable queue.
14, 10, 6, 2 Flush Queue x Flush queue.
 0 No action.
 1 Discards all packets written on the queue and any in progress. Cleared by hardware.
13, 9, 5, 1 FCP x Flush current packet.
 0 No action.
 1 Discontinues the current write packet and frees the used buffers. Cleared by hardware.
12, 8, 4, 0 Queue Ready x These bits are a copy of the same flag in the write queue status register.

Table 59. Atomic Communication Register n—Address 0x20, Address 0x21, Address 0x22, Address 0x23, Address 0x24,
Address 0x25, Address 0x26, and Address 0x27
Bit 15 to Bit 8 Bit 7 to Bit 0
Reserved Data

There is a single machine register address for writes to all eight copies of the atomic registers. The specific register impacted is
determined by the contents of the atomic index register. The host atomic read data register contains the data that was in the atomic write
data register at the time that the host interface last wrote to that register.

There is a single machine register address for reads from all eight copies of atomic registers. The specific register impacted is determined
by the contents of the atomic index register.

Table 60. Atomic Writer Status Register—Address 0x28
Bit 15 to Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Register

7 status
Register 6
status

Register 5
status

Register 4
status

Register 3
status

Register 2
status

Register 1
status

Register 0
status

Table 61. Bit Descriptions for Atomic Writer Status Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:0] Register x

status
 Register x Status. These bits determine which interface most recently wrote to the atomic read data

register x.
 0 The host UIC was the last writer.
 1 The host interface was the last writer.

Table 62. Queue Interrupt Mask Register—Address 0x30
Bit 15 to Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 to Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Queue 3

ready
Queue 2
ready

Queue 1
ready

Queue 0
ready

Reserved Queue 3
packet
ready

Queue 2
packet
ready

Queue 1
packet
ready

Queue 0
packet
ready

Table 63. Bit Descriptions for Queue Interrupt Mask Register
Bits Bit Name Settings Description
[15:12] Reserved Reserved.
[11:8] Queue x ready Queue x ready.
 0 Disable interrupt.
 1 Enable interrupt.
[7:4] Reserved Reserved.
[11:8] Queue x packet ready Queue x packet ready.
 0 Disable interrupt.
 1 Enable interrupt.

If the bus interface is 16 bits, then the register is returned as shown. If the bus interface is 32 bits, then this is returned as the lower 16 bits
of the data bus.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 43 of 60

Table 64. Timer Interrupt Setup Register—Address 0x32
Bit 15 to Bit 14 Bit 13 to Bit 12 Bit 11 to Bit 10 Bit 9 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Compare 3 Compare 2 Compare 1 Compare 0 Capture 3 Capture 2 Capture 1 Capture 0

Table 65. Bit Descriptions for Timer Interrupt Setup Register
Bits Bit Name Settings Description
[15:8] Compare x Compare.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.
[7:0] Capture x Capture.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.

Table 66. Timer Control Unit Interrupt Setup Register—Address 0x33
Bit 15 to Bit 14 Bit 13 to Bit 12 Bit 11 to Bit 10 Bit 9 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Reserved TCU Interrupt 2 TCU Interrupt 1 TCU Interrupt 0 TCU 3 TCU 2 TCU 1 TCU 0

Table 67. Bit Descriptions for Timer Control Unit Interrupt Setup Register
Bits Bit Name Settings Description
[15:14] Reserved Reserved.
[13:8] TCU Interrupt x TCU Interrupt x.
[7:0] TCU x TCU x.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.

Table 68. Timer Interrupt Mask Register—Address 0x34
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 to Bit 4 Bit 3 to Bit 0
Reserved TCU Interrupt 2 TCU Interrupt 1 TCU Interrupt 0 TCU 3 TCU 2 TCU 1 TCU 0 Compare Capture

Table 69. Bit Descriptions for Timer Interrupt Mask Register
Bits Bit Name Settings Description
15 Reserved Reserved.
[14:12] TCU Interrupt x TCU Interrupt x.
 0 Disable interrupt.
 1 Enable interrupt.
[11:8] TCU x TCU x.
[7:4] Compare Compare.
[3:0] Capture Capture.

Table 70. Link Status Interrupt Setup Register—Address 0x35
Bit 15 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Reserved Timer Periodic Interrupt 1 Timer Periodic Interrupt 0 Port 2 link status interrupt Port 1 link status interrupt

Table 71. Bit Descriptions for Link Status Interrupt Status Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:4] Timer Periodic

Interrupt x
 Timer Periodic Interrupt x.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 44 of 60

Bits Bit Name Settings Description
[3:0] Port x link status

interrupt
 Port x link status interrupt.

 00 Use Interrupt 0.
 01 User Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.

Table 72. UIC Interrupt Setup Register—Address 0x36
Bit 15 to Bit 14 Bit 13 to Bit 12 Bit 11 to Bit 10 Bit 9 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Host UIC

Interrupt 3
Host UIC
Interrupt 2

Host UIC
Interrupt 1

Host UIC
Interrupt 0

Port 2 UIC
Interrupt 1

Port 2 UIC
Interrupt 0

Port 1 UIC
Interrupt 1

Port 1 UIC
Interrupt 0

Table 73. Bit Descriptions for Link Status Interrupt Status Register
Bits Bit Name Settings Description
[15:8] Host UIC Interrupt x Host UIC Interrupt x.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.
[7:4] Port 2 UIC Interrupt x Port 2 UIC Interrupt x.
[3:0] Port 1 UIC Interrupt x Port 1 UIC Interrupt x.

Table 74. UIC Interrupt Mask Register, Upper Byte—Address 0x37
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 to Bit 8
Port 2 link status change Port 1 link status change Timer Periodic Interrupt 1 Timer Periodic Interrupt 0 Reserved

Table 75. UIC Interrupt Mask Register, Lower Byte—Address 0x37
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Host UIC

Interrupt 3
Host UIC
Interrupt 2

Host UIC
Interrupt 1

Host UIC
Interrupt 0

Port 2 UIC
Interrupt 1

Port 2 UIC
Interrupt 0

Port 1 UIC
Interrupt 1

Port 1 UIC
Interrupt 0

Table 76. Bit Descriptions for UIC Interrupt Mask Register
Bits Bit Name Settings Description
[15:14] Port x link status change Port x link status change.
[13:12] Timer Periodic Interrupt x Timer periodic Interrupt x.
[11:8] Reserved Reserved.
[7:4] Host UIC Interrupt x Host UIC Interrupt x.
 0 Disable interrupt.
 1 Enable interrupt.
[3:2] Port 2 UIC Interrupt x Port 2 UIC Interrupt x.
[1:0] Port 1 UIC Interrupt x Port 1 UIC Interrupt x.

