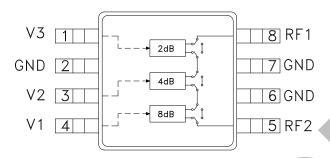
5

HMC288MS8 / 288MS8E

v01.0705


2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Typical Applications

The HMC288MS8 / HMC288MS8E is ideal for:

- Cellular
- PCS, ISM, MMDS
- WLL applications

Functional Diagram

Features

2 dB LSB Steps to 14 dB

Single Positive Control Per BIT

Monotonic: ±03 dB Bit Error Typical
Miniature MSOP-8 Package, 14.8mm²,

General Description

The HMC288MS8 & HMC288MS8E are broadband 3-bit positive control GaAs IC digital attenuators in 8 lead MSOP surface mount plastic packages. Covering 0.7 to 3.7 GHz, the insertion loss is typically less than 1.2 to 1.8 dB. The attenuator bit values are 2 (LSB), 4, and 8 dB for a total attenuation of 14 dB. Accuracy is excellent at ± 0.3 dB typical with an IIP3 of up to +51 dBm. Three bit control voltage inputs, toggled between 0 and +3 to +5V, are used to select each attenuation state at less than 50 uA each. A single Vdd bias of +3 to +5V applied through an external 5K Ohm resistor is required while occupying less than 14.8 mm².

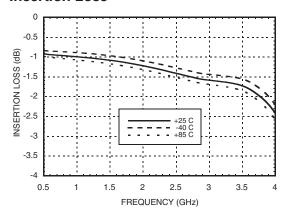
Electrical Specifications,

 $T_A = +25^{\circ}$ C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz		1.0 1.3 1.5 1.7	1.4 1.7 2.0 2.3	dB dB dB dB
Attenuation Range		0.7 - 3.7 GHz		14		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.7 GHz	14 11 10 9	17 15 14 12		dB dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss)						
ttenuation States $0.7 - 1.4 \text{ GHz}$ $\pm 0.3 + 3\%$ of Atten. Setting Maxttenuation States $1.4 - 2.3 \text{ GHz}$ $\pm 0.2 + 3\%$ of Atten. Setting Maxttenuation States $2.3 - 2.7 \text{ GHz}$ $\pm 0.3 + 3\%$ of Atten. Setting Maxttenuation States $2.7 - 3.7 \text{ GHz}$ $\pm 0.3 + 4\%$ of Atten. Setting Max		dB dB dB dB				
Input Power for 0.1 dB Compression	5V 3V	0.7 - 3.7 GHz		25 22		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 0dBm Each Tone)	5V 3V	0.7 - 3.7 GHz		51 47		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.7 - 3.7 GHz		560 600		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

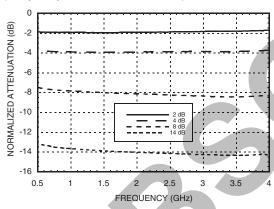
ANALOGDEVICES


HMC288MS8 / 288MS8E

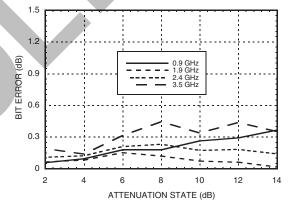
v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Insertion Loss

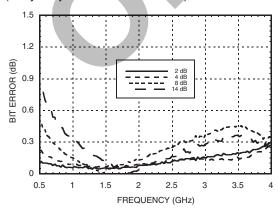

Return Loss RF1, RF2

(Only Major States are Shown)

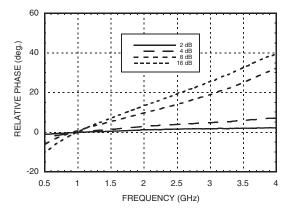


Normalized Attenuation

(Only Major States are Shown)



Absolute Bit Error vs. Attenuation State


Absolute Bit Error vs. Frequency

(Only Major States are Shown)

