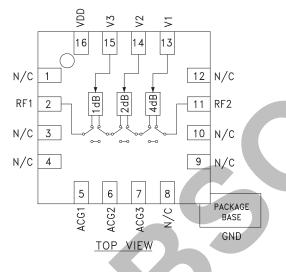


v03.1107


1 dB LSB GaAs MMIC 3-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 6 GHz

Typical Applications

The HMC468LP3 / HMC468LP3E is ideal for:

- Cellular; UMTS/3G Infrastructure
- Fixed Wireless & WLL
- Microwave Radio & VSAT
- Test Equipment

Functional Diagram

Features

1 dB LSB Steps to 7 dB High IP3: +50 dBm ± 0.25 dB Typical Bit Error Single Control Line Per Bit Single +5V Supply 16 Lead 3x3mm SMT Package: 9mm² Included in the HMC-DK004 Designer's Kit

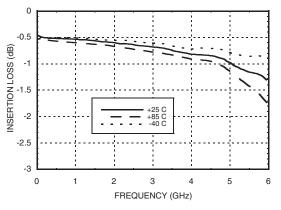
General Description

The HMC468LP3 & HMC468LP3E are broadband 3-bit GaAs IC digital attenuators in low cost leadless surface mount packages. Covering DC to 6.0 GHz, the insertion loss is less than 1 dB typical up to 4 GHz. The attenuator bit values are 1 (LSB), 2 and 4 dB for a total attenuation of 7 dB. Attenuation accuracy is excellent at ± 0.4 dB typical step error with an IIP3 of ± 50 dBm. Three control voltage inputs, toggled between 0 and $\pm 5V$, are used to select each attenuation state. A single Vdd bias of $\pm 5V$ is required.

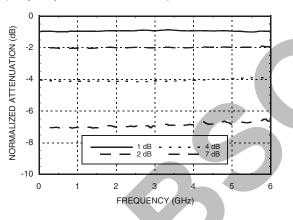
Electrical Specifications, $T_A = +25^{\circ}$ C, With Vdd = +5V & VctI = 0/+5V

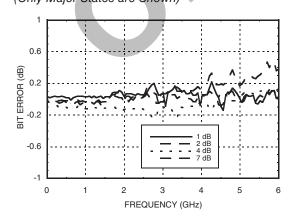
Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss		DC - 2.5 GHz 2.5 - 4.5 GHz 4.5 - 6.0 GHz		0.7 0.9 1.3	1.0 1.3 1.8	dB dB dB
Attenuation Range		DC - 6 GHz		7		dB
Return Loss (RF1 & RF2, All Atten. States)		DC - 4 GHz 4.0 - 6.0 GHz		20 15		dB dB
Attenuation Accuracy: (Referenced to Insertion Loss)	All States 1 - 4 dB States 5 - 7 dB States	DC - 2.5 GHz 2.5 - 6.0 GHz 2.5 - 6.0 GHz	\pm 0.2 + 2% of Atten. Setting Max. \pm 0.3 + 3% of Atten. Setting Max. \pm 0.4 + 4% of Atten. Setting Max.		dB dB dB	
Input Power for 0.1 dB Compression		0.25 - 6.0 GHz		20		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)		0.25 - 6.0 GHz		50		dBm
Switching Characteristics		DC - 6 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)				110 135		ns ns

* Bypass capacitor connecting ACG1, ACG2 & ACG3 to RF ground required per pin description herein.

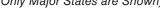

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

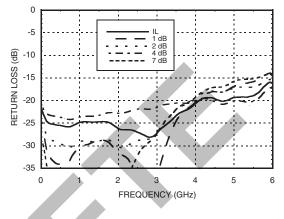
1 dB LSB GaAs MMIC 3-BIT DIGITAL **POSITIVE CONTROL ATTENUATOR, DC - 6 GHz**

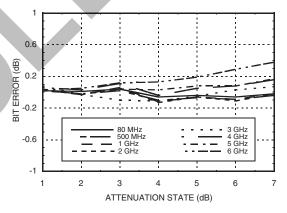

Insertion Loss


v03.1107

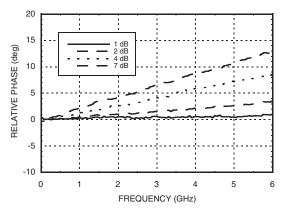
Normalized Attenuation


(Only Major States are Shown)





Return Loss RF1, RF2 (Only Major States are Shown)