Table 77. Host Queue Packet Ready Interrupt Setup Register—Address 0x3A
Bit 15 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Reserved Q3 Q2 Q1 Q0

Table 78. Bit Descriptions for Host Queue Packet Ready Interrupt Setup Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:0] Qx Queue x.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 45 of 60

Table 79. Host Queue Space Available Interrupt Setup Register—Address 0x3B
Bit 15 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Reserved Q3 Q2 Q1 Q0

Table 80. Bit Descriptions for Host Queue Space Available Interrupt Setup Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:0] Qx Queue x.
 00 Use Interrupt 0.
 01 Use Interrupt 1.
 10 Use Interrupt 2.
 11 Reserved.

Table 81. TCU Control Register—Address 0x40
Bit 15 to Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Active B Active A Enable B Enable A

Table 82. Bit Descriptions for TCU Control Register
Bits Bit Name Settings Description
[15:4] Reserved Reserved.
[3:2] Active x Active x.
 0 Program x is not executing.
 1 Program x is currently being executed.
[1:0] Enable x Enable x is the enable flag for TCU Program x.
 0 Not enabled, ready to program.
 1 Enabled, ready to execute but cannot program.

Table 83. Timer Register n—Address 0x41
Bit 63 to Bit 32 Bit 31 to Bit 4 Bit 3 to Bit 0
Programmable portion of the timer Nanoseconds Reserved

The host access Register 0x41 as 64 bits. During a write by the host, the lower 4 bits are discarded. The lower 4 bits are represented by the
upper 4 bits of the timer accumulator register.

If the timer addend register (Timer Addend Register A by default, but the user can select Timer Addend Register B) value overflows
when the register is written to, the overflow bits are added into the Field Encompassing Bits[31:4]. When Bits[31:4] equal the value in the
corresponding bits of the timer update compare register, those bits are cleared, and the Field Encompassing Bits[63:32] increment.

Timer Addend Register A is used if Timer Addend Register B count is zero. Otherwise, Timer Addend Register B is used.

All fields are set to zero at reset.

The host accesses this register as a series of 16-bit registers. For a write, the value is not applied until all four registers are written to. For a
read, when the lowest register (Bits[15:4]) is read, all register values are latched for subsequent reads.

Table 84. Bit Descriptions for Timer Register n
Bits Bit Name Settings Description
[63:32] Programmable

portion of the timer
 Programmable portion of the timer. These bits represent the programmable portion of the

time (Bit 32 is the value, in ns, of the timer update compare register).

[31:4] Nanoseconds These bits represent the nanoseconds portion of the time (Bit 4 = 8 ns, Bit 28 of the
accumulator = 1 ns).

[3:0] Reserved Reserved.

Table 85. Timer Addend Register A—Address 0x42
Bit 31 to Bit 16 Bit 15 to Bit 0
Addend value (Auto-Increment 1) Addend value (Auto-Increment 0)

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 46 of 60

Table 86. Timer Addend Register B Count—Address 0x43
Bit 31 to Bit 16 Bit 15 to Bit 0
Addend value (Auto-Increment 1) Addend value (Auto-Increment 0)

Register 0x42 and Register 0x43 have a 32-bit value. These registers are decremented each time Timer Addend Register B is added to the
timer accumulator register. When the value reaches zero, Timer Addend Register A updates the timer accumulator register. These
registers are only accessible by the host.

Table 87. Timer Addend Register B—Address 0x44
Bit 31 to Bit 16 Bit 15 to Bit 0
Addend value (Auto-Increment 1) Addend value (Auto-Increment 0)

If the Timer Addend Register B count is nonzero, the addend value is added with each system clock to the timer accumulator register,
instead of Timer Addend Register A. The value of this register represents the time of a single system clock. This register is only accessible
by the host, and the host adjusts the register value to slow down or speed up the 1588 ns clock. This register is set to 80000000h at reset
(8 ns for a 125 MHz system clock).

Table 88. Timer I/O Control Register—Address 0x45
Bit 15 to Bit 8 Bit 7 to Bit 6 Bit 5 to Bit 4 Bit 3 to Bit 2 Bit 1 to Bit 0
Reserved Timer 3 Timer 2 Timer 1 Timer 0

Table 89. Bit Descriptions for Timer I/O Control Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:0] Timer x Timer x is associated with Timer Output Compare Register x and Timer Input Capture Register x.
 00 Input capture register. Pin is configured as an input, negative edge triggered.
 01 Input capture register. Pin is configured as an input, positive edge triggered.
 10 Output compare register. Pin is configured as an output.
 11 Pin is high impedance, not monitored.

Table 90. TCU Start Compare Register—Address 0x46
Bit 31 to Bit 4 Bit 3 to Bit 0
TCU start time (in nanoseconds) Reserved

Writing to Register 0x46 by a pair of writes from the host enables a comparator with the lower 32 bits of the Register 0x41, which ignores
the bottom 4 bits. When the comparison is successful, a signal is generated to start the TCU and the machine is disabled until the next
write to the value register by the host.

Table 91. Port n Delay Registers—Address 0x47 and Address 0x48
Bit 15 to Bit 0
Port transmit delay

Register 0x47 and Register 0x48 hold a 16-bit value that can be loaded to a decrementer by a write from the opposite port UIC. As such,
the Port 1 UIC loads the Port 2 decrementer, and the Port 2 UIC loads the Port 1 decrementer. When the decrementer contains a
nonzero value, it decrements at the same rate that as the Register 0x41. A 1 is sent to the associated port transmit state machine when the
value in the decrementer is zero.

Receiving UIC sets a bit in a machine register that loads the decrementer when a packet is in the process of being received from the port.
On the transmit side, the transmitting UIC determines on a per packet basis, whether the port pays attention to the decrementer or not.
The transmit port hardware begins transmitting preamble when the flag is clear, or when the flag is high and the decrementer reaches
zero. If a packet ID is provided to the port transmit hardware, the decrementer signal is low, and there was no previous transition to start
preamble transmission, the hardware begins transmission.