Relative Phase vs. Frequency

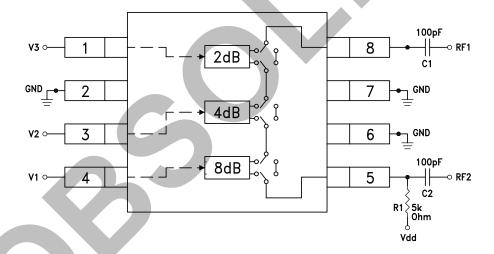
(Only Major States are Shown)

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg. C.).

v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Truth Table


Conf	trol Voltage Ir	Attenuation	
V1 8 dB	V2 4 dB	V3 2 dB	Setting RF1 - RF2
High	High	High	Reference I.L.
High	High	Low	2 dB
High	Low	High	4 dB
Low	High	High	8 dB
Low	Low	Low	14 dB Max. Atten.

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Control & Bias Voltages

State	Bias Condition	
Low	0 to +0.2V @ 20 uA Max.	
High	Vdd ± 0.2V @ 50 uA Max	
Note: $Vdd = +3V$ to $5V \pm 0.2V$		

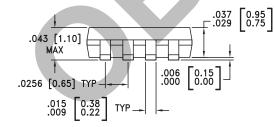
Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = C2 = 100 ~ 300 pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit throught either PIN 5 or PIN 8.

v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Absolute Maximum Ratings


Control Voltage (V1, V2, V3)	Vdd + 0.5 Vdc
Bias Voltage (Vdd)	+8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 4 GHz)	+28 dBm

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

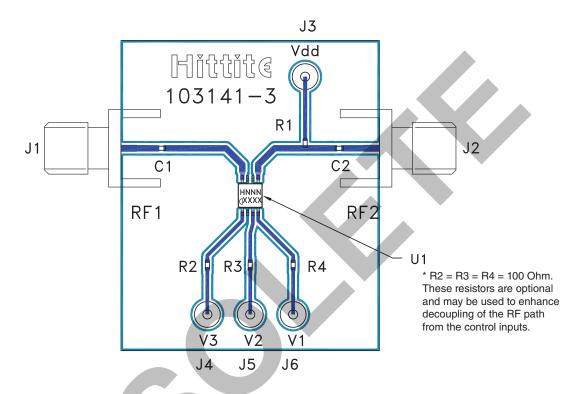
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- ⚠ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC288MS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H288 XXXX	
HMC288MS8E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	H288 XXXX	

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX


HMC288MS8 / 288MS8E

v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Evaluation Circuit Board

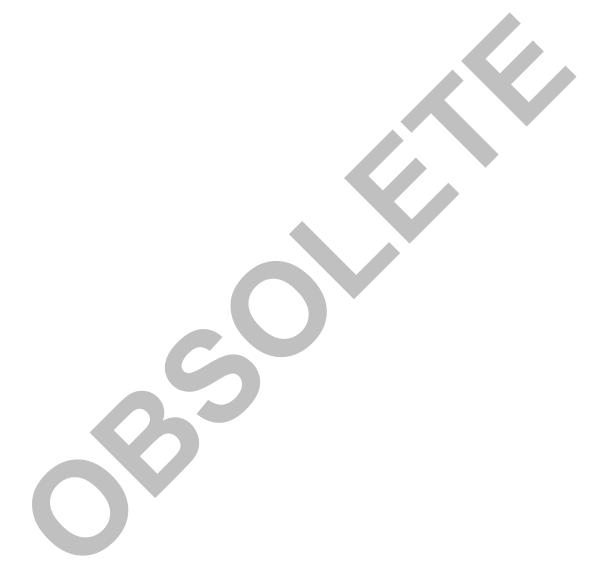
List of Materials for Evaluation PCB 103143 [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3 - J6	DC Pin		
R1	5k Ohm Resistor, 0402 Chip		
R2, R3, R4	100 Ohm Resistor, 0402 Chip		
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation		
U1	HMC288MS8 / HMC288MS8E Digital Attenuator		
PCB [2]	103141 Evaluation PCB 1.5" x 1.5"		

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.


HMC288MS8 / 288MS8E

v01.0705

2 dB LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Notes:

