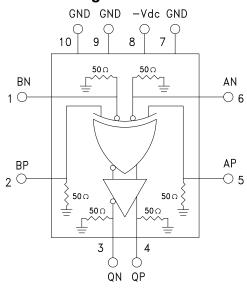


v02.0711

50 Gbps, XOR / XNOR Module



Typical Applications

The HMC-C064 is ideal for:

- OC-768 and SDH STM-256 Equipment
- Serial Data Transmission up to 50 Gbps
- Digital Logic Systems up to 50 Gbps
- Broadband Test and Measurement

Functional Diagram

Features

Supports Data Rates up to 50 Gbps
Inputs Terminated Internally in 50 ohms
Supports Single-Ended or Differential Operation
Low Power Consumption: 550mW
Less than 200 fs Additive RMS Jitter

Single -3.3 V Power Supply

Hermetically Sealed Module: 1.85mm Connectors

-40°C to +70°C Operating Temperature

General Description

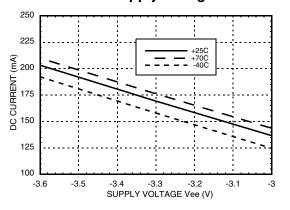
The HMC-C064 is a XOR/XNOR gate function designed to support data transmission rates of up to 50 Gbps. All input signals to the HMC-C064 are terminated with 50 Ohms to ground on-chip, and may be either AC or DC coupled. The differential outputs of the HMC-C064 may be either AC or DC coupled. Outputs can be connected directly to a 50 Ohm to ground terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ohms to a non-ground DC voltage. The HMC-C064 operates from a single -3.3V DC supply, and is supplied in a hermetically sealed module with 1.85mm connectors.

Electrical Specifications, $T_A = +25$ °C, -Vdc = Vee = -3.3V

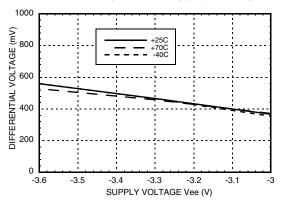
Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage	±10% Tolerance	-3.6	-3.3	-3	V
Power Supply Current			168	195	mA
Maximum Data Rate	NRZ Format	50			Gbps
Maximum Clock Rate		25			GHz
Deterministic Jitter [1]			2		ps p-p
Additive Random Jitter [2]			0.2		ps rms
Rise Time, tr	20% - 80%		6.5		ps
Fall Time, tf	20% - 80%		10		ps
Data Output Swing	Differential Output Swing	400	480		mV p-p

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0711


50 Gbps, XOR / XNOR Module

Electrical Specifications, (continued)

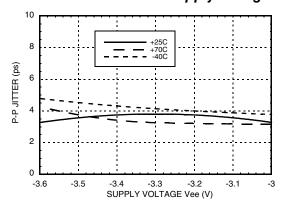

Parameter	Conditions	Min.	Тур.	Max	Units
Input Return Loss	up to 28 GHz		10		dB
Output Return Loss	up to 28 GHz		10		dB
Propagation Delay, td			230		ps
Data Input Amplitude	Single-Ended Amplitude	100		800	mV p-p
	Differential Amplitude	100		2000	mV p-p
Input High Voltage		-0.5		0.5	V
Input Low Voltage		-1		0	٧
Output High Voltage			-10		mV
Output Low Voltage			-300		mV

^[1] Deterministic jitter measured at 45 Gbps with PRBS 2¹³-1 pattern. It is the peak to peak deviation from the ideal time crossing

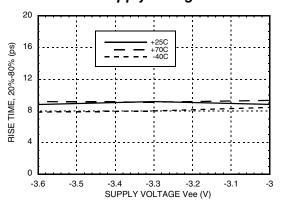
DC Current vs. Supply Voltage

Differential Output vs. Supply Voltage

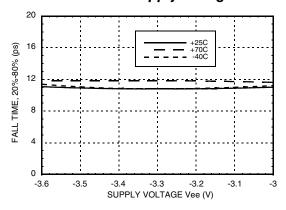
Output Power vs. Frequency



^[2] Random jitter is measured with 45 Gbps 10101... pattern

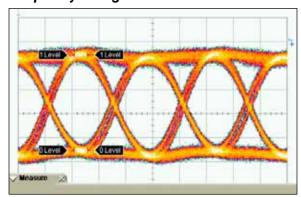


50 Gbps, XOR / XNOR Module


Peak-to-Peak Jitter vs. Supply Voltage [1] [2]

Rise Time vs. Supply Voltage [1]

Fall Time vs. Supply Voltage [1]


[1] Data input = 45Gbps PRBS 2^23-1

[2] Source jitter was not deembedded.