Table 92. Timer Periodic Interrupt n Registers—Address 0x49 and Address 0x4A
Bit 31 to Bit 4 Bit 3 to Bit 0
Timer reload value Reserved

When a nonzero value is written to Register 0x49 and Register 0x4A, the value is copied to a register that decrements whenever the
accumulator of the Register 0x41 overflows. When the decrementer reaches zero, an interrupt is generated and the value of this register is
reloaded. No interrupt is generated if this register is zero.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 47 of 60

Table 93. Port 1 Egress Time Register B x—Address 0x4B
Bit 63 to Bit 32 Bit 31 to Bit 0
Seconds Nanoseconds

Register 0x4B contains the egress time of a packet.

Table 94. Port 2 Egress Time Register B x—Address 0x4C
Bit 63 to Bit 32 Bit 31 to Bit 0
Seconds Nanoseconds

Table 95. TCU Memory Register x—Address 0x4D and Address 0x4E
Bit 15 to Bit 0
Write Data

Register 0x4D and Register 0x4E are used to initialize the corresponding program table in the TCU. Each write to these registers loads
16 bits to the program table. After each write, the write location is incremented by 1. Each entry in the table requires three writes. After
the table is enabled in the TCU control register, writes to these registers have no effect.

Table 96. TCU Error Addend Register—Address 0x4F
Bit 15 to Bit 8 Bit 7 to Bit 0
Bank B addend Bank A addend

Register 0x4F contains two fields, one for each TCU program memory. The contents of the memory are used to calculate the current
error of the TCU program with respect to the target time so that clocks can be skipped to eliminate the error. Bank A addend and Bank B
addend determine the value of the error to be added to the accumulator and the end of each pass of Program A and Program B,
respectively.

Table 97. Timer Input Capture Register A x—Address 0x50
Bit 63 to Bit 0
Compare value

Each timer input capture register can be mapped to a unique timer input. Each register can be configured to trigger on either positive or
negative edge events on the timer pin. The value in the Register 0x41 is stored in Register 0x50 and a flag is set in the timer status register.
Register 0x50 is accessible by the host.

Table 98. Timer Input Capture Register B x—Address 0x51
Bit 63 to Bit 0
Capture value

Table 99. Timer Input Capture Register C x—Address 0x52
Bit 63 to Bit 0
Capture value

Table 100. Timer Input Capture Register D x—Address 0x53
Bit 63 to Bit 0
Capture value

Table 101. Timer Output Compare Register A x—Addresses 0x54
Bit 63 to Bit 4 Bit 3 to Bit 0
Compare value Reserved

The value in Register 0x54 is compared to the Register 0x41 and sets a flag in the timer status register if there is a match between the two
times. Each timer output compare register can be configured to generate a signal on one of the timer pins on a match. Register 0x50 to
Register 0x57 are accessible by the host.

Table 102. Timer Output Compare Register B x—Address 0x55
Bit 63 to Bit 4 Bit 3 to Bit 0
Compare value Reserved

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 48 of 60

Table 103. Timer Output Compare Register C x—Address 0x56
Bit 63 to Bit 4 Bit 3 to Bit 0
Compare value Reserved

Table 104. Timer Output Compare Register D x—Address 0x57
Bit 63 to Bit 4 Bit 3 to Bit 0
Compare value Reserved

Table 105. Port 1 Egress Time Register A x—Address 0x58
Bit 63 to Bit 32 Bit 31 to Bit 0
Seconds Nanoseconds

Table 106. Port 2 Egress Time Register A x—Address 0x59
Bit 63 to Bit 32 Bit 31 to Bit 0
Seconds Nanoseconds

Table 107. Port 1 Peer Delay Register 0—Address 0x5A
Bit 15 to Bit 0
Peer delay, Bits[15:0]

There is one set of peer delay registers for each port.

Table 108. Port 1 Peer Delay Register 1—Address 0x5A
Bit 31 to Bit 16
Peer delay, Bits[31:16]

Table 109. Port 1 Peer Delay Register 2—Address 0x5A
Bit 47 to Bit 32
Peer delay, Bits[47:32]

Table 110. Port 1 Peer Delay Register 3—Address 0x5A
Bit 63 to Bit 48
Peer delay, Bits[63:48]

Table 111. Port 2 Peer Delay Register 0—Address 0x5B
Bit 15 to Bit 0
Peer delay, Bits[15:0]

Table 112. Port 2 Peer Delay Register 1—Address 0x5B
Bit 31 to Bit 16
Peer delay, Bits[31:16]

Table 113. Port 2 Peer Delay Register 2—Address 0x5B
Bit 47 to Bit 32
Peer delay, Bits[47:32]

Table 114. Port 2 Peer Delay Register 3—Address 0x5B
Bit 63 to Bit 48
Peer delay, Bits[63:48]

Table 115. Timer Update Compare Register—Address 0x5C
Bit 31 to Bit 16 Bit 15 to Bit 5 Bit 4 to Bit 1
Compare value, Bits[31:16] Compare value, Bits[15:0] Ignored

The compare value is the value is used for comparison so that the lower 32 bits of the timer are reset and the upper 32 bits are
incremented. Ignored indicates the portion of the register correlates with the upper bits of the accumulator. The upper 15 bits and lower
15 bits of this register have different reset values, as noted in Table 9.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 49 of 60

Table 116. Address Lookup Control Register—Address 0x60
Bit 15 to Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Write protect enable Register write protect enable FMMU program enable Enable

Table 117. Maximum Valid Address Register—Address 0x61
Bit 15 to Bit 0
Maximum address

Table 118. Write Offset Register—Address 0x62
Bit 15 to Bit 0

Write offset

Write offset is the 16-bit unsigned value indicating the difference between the read address (provided in PDU) and write address for
specific instructions, which only applies to configured address physical read/writer (FPRW) and auto-increment physical read/write
(APRW) commands.

Table 119. FMMU List Programming Register—Address 0x63
Bit 15 to Bit 0
Table data

The FMMU list is maintained in RAM and has eight entries of the following format:

• Logical start address is a 32-bit logical address for the start of the block covered by the FMMU, Bits[31:0].
• Logical end address is a 32-bit logical address for the end of the block covered by the FMMU, Bits[31:0].
• Physical address is 16-bit unsigned local address. This address corresponds to the value in the logical address, Bits[15:0].
• Control is described in detail in Table 120 (see Bits[15:0]).

Table 120. Control
Bit 15 to Bit 8 Bit 7 to Bit 3 Bit 2 Bit 1 Bit 0
AND mask Reserved Mask enable Write enable Read enable

Table 121. Bit Descriptions for Control Register
Bits Bit Name Settings Description
[15:8] AND mask AND mask.
[7:3] Reserved Reserved.
2 Mask enable Mask enable is used to emulate the shift function.
 0 Normal operation for FMMU.
 1 Read the value from the physical address and AND the value with the value of the AND mask, AND

incoming data with the inverse of the AND mask, then OR the two results together. Only applies to
read FMMU.

1 Write enable Write enable.
 0 Does not define translation for write operations.
 1 Use for write translations.
0 Read enable Read enable. If neither write enable or read enable is asserted, the entry is not valid.
 0 Does not define translation for read operations.
 1 Use for read translations.

The FMMU list is programmed through a sequence of writes to a programming register, as shown in Table 122. This sequence of writes
is repeated eight times to fill all eight lines in the table. There is no way to program a portion of the table, and every line must have an
entry.

Table 122. FMMU List Programming
Write 0 Write 1 Write 2 Write 3 Write 4 Write 5
Logical address, Bits[31:16] Logical address, Bits[15:0] End address,

Bits[31:16]
End address, Bits[15:0] Physical start

address[15:0]
Control

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 50 of 60

Table 123. SyncManager Programming Register—Address 0x64
Bit 15 to Bit 0
Program data

In Register 0x64, each SyncManager is programmed by a sequence of five sequential writes, which are described in Table 124. Excess
writes to the SyncManager programming register for a given write to the SyncManager program index register are discarded.

Table 124. SyncManager List
Start Address Buffer 1 Start Address Buffer 2 Start Address End Address Control

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

The start address for the SyncManager is a 16-bit physical address where the SyncManager operates.

The Buffer 1 start address is a 16-bit physical address where Buffer 1 (second buffer) begins. This register must be set to end address + 1
if the SyncManager is in mailbox mode.

The Buffer 2 start address is a 16-bit physical address where Buffer 2 (third buffer) begins. This register must be set to end address + 1 if
the SyncManager is in mailbox mode.

The end address is the last address managed by the SyncManager. For mailbox mode, the end address is equal to the start address plus
the length of the SyncManager – 1. For buffered mode, the end address is equal to the Buffer 2 start address plus the length of the
SyncManager − 1.

The control functions are described in Table 125.

Table 125. SyncManager List Control Field
Bit 15 to Bit 2 Bit 1 Bit 0
Reserved Mode Direction

Table 126. Bit Descriptions for SyncManager List Control Field
Bits Bit Name Settings Description
[15:2] Reserved Reserved.
1 Mode Mode.
 0 Buffered SyncManager.
 1 Mailbox SyncManager.
0 Direction Direction.
 0 Read SyncManager.
 1 Write SyncManager.

The set of values in Table 126 representing a single SyncManager can be programmed using the SyncManager programming register and
the SyncManager program index register, as follows:

• Use the SyncManager control/state register to disable the SyncManager that is to be programmed.
• Write the index of the SyncManager to the SyncManager program index register, Bits[0:7], to set the machine that manages writes

to the SyncManager programming register to point to the first word.
• Write the sequence of words described in Table 127 for that SyncManager.
• Write the appropriate value to the SyncManager control/state register to enable the SyncManager.

When the synchronization manger is being programmed, all other SyncManagers are operational.

Table 127. SyncManager Control/State Register—Address 0x65
Bit 15 to Bit 8 Bit 7 Bit 6 Bit 5 to Bit 2 Bit 1 Bit 0
Index Enable Restricted Reserved Full Open

Table 128. Bit Descriptions for SyncManager Control/State Register
Bits Bit Name Settings Description
[15:8] Index Index indicates the specific register (between 0 and 7) to which to apply the write.
7 Enable Enable allows a write from host. Note that a transition of this flag (from 0 to 1) initializes the

SyncManager (current buffer is none, open is 0, full is 0).
 0 SyncManager is not active, do not use in address evaluation.
 1 SyncManager is active.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 51 of 60

Bits Bit Name Settings Description
6 Restricted Restricted allows a write from the host. A transition of this flag (from 0 to 1) initializes the

SyncManager (current buffer is none, open is 0, full is 0).
 0 SyncManager operates normally.
 1 Any access to SyncManager space is restricted.
[5:2] Reserved Reserved.
1 Full Full allows a host write either direction, and can be set and cleared by hardware.
 0 Buffer is not full. If open, can be written in a write SyncManager (otherwise restricted).
 1 Buffer is full. If open, can be read in a read SyncManager (otherwise restricted).
0 Open Open is clear only from the host. Ensure that this bit never writes 1.
 0 First byte of buffer not accessed, access to remainder of buffer is restricted.
 1 First byte of buffer has been accessed, access to remainder of the buffer is unrestricted.

Table 129. SyncManager Program Index Register—Address 0x66
Bit 15 to Bit 3 Bit 2 to Bit 0
Reserved Index

Register 0x66 contains the index of the SyncManager, which is used to program the set of writes in Register 0x68 and Register 0x6F to the
SyncManager programming register.

Table 130. SyncManager Atomic Status Register—Address 0x67
Bit 15 to Bit
8

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Atomic
Status 7

Atomic
Status 6

Atomic
Status 5

Atomic
Status 4

Atomic
Status 3

Atomic
Status 2

Atomic
Status 1

Atomic
Status 0

Table 131. Bit Descriptions for SyncManager Atomic Status Register
Bits Bit Name Settings Description
[15:8] Reserved Reserved.
[7:0] Atomic Status x Atomic Status x indicates which entry was last written to the atomic register.
 0 Lookup engine was last writer.
 1 Host interface was last writer.

Table 132. SyncManager x Atomic Read/Write Registers—Address 0x68, Address 0x69, Address 0x6A, Address 0x6B, Address
0x6C, Address 0x6D, Address 0x6E, and Address 0x6F
Bit 15 to Bit 2 Bit 1 to Bit 0
Reserved Buffer index

The buffer index is the ID (0 to 2) of the buffer to provide to the lookup engine. The buffer index also indicates the value that was in the
atomic register the last time that the SyncManager write register was written to.

Table 133. Interframe Gap Set Registers—Address 0x80 and Address 0xB0
Bit 15 to Bit 0
Gap size

Register 0x80 and Register 0xB0 configure the size of the transmit interframe gap. The Ethernet specification calls a minimum gap 12
byte times. The register value is in byte times.

