

High Isolation, Silicon SPDT, Nonreflective Switch, 0.1 GHz to 6.0 GHz

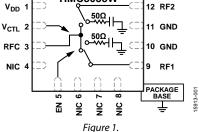
Data Sheet

FEATURES

Nonreflective, 50 Ω design High isolation: 60 dB typical Low insertion loss: 0.8 dB typical **High power handling** 34 dBm through path 29 dBm terminated path **High linearity** P0.1dB: 35 dBm typical IP3: 60 dBm typical **ESD** ratings 4 kV HBM, Class 3A 1.25 kV CDM Single positive supply 3.3 V to 5 V 1.8 V-compatible control All off state control 16-lead, 4 mm × 4 mm LFCSP (16 mm²) **Qualified for automotive applications**

APPLICATIONS

Automotive telematics


GENERAL DESCRIPTION

The HMC8038W is a high isolation, nonreflective, 0.1 GHz to 6.0 GHz, silicon, single-pole, double-throw (SPDT) switch in a leadless, surface-mount package. The switch is ideal for cellular infrastructure applications, yielding up to 62 dB of isolation up to 4.0 GHz, a low 0.8 dB of insertion loss up to 4.0 GHz, and 60 dBm of input third-order intercept. Power handling is excellent up to 6.0 GHz, and it offers an input power for an 0.1 dB compression point (P0.1dB) of 35 dBm ($V_{DD} = 5$ V). On-chip circuitry operates a single, positive supply voltage from 3.3 V to 5 V, as well as a

HMC8038W

V_{DD} 1 → 12 RF2

FUNCTIONAL BLOCK DIAGRAM

single, positive voltage control from 0 V to 1.8 V/3.3 V/5.0 V at very low dc currents. An enable input (EN) set to logic high places the switch in an all off state, in which RFC is reflective.

The HMC8038W has ESD protection on all device pins, including the RF interface, and can stand 4 kV human body model (HBM) and 1.25 kV charged device model (CDM). The HMC8038W offers very fast switching and RF settling times of 150 ns and 170 ns, respectively. The device comes in a RoHS compliant, compact 4 mm \times 4 mm LFCSP package.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

1
1
1
1
2
3
5
5
5
5

Typical Performance Characteristics	7
Insertion Loss, Isolation, and Return Loss	7
Input Compression and Input Third-Order Intercept	8
Theory of Operation	9
Applications Information	10
Outline Dimensions	11
Ordering Guide	11
Automotive Products	11

