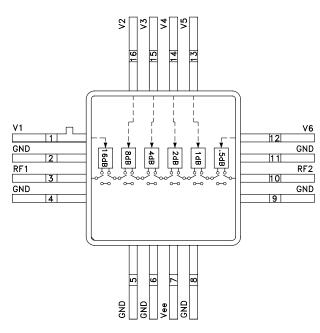


HMC424AG16

00 0416


0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

Typical Applications

The HMC424AG16 is ideal for:

- Telecom Infrastructure
- Military Radios, Radar & ECM
- Space Applications
- Test Instrumentation

Functional Diagram

0.5 dB LSB Steps to 31.5 dB

±0.5 to ±0.8 dB Typical Bit Error

16 Lead Hermetic SMT Package

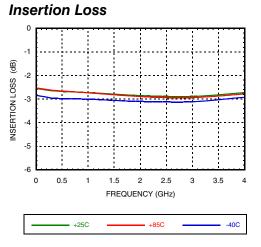
Single Control Line Per Bit

Features

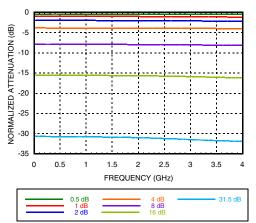
General Description

The HMC424AG16 is a broadband 6-bit GaAs IC digital attenuator in a 16 lead glass/metal (hermetic) surface mount package. Covering DC to 3 GHz, the insertion loss is less than 3 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at \pm 0.5 dB typical step error with an IIP3 of +34 dBm. Six control voltage inputs, toggled between 0 and -5V, are used to select each attenuation state at less than 70 μ A each. A single Vee bias of -5V allows operation at frequencies down to DC.

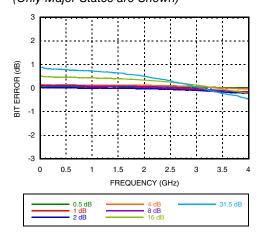
Electrical Specifications, $T_A = +25^{\circ}$ C, With Vee = -5V & VctI = 0/-5V


Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units	
Insertion Loss		DC - 3 GHz		3.0	3.6	dB
Attenuation Range		DC - 3 GHz		31.5		dB
Return Loss (RF1 & RF2, All Atten. States)		DC - 3 GHz		12		dB
Attenuation Accuracy: (Referenced to Insertion Loss)	All States All States	DC - 2.0 GHz 2.0 - 3.0 GHz	\pm 0.4 + 4% of Atten. Setting Max \pm 0.5 + 5% of Atten. Setting Max			dB dB
Input Power for 0.1 dB Compression		1.0 - 3.0 GHz		27		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	REF State All Other States	1.0 - 3.0 GHz		46 34		dBm dBm
Switching Characteristics		DC - 3 GHz				
tRISE, tFALL (10/90% RF) tON/tOFF (50% CTL to 10/90% RF)				30 50		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

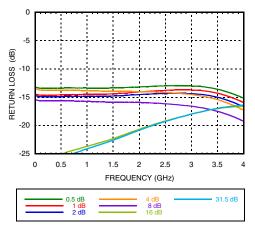

HMC424AG16

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

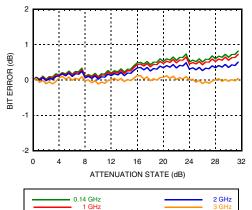


Normalized Attenuation

(Only Major States are Shown)

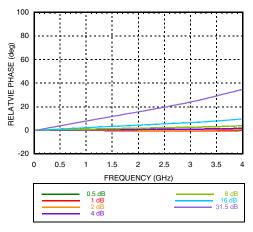


Bit Error vs. Frequency (Only Major States are Shown)



Return Loss RF1, RF2

(Only Major States are Shown)



Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

2 1.5 1 STEP ERROR (dB) 0.2 -1 -1 -1 -1.5 -2 3 3.5 0 0.5 1 1.5 2 2.5 4 FREQUENCY (GHz)

Step Error vs Frequency (Major States)

Vee Range= -5 Vdc ± 10%			
Vee (VDC) lee (Typ.) (mA) lee (Max.) (mA)			
-5	2.2	5	

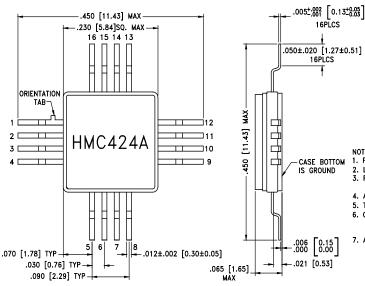
Control Voltage

State	Bias Condition
Low	0 to -3V @ 35 µA Typ.
High	-5 to -4.2V < 1 μΑ Typ.