Table 134. Full Duplex Control Registers—Address 0x81 and Address 0xB1
Bit 15 to Bit 1 Bit 0
Reserved Full duplex

Register 0x81 and Register 0xB1 are used only in 10 Mbps or 100 Mbps mode. When the register is set, the transmit state works in full
duplex mode. When the register is cleared, the transmit state works in half-duplex mode. These registers detect collisions, perform
random back offs, retransmit collision packets, and perform other duplex operations.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 52 of 60

Table 135. Bit Descriptions for Full Duplex Control Register
Bits Bit Name Settings Description
[15:1] Reserved Reserved.
0 Full duplex Full duplex.
 0 Full duplex operation disabled.
 1 Full duplex operation enabled.

Table 136. Maximum Retry Registers—Address 0x82 and Address 0xB2
Bit 15 to Bit 5 Bit 4 to Bit 0
Reserved Maximum retry

When the REM switch is operating in half-duplex mode, this register contains the maximum number of times the transmit logic
attempts to retransmit a packet after a collision. If this number is reached, the packet is dropped.

Table 137. CRC Check Enable Registers—Address 0x84 and Address 0xB4
Bit 15 to Bit 1 Bit 0
Reserved Enable

Table 138. Bit Descriptions for CRC Check Enable Register
Bits Bit Name Settings Description
[15:1] Reserved Reserved.
0 Enable This bit is the global enable to the block. It enables the FMMU program, register write protect, and write

protect.
 0 Block does not operate. For FMMU program enable, the block is in normal operating mode and writes to

programming registers are ignored. For register write protect, no write protection is in place. For write
protect, no register protection is in place.

 1 Block is operational. For FMMU program enable, the block is in programming mode and returns miss for
all accesses from the UIC. For register write protect, any register writes must be protected by a write to the
write protect override register (Address 0x0020). For write protect, any register or memory writes must be
proceeded by a write to the write protect override register (Address 0x0030).

Table 139. Receive Interframe Gap Control Registers—Address 0x85 and Address 0xB5
Bit 15 to Bit 0
Gap size

Register 0x85 and Register 0xB5 configure the size of the receive interframe gap. The register value is in byte times.

Table 140. Maximum Receive Length Registers—Address 0x86 and Address 0xB6
Bit 15 to Bit 0
Minimum receive packet length (bytes)

Register 0x86 and Register 0xB6 set the minimum length of an incoming packet (LSB = 1 byte). If a shorter packet is received, the receive
UIC signals that an error occurred in the packet.

Table 141. Minimum Receive Length Registers—Address 0x87 and Address 0xB7
Bit 15 to Bit 0
Minimum receive packet length (bytes)

Register 0x87 and Register 0xB7 set the minimum length of an incoming packet (LSB = 1 byte). If a shorter packet is received, the receive
UIC signals that an error occurred in the packet.

Table 142. Statistic Register Read Registers—Address 0x89 and Address 0xB9
Bit 31 to Bit 16 Bit 15 to Bit 0
Most significant bits Least significant bits

Register 0x89 and Register 0xB9 return the most significant and least significant 16 bits of a 32-bit MAC statistics register. The register
selection is based on the MAC address placed in the indirect address register. Possible MAC addresses are listed in Table 143.

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 53 of 60

Table 143. MAC Addresses for Register Selection
MAC Internal Address Statistic Counter
5'b00000 rx_pkt_cnt_port
5'b00001 rx_pkt_cnt
5'b00010 rx_broadcst_cnt
5'b00011 rx_mulitcast_cnt
5'b00100 rx_unicast_cnt
5'b00101 rx_crc_err_cnt
5'b00110 rx_alignment_err_cnt
5'b00111 rx_long_short_err_cnt
5'b01000 Unused
5'b01001 Unused
5'b01010 Unused
5'b01011 Unused
5'b01100 Unused
5'b01101 Unused
5'b01110 Unused
5'b01111 rx_pkt_gt_1522
5'b10000 tx_pkt_cnt_port
5'b10001 tx_pkt_cnt
5'b10010 tx_broadcst_cnt
5'b10011 tx_mulitcast_cnt
5'b10100 tx_unicast_cnt
5'b10101 tx_jam_drop_cnt
5'b10110 tx_crc_err_cnt
5'b10111 Unused
5'b11000 tx_alignment_err_cnt
5'b11001 tx_single_collision_cnt
5'b11010 tx_multiple_collision_cnt
5'b11011 tx_deferred_transmission_cnt
5'b11100 tx_late_collision_cnt
5'b11101 tx_carrier_sense_err_cnt
5'b11110 Unused
5'b11111 Unused

Table 144. Speed Registers—Address 0x8C and Address 0xBC
Bit 15 to Bit 3 Bit 2 to Bit 0
Reserved Speed

Table 145. Bit Descriptions for Speed Register
Bits Bit Name Settings Description
[15:3] Reserved Reserved.
[2:0] Speed Speed.
 001 Speed is set to 10 Mbps.
 010 Speed is set to 100 Mbps.
 100 Speed is set to 1000 Mbps.

http://stan/twiki/bin/view/Triceratops/RegisterMap?sortcol=0;table=4;up=0#sorted_table
http://stan/twiki/bin/view/Triceratops/RegisterMap?sortcol=1;table=4;up=0#sorted_table

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 54 of 60

FUNCTION REENTRANCY
This section discusses of the reentrancy of functions within the fido5100 and fido5200 drivers. This section contains functions that are
specific to a given industrial Ethernet protocol, as well as functions that are applicable to all use cases of the fido5100 and fido5200
drivers.

