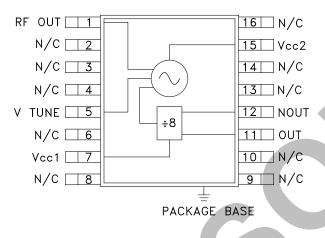


v03.0810


KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Typical Applications

Low noise MMIC VCO w/Divide-by-8 for Ku-Band applications such as:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Functional Diagram

Features

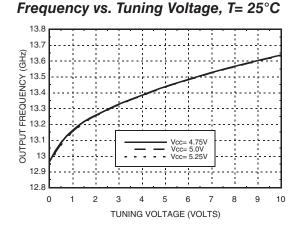
Pout: -7 dBm Phase Noise: -105 dBc/Hz @100 KHz Typ. No External Resonator Needed Single Supply: 5V @ 290 mA QSOP16G SMT Package

General Description

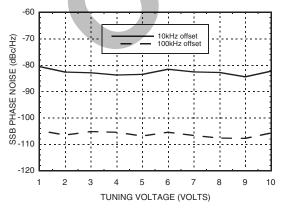
The HMC401QS16G & HMC401QS16GE are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC401QS16G & HMC401QS16GE integrate resonators, negative resistance devices, varactor diodes and divide-by-8 prescalers. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is -7 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost, surface mount 16 leaded QSOP package with an exposed base for improved RF and thermal performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +5V

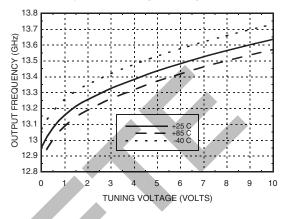
Parameter		Min.	Тур.	Max.	Units
Frequency Range		13.2 - 13.5			GHz
Power Output	FR Output Divided Output	-10 -9	-7 -6		dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-105		dBc/Hz
Tune Voltage	Vtune	0		10	V
Supply Current	Icc1 (Digital) Icc2 (RF)		65 225		mA mA
Tune Port Leakage Current (Vtune= 10V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 3/2 2nd 5/2		-7 -28 -17 -40		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			0.6		MHz pp
Pushing @ Vtune= 5V			5		MHz/V
Frequency Drift Rate			1.5		MHz/°C


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

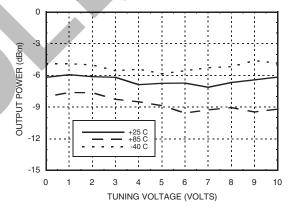
KU-BAND MMIC VCO WITH DIVIDE-BY-8


v03.0810

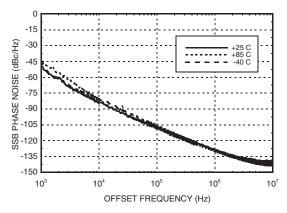
Sensitivity vs. Tuning Voltage, Vcc= +5V



SSB Phase Noise vs. Tuning Voltage

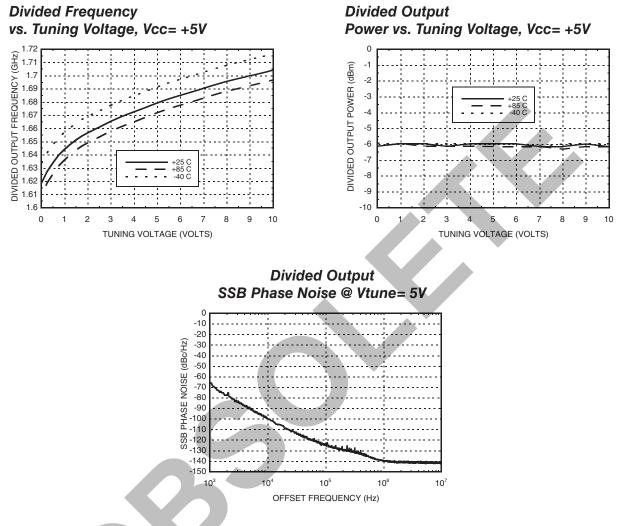


Frequency vs. Tuning Voltage, Vcc= +5V


13.2 - 13.5 GHz

Output Power vs. Tuning Voltage, Vcc= +5V

Phase Noise @ Vtune= 5V


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Absolute Maximum Ratings

Vcc1, Vcc2	5.5 V
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Vtune	0 to 11V Max.
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

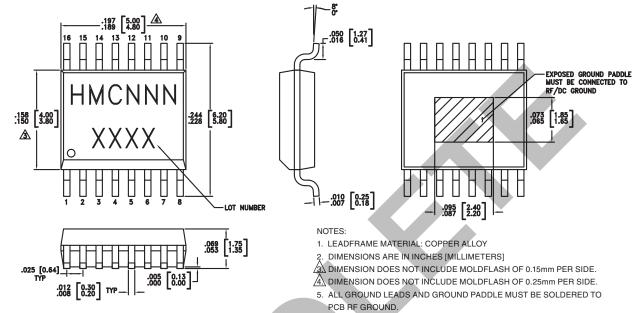
Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	260
5.0	290
5.25	315

Note: VCO will operate over full voltage range shown above.

VCOS - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC401QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	HMC401 XXXX
HMC401QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	HMC401 XXXX

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

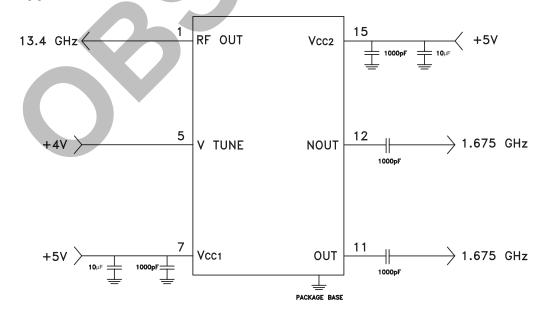
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFOUT	RF output (AC coupled).	
2, 3, 4, 6, 8, 9, 10, 13, 14, 16	N/C	No Connection	
5	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 2.4pF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz



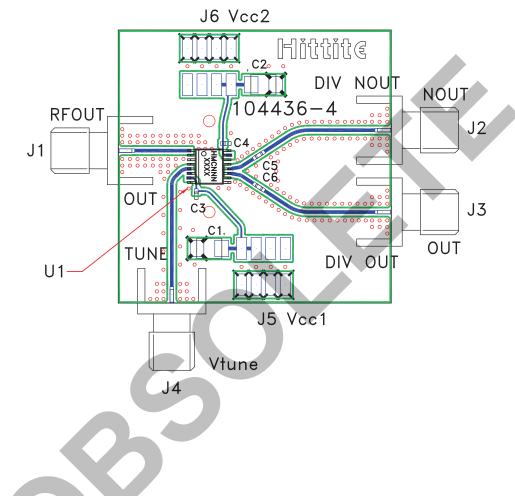
VCOS - SMT

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
7, 15	VCC1, VCC2	Supply Voltage, 5V	Vcco
11	OUT	Divided Output	5V O OUT
12	NOUT	Divided Output 180° output phase with pin 11.	5V ONOUT
	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	

Typical Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.0810

KU-BAND MMIC VCO WITH DIVIDE-BY-8 13.2 - 13.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 104711 [1]

Item	Description	
J1 - J4	PCB Mount SMA RF Connector	
J5 - J6	2 mm DC Header	
C1 - C2	10 µF Tantalum Capacitor	
C3 - C6	1,000 pF Capacitor, 0402 Pkg.	
U1	HMC401QS16G / HMC401QS16GE VCO	
PCB [2]	104436 Eval Board	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.