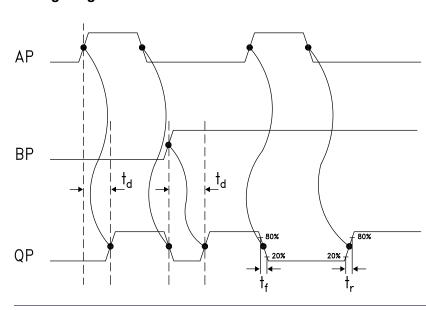
50 Gbps, XOR / XNOR Module

Output Eye Diagram

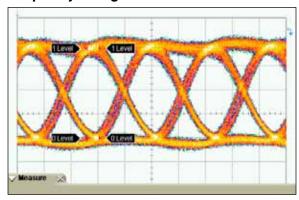
	Current	Minimum	Maximum	Total Meas
Jitter p-p (3)	3.333 ps	3.111 ps	3.333 ps	30
Rise Time (3)	8.67 ps	7.78 ps	8.89 ps	30
Fall Time (3)	10.67 ps	10.67 ps	10.89 ps	30
Single-Ended Eye Amplitude (3)	239 mV	239 mV	239 mV	30

Vertical Scale	60.2 mV / div
Horizontal Scale	10.0 ps / div

Test Conditions


Eye diagram data presented on an Infinium DCA 86100A $AP = 40 \text{ GB/s PRBS } 2^{23} -1$

BP = 40 GB/s 10101 ... data stream


Pseudo Random Code = 223 -1

Vin = 250 mVpp differential

Timing Diagram

Output Eye Diagram

	Current	Minimum	Maximum	Total Meas
Jitter p-p (3)	4.444 ps	3.778 ps	4.444 ps	20
Rise Time (3)	9.11 ps	9.00 ps	9.33 ps	20
Fall Time (3)	10.22 ps	10.22 ps	10.67 ps	20
Single-Ended Eye Amplitude (3)	227 mV	227 mV	227 mV	20
M. P.	10 1 0	0.0.1//		

Vertical Scale	60.2 mV / div
Horizontal Scale	10.0 ps / div

Test Conditions

Eye diagram data presented on an Infinium DCA 86100A

AP = 45 GB/s PRBS 2²³ -1

BP = 45 GB/s 10101 ... data stream

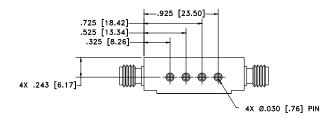
Pseudo Random Code = 2²³ -1

Vin = 250 mVpp differential

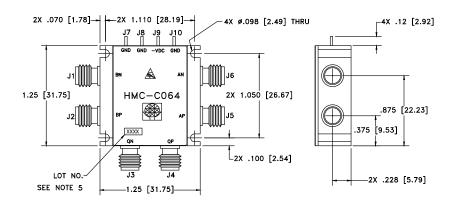
Truth Table

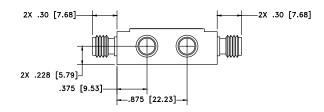
Input		Outputs	
Α	В	Q	
L	L	L	
L	Н	Н	
Н	L	Н	
Н	Н	L	
Notes: A = AP - AN B = BP - BN Q = QP - QN	H - Negative voltage level L - Positive voltage level		

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


50 Gbps, XOR / XNOR Module


Absolute Maximum Ratings


Power Supply Voltage (Vee)	-3.6 to +0.5V	
Input Signals (Vpp)	-1.5V to +0.5V	
Output Signals (Vpp)	-1.5V to +0.5V	
Junction Temperature	125°C	
Storage Temperature	-65°C to +125°C	
Operating Temperature	-40°C to 70°C	



Outline Drawing

NOTES

- 1 PACKAGE, LEADS, COVER MATERIAL: KOVAR
- 2 FINISH: GOLD PLATE OVER NICKEL PLATE.
- 3 ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4 TOLERANCES:
 - $4.1 .XX = \pm .02$
 - $4.2 XXX = \pm .010$
- 5 MARK LOT NUMBER ON 0.080 X 0.250 LABEL WHERE SHOWN, WITH 0.030" MIN. TEXT HEIGHT.

Package Information

Package Type	C-13
Package Weight [1]	59.5 gms

- [1] Includes the connectors
- [2] ±1 gms Tolerance

v02.0711

50 Gbps, XOR / XNOR Module

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2	BN, BP	Differential Data Input B	GGND 50 n BN,BP O
3, 4	QN, QP	Differential data outputs.	GND 50 n QP,QN
5, 6	AP, AN	Differential Data Input A	GND 50 o
7, 9, 10	GND	Signal and supply ground.	GND =
8	-Vdc	Negative Supply	