Table 146. General REM Switch Driver Function Reentrancy
Function Reentrant Notes
REMS_StdInit Not applicable This function is called once at initialization.
REMS_StdSetMacAddress Not applicable This function is called once at initialization.
REMS_StdSetSecMacAddress Not applicable This function is called once at initialization.
REMS_StdSetSpeedAndDuplex Not applicable This function is called once at initialization.
REMS_StdAssignInterrupt Not applicable This function is called once at initialization.
REMS_StdManageLED Not applicable This function is called once at initialization.
REMS_StdEvaluateInterrupt Not applicable This function is only called by interrupt handlers.
REMS_StdGetNextEvent Not applicable This function is only called by interrupt handlers.
REMS_StdGetLinkState Yes

REMS_StdSetPortState No This function writes to switch memory.
REMS_StdEnableInterrupt No This function modifies global data.
REMS_StdDisableInterrupt No This function modifies global data.
REMS_stdPollInterrupt Not applicable This function does not exist.
REMS_StdPollReceiveQueue Yes

REMS_StdXmitPacket No This function writes to Switch Queue 0.
REMS_StdXmitTaggedPacket No This function writes to Switch Queue 0.
REMS_StdReadPacket No This function reads from Switch Queue 0.
REMS_StdReadMacStatistic No Reading the switch statistic register clears the register.
REMS_StdSetTimerIO Yes

REMS_StdSetTimerOutputCompare Yes

REMS_StdGetTimerInputCapture Yes

REMS_StdReadTimer No Register 0x41 sequencer is reset within this function.
REMS_StdGetProtocolReg Yes

Table 147. EtherNet/IP Driver Function Reentrancy
Function Reentrant Notes
REMS_SetPhyDelayValues Yes
REMS_EipSetQueue0filterCount No This function writes to switch memory.
REMS_EipSetDSCPValues No This function writes to switch memory.
REMS_EipSetFilterCounters No This function writes to switch memory.
REMS_EipServiceBcastMcastFilter Yes
REMS_DlrXmitPacket No This switch writes to Switch Queue 2.
REMS_DlrReadPacket No This function reads from Switch Queue 2.
REMS_Class1XmitPacket No This function writes to Switch Queue 1.
REMS_Class1XmitTaggedPacket No This function reads from Switch Queue 1.
REMS_Class1ReadPacket No This function reads from Switch Queue 1.
REMS_DlrEnable No This function writes to switch memory.
REMS_DlrDisable No This function writes to switch memory.
REMS_EipStartTcu No There is only one TCU. Only start the TCU in one place.
REMS_EipEnableBTOIrq No This function modifies global data.
REMS_EipDisableBTOIrq No This function modifies global data.

http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5100?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 55 of 60

Table 148. Modbus/TCP Driver Function Reentrancy
Function Reentrant Notes
REMS_Xmit_ModbusTCP_Packet No This function writes to Switch Queue 0.
REMS_Read_ModbusTCP_Packet No This function reads from Switch Queue 0.

Table 149. EtherCAT Driver Function Reentrancy

Function Reentrant Notes
HW_Init() Not applicable Only called during initialization.
HW_Release() Not applicable Only called at end of application.
HW_GetALEventRegister() No
HW_GetALEventRegister_Isr() No
HW_ResetALEventMask() No
HW_SetALEventMask() No
HW_DisableSyncManChannel() No
HW_EnableSyncManChannel() No
HW_GetSyncMan() No
HW_EscRead() No
HW_EscReadIsr() No
HW_EscReadDWord() No
HW_EscReadDWordIsr() No
HW_EscReadWord() No
HW_EscReadWordIsr() No
HW_EscReadByte() No
HW_EscReadByteIsr() No
HW_EscReadMbxMem() No
HW_EscWrite() No
HW_EscWriteIsr() No
HW_EscWriteDWord() No
HW_EscWriteDWordIsr() No
HW_EscWriteWord() No
HW_EscWriteWordIsr() No
HW_EscWriteByte() No
HW_EscWriteByteIsr() No
HW_EscWriteMbxMem() No
REMS_ecatMiiEventParams() Not applicable Only called in response to interrupt.
REMS_ecatMiiReadComplete() Not applicable Only called in response to interrupt.
REMS_ecatMiiWriteComplete Not applicable Only called in response to interrupt.
REMS_ecatSetSyncOffsetValue() Not applicable Only called during initialization.

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 56 of 60

EtherCAT fido5200 FUNCTIONAL DIFFERENCES FROM THE BECKHOFF ET1100
The following list addresses the differences in behavior between the fido5200 ESC and the Beckhoff ET1100 ESC. See the data sheet for
the ET11000 for more details on register functionality.

• Destroy frame behavior. This difference occurs when a frame must be destroyed in a network. The ET1100 destroys a frame by
ending the transmission and adding zero or more bytes until the last four bytes yield an incorrect frame check sequence (FCS), in
addition to adding an extra nibble. The fido5200 ends the transmission and adds four bytes, yielding an incorrect FCS, in addition to
adding an extra nibble.

• Reset timing. The reset timing for the fido5200 is different from the ET1100 in that the reset is performed immediately by the
ET1100. The fido5200 has reset timing that is under the control of the host processor.

• Device description. Descriptions of the registers that interface with the fido5200 and a host processor do not support a 32-bit
asynchronous interface when the fido5200 is connected. The description is a 16-bit asynchronous interface.

• Watchdog timing. When the fido5200 is operating in distributed clock mode, the PDI watchdog period is approximated. The
difference is less than a 1% error when compared to the ET1100 for the process watchdog.

• FMMU shifted fields. When the ET1100 is used without a host processor, the ET1100 can shift the process data interface (PDU)
data arbitrarily when there is a memory access. The fido5200 cannot support arbitrary shifts of the PDU. Instead, the fido5200 shifts
a SyncManager status flag to an arbitrary offset within a read PDU. This is the only valid use case for arbitrary PDU shifts.

• DC latch unit not implemented. The fido5200 does not allow the controller to directly read timing for certain actions on the device.
This feature is generally limited to certain device types with the implementation determined by the user of the chip. The fido5200
provides latch functionality to the host processor because the fido5200 is typically implemented in more complex devices using the
ET1100.

• DC speed counter filter difference register. This register of the ET1100 (Register 0x0932) provides a means to estimate the difference
in base oscillator frequency compared to the oscillator frequency on a reference clock (another device on the network). The fido5200
does not generate intermediate values. Instead, the host processor approximates values used to populate Register 0x0932 so that
PPM error can be evaluated over the network.

• Enhanced link detection. EtherCAT requires detecting loss of link within a maximum time. Enhanced link detection is a way to
allow the usage of a broader range of PHYs. The fido5200 does not implement this feature because PHYs that are used in a design
with the fido5200 meet this requirement.

• Reduced signal application time. When the signal is applied to the DLC control word temperature, use Bit 1. When these registers
(Register 0x0100 to Register 0x0103) are written, the loop port settings must be applied for approximately a second and then
reverted to the previous settings. The apply time of the fido5200 is slightly less than the ET1100.