Truth Table

Control Voltage Input					Attenuation		
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	V6 0.5 dB	State RF1 - RF2	
Low	Low	Low	Low	Low	Low	Reference I.L.	
Low	Low	Low	Low	Low	High	0.5 dB	
Low	Low	Low	Low	High	Low	1 dB	
Low	Low	Low	High	Low	Low	2 dB	
Low	Low	High	Low	Low	Low	4 dB	
Low	High	Low	Low	Low	Low	8 dB	
High	Low	Low	Low	Low	Low	16 dB	
High	High	High	High	High	High	31.5 dB	
Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.							

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz


Absolute Maximum Ratings

Max RF Power Input (0.5 - 13 GHz)	+ 24.5 dBm
Bias Voltage (Vdd)	-7 Vdc
Digital Inputs	Vee-0.5V
Channel Temperature	150 °C
Continuos Pdiss (T=85 °C)	0.180 W
Thermal Resistance(+85 base, 23dBm Pin, @ max atten.)	107 °C/W
Thermal Resistance (+85 base, @ 4 dB atten.)	415.3 °C/W
Storage Temperature	-65 to 150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING** PRECAUTIONS

Outline Drawing

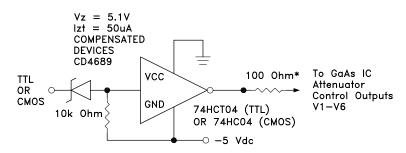
- NOTES: 1. PACKAGE MATERIAL: ALUMINA LOADED BOROSILICATE GLASS.

- PACKAGE MATERIAL: ALUMINA LOADED BOROSLICATE GLASS.
 LEADS, BASE, COVER MATERIAL: KOVAR™ (#7052 CORNING).
 PLATINE; ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 50 MICROINCHES MIN.
 ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].
 TOLERANCES: ±.005 [0.13] UNLESS OTHERWISE SPECIFIED.
 CHARACTERS TO BE LASER MARKED WITH .018"MIN to .030"MAX HEIGHT REQUIREMENTS. UTILIZE MAXIMUM CHARACTER HEIGHT BASED ON LID DIMENSIONS AND BEST FIT. LOCATE APPROX. AS SHOWN.
 ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Package Marking
HMC424AG16	ALUMINA LOADED BOROSILICATE GLASS	HMC424A

Max peak reflow temperature of 260°C

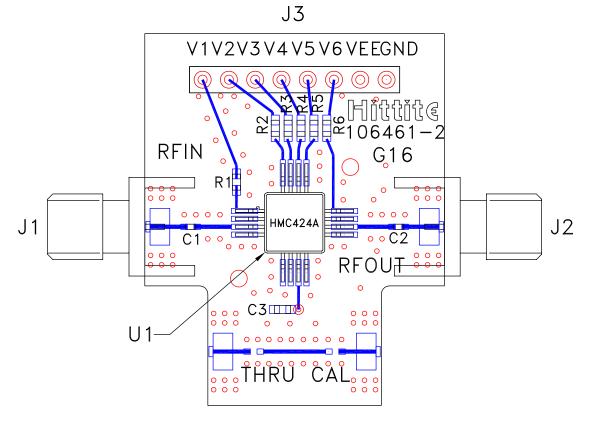

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 12-16	V1 - V6	See truth table and control voltage table.	v1-v60 500 =
2, 4-6, 8, 9, 11	GND	Package bottom must also be connected to RF/DC ground.	
3, 10	RF1, RF2	These pins are DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line is not equal to 0V.	RF1',
7	Vee	Supply Voltage -5V ±10%	

Suggested Driver Circuit

(One Circuit Required Per Bit Control Input)


Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current. * Recommended value to suppress unwanted RF signals at V1 - V6 control lines.

HMC424AG16

0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC424AG16^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	8 Pin DC Connector
C1	0.01 μF Capacitor, 0603 Pkg.
C2, C3	100 pF Capacitor, 0402 Pkg.
R1 - R6	100 Ohm Resistor, 0603 Pkg.
U1	HMC424AG16 Digital Attenuator
PCB [2]	106461 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.