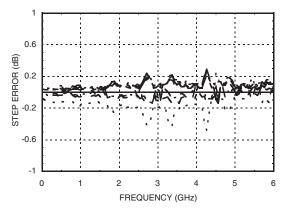


Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



1 dB LSB GaAs MMIC 3-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 6 GHz

Worst Case Step Error Between Successive Attenuation States

v03.1107

Truth Table

trol Voltage In		
V2 2 dB	V3 1 dB	Attenuation Setting RF1 - RF2
High	High	Reference I.L.
High	Low	1 dB
Low	High	2 dB
High	High	4 dB
Low	Low	7 dB
	V2 2 dB High High Low High	2 dB1 dBHighHighHighLowLowHighHighHigh

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Bias Voltage & Current

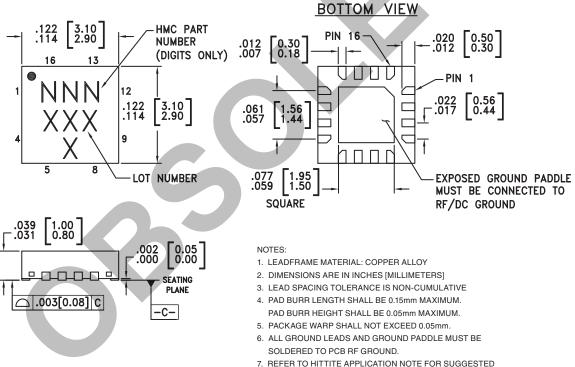
Vdd Range= +5.0 Vdc ± 10%			
Vdd (Vdc)		ldd (Typ.) (mA)	Idd (Max.) (mA)
+5.0		1.05	1.8

TTL/CMOS Control Voltages

State	Bias Condition
Low	0 to 0.8 Vdc @ -5 uA Typ.
High	+2.0 to +5.0 Vdc @ 40 uA Typ.

v03.1107

1 dB LSB GaAs MMIC 3-BIT DIGITAL **POSITIVE CONTROL ATTENUATOR, DC - 6 GHz**


Absolute Maximum Ratings

Control Voltage (V1 to V3)	-0.5 Vdc to Vdd +1 Vdc
Bias Voltage (Vdd)	+7 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power	+30 dBm
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC468LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	468 XXXX
HMC468LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>468</u> XXXX

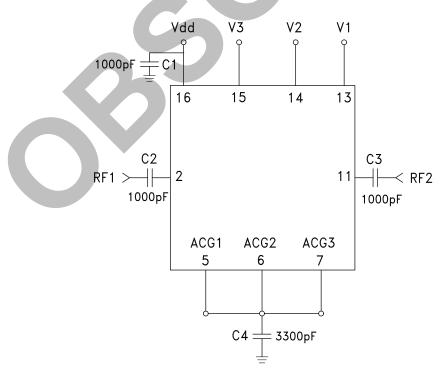
[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.1107



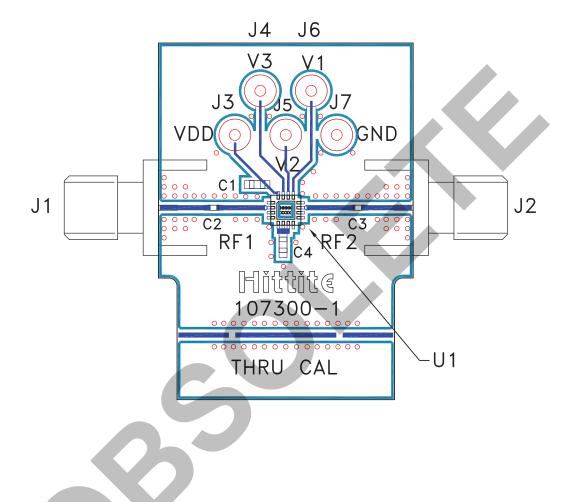
1 dB LSB GaAs MMIC 3-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 4, 8, 9, 10, 12	N/C	These pins should be connected to PCB RF ground to maximize performance.	
2, 11	RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required	
13 - 15	V1 - V3	See truth table and control voltage table.	V1 (V2) (V3) =
5 - 7	ACG1 - ACG3	External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
16	Vdd	Supply Voltage	
	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.1107

1 dB LSB GaAs MMIC 3-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 6 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107302^[1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J7	DC Pin	
C1	1000 pF Capacitor, 0603 Pkg.	
C2, C3	100 pF Capacitor, 0402 Pkg.	
C4	3300 pF Capacitor, 0603 Pkg.	
U1	HMC468LP3 / HMC468LP3E Digital Attenuator	
PCB [2]	107300 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.