• Distributed clocks synchronization pulse. There is no specification for the behavior of a synchronization pulse generated by the
distributed clocks function. In a four device network, the jitter in Table 150 is observed.

• FMMU configuration. In the fido5200, FMMU registers (Register 0x0600 to Register 0x060F and Register 0x06F0 to Register 0x06FF)
cannot be changed while the FMMU is enabled.

• DC speed start register. For the fido5200, the dc speed start register (Register 0x0930) does not impact the dc speed difference
register (Register 0x0932).

• AP write (APWR) to 0x0900. APWR does not trigger a timestamp capture on a return path. On the fido5200, any physical write
(APWR, FPWR, or BWR) to 0x0900 entering on Port 1 captures a time stamp. The ET1100 only captures a time stamp with an
FPWR or a BWR to Register 0x9000 entering Port 1.

• Next Synchronization 0/1 time registers. The ET1100 has shadow registers that contain the content of these registers
(Register 0x0990 and Register 0x0998) temporarily if they are read one byte at a time. The fido5200 only reads the data reliably if all
eight bytes are read in a single PDU, as opposed to reading one byte at a time.

• Synchronization out register. The synchronization out register (Register 0x0981) for the fido5200 differs from the ET1100 in Bit 3,
Bit 5, and Bit 6. Bit 3 only functions as storage. There is no functionality associated with setting this bit. If this bit is set, it reads as set
but there is no automatic activation set. Bit 5 and Bit 6 also work as storage, but have some functionality associated with setting
these bits. The behavior of Bit 5 and Bit 6 is detailed in Table 151.

• MDIO. The fido5200 does not have pins that correspond to the ET1100 MI_DATA pin or MI_CLK pin. These signals must be
connected to the system processor, and the MDIO interface is handled by the processor.

• EEPROM emulation. The fido5200 does not have the signals to communicate directly with an external EEPROM in the same way as
the ET1100, and as such, this communication is emulated. See the EEPROM Emulation section for further information.

http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 57 of 60

Table 150. Observed Jitter
Reference Device ET1100 (ns) fido5200 (ns)
ET1100 Jitter 20 30
fido5200 Jitter 100 50

Table 151. Observed Behavior of Bit 5 and Bit 6
Bit 5 Bit 6 Observed Behavior
0 0 The data is stored and the device operates the same as the Beckhoff ET1100.
0 1 The data is stored and the device operates the same as the Beckhoff ET1100.
1 0 If the start time is greater than 263 ns, the device starts immediately. The device waits 263 ns until starting instead.

1 1 For start times greater than 231 ns and less than 232 − 1 ns, the synchronization unit starts immediately. If the start time is
greater than 232 − 1 ns, the synchronization unit is delayed by that amount.

http://www.analog.com/fido5200?doc=UG-1285.pdf
http://www.analog.com/fido5200?doc=UG-1285.pdf

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 58 of 60

PREBUILD STEPS FOR THE IAR TOOL CHAIN
If a customer is pairing the REM switch with a processor that uses the IAR Toolchain, there are some steps necessary to ensure proper
functionality. All of these steps occur as preprocessor build steps. This is due to nonstandard compiler behavior on the part of the IAR
embedded workbench compiler. By default, the enumeration for REMS_stdIntEvent() is as follows:
typedef enum {

 REMS_StdInt_Port_1_LinkChange = REMS_Int_Port_1_Link_Change,

 REMS_StdInt_Port_2_LinkChange = REMS_Int_Port_2_Link_Change,

 REMS_StdInt_PktReady = REMS_Int_Queue_0_Packet_Ready,

 REMS_StdInt_Capture_0 = REMS_Int_Capture_0_Event,

 REMS_StdInt_Capture_1 = REMS_Int_Capture_1_Event,

 REMS_StdInt_Capture_2 = REMS_Int_Capture_2_Event,

 REMS_StdInt_Capture_3 = REMS_Int_Capture_3_Event,

 REMS_StdInt_Compare_0 = REMS_Int_Compare_0_Event,

 REMS_StdInt_Compare_1 = REMS_Int_Compare_1_Event,

 REMS_StdInt_Compare_2 = REMS_Int_Compare_2_Event,

 REMS_StdInt_Compare_3 = REMS_Int_Compare_3_Event,

 REMS_StdInt_TimerControl_0 = REMS_Int_Timer_Control_Event_0,

 REMS_StdInt_TimerControl_1 = REMS_Int_Timer_Control_Event_1,

 REMS_StdInt_TimerControl_2 = REMS_Int_Timer_Control_Event_2,

 REMS_StdInt_TimerControl_3 = REMS_Int_Timer_Control_Event_3,

 /* Protocol-specific interrupt events */

 /* PROFINET */

 REMS_PnetInt_CPM_Watchdog_Timeout = REMS_Int_Host_Port_0,

 REMS_PnetInt_ReceivedRtData = PROTOCOL_INT_ID,

 REMS_PnetInt_Master_Lost,

 REMS_PnetInt_No_Sync_Message_Received,

 REMS_PnetInt_Jitter_Out_Of_Boundary,

 REMS_PnetInt_Sync,

 REMS_PnetInt_Wrong_Sync_Master,

 REMS_PnetInt_PortStateRedUp,

 /* EtherCAT */

 REMS_EcatInt_AL_Event_Change = REMS_Int_Host_Port_0,

 REMS_EcatInt_SYNC0_Event = REMS_Int_Timer_Control_Event_0,

 REMS_EcatInt_SYNC1_Event = REMS_Int_Timer_Control_Event_1,

 REMS_EcatInt_SYNC0_Int = REMS_Int_Timer_Control_Int_0,

 REMS_EcatInt_SYNC1_Int = REMS_Int_Timer_Control_Int_1,

 REMS_EcatInt_SYNCDONE_Int = REMS_Int_Timer_Control_Int_2,

 REMS_EcatInt_MII_MGT_Event = PROTOCOL_INT_ID,

 REMS_EcatInt_Reset_Requested,

REM Switch Software Driver User Guide UG-1285

Rev. L | Page 59 of 60

 /* TSN */

 REMS_TsnInt_PeerToPeerPktReady = REMS_Int_Queue_0_Packet_Ready,

 REMS_TsnInt_GeneralPktReady = REMS_Int_Queue_1_Packet_Ready,

 REMS_TsnInt_StreamPktReady = REMS_Int_Queue_2_Packet_Ready,

 REMS_TsnInt_EgressTimeAvail_Port1ChanA = REMS_Int_Port_1_0,

 REMS_TsnInt_EgressTimeAvail_Port1ChanB = REMS_Int_Port_1_1,

 REMS_TsnInt_EgressTimeAvail_Port2ChanA = REMS_Int_Port_2_0,

 REMS_TsnInt_EgressTimeAvail_Port2ChanB = REMS_Int_Port_2_1,

}REMS_stdIntEvent_t;

The IAR toolchain does not allow for aliased members of the enumeration. Therefore, the user must take two steps to ensure the
enumerations are defined properly when using an ARM processor that uses the IAR toolchain:

1. In the application project settings, define the protocol that is going to be used.
2. When using any event of the enumeration REMS_stdIntEvent_t, look the protocol is defined in the list (per protocol).

Performing these steps allows the user to use the REM switch with an ARM processor using the IAR toolchain.
#ifdef REMS_ECAT

/* below is REMS_ECAT version of REMS_stdIntEvent_t */

typedef enum {

 REMS_StdInt_Port_1_LinkChange = REMS_Int_Port_1_Link_Change,

 REMS_StdInt_Port_2_LinkChange = REMS_Int_Port_2_Link_Change,

 /* Protocol-specific interrupt events */

 REMS_EcatInt_AL_Event_Change = REMS_Int_Host_Port_0,

 REMS_EcatInt_SYNC0_Event = REMS_Int_Timer_Control_Event_3,

 REMS_EcatInt_SYNC1_Event = REMS_Int_Timer_Control_Event_2,

 REMS_EcatInt_SYNC0_Int = REMS_Int_Timer_Control_Int_0,

 REMS_EcatInt_SYNC1_Int = REMS_Int_Timer_Control_Int_1,

 REMS_EcatInt_SYNCDONE_Int = REMS_Int_Timer_Control_Int_2,

 REMS_EcatInt_MII_MGT_Event = PROTOCOL_INT_ID,

 REMS_EcatInt_Reset_Requested

}REMS_stdIntEvent_t;

#endif /* REMS_ECAT *

UG-1285 REM Switch Software Driver User Guide

Rev. L | Page 60 of 60

CONSIDERATIONS WHEN USING SIX OR SEVEN FMMUS FOR THE ETHERCAT DRIVER
If the user wants to have six or seven FMMUs programmed by an EtherCAT master, the user must take additional steps for the FMMUs
in their application.

When six or seven FMMUs are programmed, the driver executes the REMS_ECATProgramStoredFMMUEntriesQuick_Finish() function.
When REMS_ECAT_ProgramStoredFMMUEntriesQuick_Finish() is called, the time from the rising edge of the high priority interrupt line
(Int_2) on the fido5200 to the return of REMS_ECAT_ProgramStoredFMMUEntriesQuick_Finish() must occur in less than 4.30 µs.

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third
parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their
respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled, decompiled or reverse
engineered. Analog Devices’ standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html.

©2018–2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
 UG16793-3/20(L)

http://www.analog.com/fido5200?doc=UG-1285.pdf
https://www.analog.com

	INTRODUCTION
	TABLE OF CONTENTS
	REVISION HISTORY
	CONFIGURATION
	DRIVER CONTENTS
	Common
	Porting
	Protocol Specific

	BUILD ENVIRONMENT
	PORTING
	REMS_Port.h
	REMS_Port.c

	USING THE DRIVER
	STANDARD INTERFACE
	Driver Initialization
	Interrupts
	Packet Transmission and Receiving
	Synchronized Timer Signals

	ADDRESSING TABLES
	Static Forwarding Table
	Dynamic Forwarding Table

	PROTOCOLS

	PROFINET
	SYNCHRONIZATION (PTCP)
	PROFINET CONNECTION ESTABLISHMENT
	RT CLASS 1 CONNECTION ESTABLISHMENT
	RT CLASS 3 CONNECTION ESTABLISHMENT
	NETLOAD FILTERING

	ETHERNET/IP
	ETHERNET/IP INITIALIZATION
	HANDLING PHY LINK STATES
	HANDLING CPU INTERRUPTS
	LOW PRIORITY TCP/IP FRAME RECEIVE AND TRANSMIT PROCESSING
	Receive
	Transmit

	HIGH PRIORITY ETHERNET/IP CLASS 1 FRAME RECEIVE AND TRANSMIT PROCESSING
	Receive
	Transmit

	ETHERNET/IP DLR FRAME RECEIVE AND TRANSMIT PROCESSING
	Receive
	Transmit

	OTHER CONSIDERATIONS FOR DLR
	DLR Frame Handling by Frame Type
	Handling DLR Beacon Frames
	Handling Unintended Loop Detect
	Handling Port Link Change

	BROADCAST AND MULTICAST FILTERING

	MODBUS/TCP
	MODBUS/TCP INITIALIZATION
	MODBUS/TCP INTERRUPT HANDLING
	MODBUS/TCP PHY LINK STATE INTERRUPT HANDLING
	MODBUS/TCP RECEIVED PACKET INTERRUPT HANDLING
	MODBUS/TCP PACKET TRANSMISSION

	EtherCAT
	ETHERCAT INITIALIZATION
	ETHERCAT INTERRUPT HANDLING
	EtherCAT SLAVE STACK TO DRIVER INTERFACE
	EEPROM Emulation

	MII MANAGEMENT INTERFACE
	EtherCAT SSC
	SSC Tool Settings
	SSC Changes
	Interrupt Enable and Disable
	Application Programming Interface (API) Usage

	POWERLINK
	POWERLINK INITIALIZATION
	POWERLINK INTERRUPT HANDLING
	POWERLINK PHY LINK STATE INTERRUPT HANDLING
	POWERLINK RECEIVED PACKET INTERRUPT HANDLING
	POWERLINK PACKET TRANSMISSION

	REGISTER MAPS AND DEFINITIONS
	DIRECT ADDRESS REGISTERS
	INDIRECT ADDRESS HOST REGISTERS

	FUNCTION REENTRANCY
	EtherCAT fido5200 FUNCTIONAL DIFFERENCES FROM THE BECKHOFF ET1100
	PREBUILD STEPS FOR THE IAR TOOL CHAIN
	CONSIDERATIONS WHEN USING SIX OR SEVEN FMMUS FOR THE ETHERCAT DRIVER