REVISION HISTORY

8/2017—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 3.3 V to 5 V, $V_{\rm CTL}$ = 0 V/V $_{\rm DD},$ $T_{\rm A}$ = 25°C, 50 Ω system, unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
INSERTION LOSS	0.1 GHz to 2.0 GHz		0.7	1.0	dB
	2.0 GHz to 4.0 GHz		0.8	1.1	dB
	4.0 GHz to 6.0 GHz		0.9	1.3	dB
ISOLATION	0.1 GHz to 2.0 GHz	55	70		dB
RFC to RF1/RF2 (Worst Case)	2.0 GHz to 4.0 GHz	50	60		dB
	4.0 GHz to 6.0 GHz	40	51		dB
RETURN LOSS					
On State	0.1 GHz to 2.0 GHz		24		dB
	2.0 GHz to 4.0 GHz		18		dB
	4.0 GHz to 6.0 GHz		18		dB
Off State	0.1 GHz to 2.0 GHz		23		dB
	2.0 GHz to 4.0 GHz		22		dB
	4.0 GHz to 6.0 GHz		16		dB
SWITCHING SPEED					
t _{RISE} , t _{FALL}	10%/90% RF _{out}		60		ns
t _{on} , t _{off}	50% V _{CTL} to 10%/90% RF _{OUT}		150		ns
RF SETTLING TIME	50% V _{CTL} to 0.1 dB margin of final RF _{OUT}		170		ns
INPUT POWER					
1 dB Compression (P1dB)	$V_{DD} = 3.3 V$		34		dB
	$V_{DD} = 5 V$		36		dB
0.1 dB Compression (P0.1dB)	$V_{DD} = 3.3 V$		33		dB
	$V_{DD} = 5 V$		35		dB
INPUT THIRD-ORDER INTERCEPT (IP3)	Two-tone input power = 14 dBm/tone		60		dBm
RECOMMENDED OPERATING CONDITIONS	· · ·				
Bias Voltage Range (V _{DD})		3.0		5.4	v
Control Voltage Range (V_{CII} , EN)		0		V_{DD}	v
RF Input Power ¹				DD	
$T_{CASE} = 105^{\circ}C$	Through path (5 V/3.3 V)			31/30	dBm
CASE	Terminated path			24	dBm
	Hot switching			24	dBm
$T_{CASE} = 85^{\circ}C$	Through path (5 V/3.3 V)			34/33	dBm
CASE	Terminated path			27	dBm
	Hot switching			27	dBm
$T_{CASE} = 25^{\circ}C$	Through path (5 V/3.3 V)			34/33	dBm
	Terminated path			29	dBm
	Hot switching			27	dBm
$T_{CASE} = -40^{\circ}C$	Through path (5 V/3.3 V)			34/33	dBm
CASE C	Terminated path			29	dBm
	Hot switching			27	dBm
Case Temperature Range (T _{CASE})		-40		+105	°C

¹ Exposure to levels between the recommended operating conditions and the absolute maximum rating conditions for extended periods may affect device reliability.

HMC8038W

Table 2. Digital Control Voltages

State	$V_{DD} = 3.3 V (\pm 5\% V_{DD}, T_{CASE} = -40^{\circ}C \text{ to } +105^{\circ}C)$	$V_{DD} = 5 V (\pm 5\% V_{DD}, T_{CASE} = -40^{\circ}C \text{ to } +105^{\circ}C)$
Input Control Voltage		
Low (V _{IL})	0 V to 0.85 V at <1 μA, typical	0 V to 1.20 V at <1 μA, typical
High (V _{IH})	1.15 V to 3.3 V at <1 μA, typical	1.55 V to 5.0 V at <1 μA, typical

Table 3. Bias Voltage vs. Supply Current

Parameter	Symbol	Min	Тур	Max	Unit	Typical I _{DD} (mA)
SUPPLY CURRENT	I _{DD}					
$V_{DD} = 3.3 V$			0.14		mA	0.14
$V_{DD} = 5 V$			0.16		mA	0.16

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Bias Voltage Range (V _{DD})	–0.3 V to +5.5 V
Control Voltage Range (V _{CTL} , EN)	-0.5 V to V _{DD} + (+0.5 V)
RF Input Power ¹ (see Figure 2)	
Through Path	35 dBm
Terminated Path	30 dBm
Hot Switching	30 dBm
Channel Temperature	135°C
Storage Temperature Range	–65°C to +150°C
Peak Reflow	260°C
ESD Sensitivity	
HBM	4 kV (Class 3A)
CDM	1.25 kV

¹ For recommended operating conditions, see Table 1.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

During the through mode of operation, the supply voltage scales the maximum allowed input power. The power handling vs. frequency for the 3.3 V and 5 V supplies is shown in Figure 2.

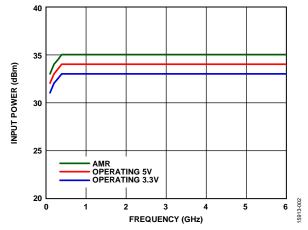


Figure 2. Through Path, Power Handling vs. Frequency

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{IC} is the junction to case thermal resistance.

Table 5. Thermal Resistance

Package Type	θ _{JC}	Unit
CP-16-42 ¹		
Through Path	110	°C/W
Terminated Path	100	°C/W

¹Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board with nine thermal vias. See JEDEC JESD51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

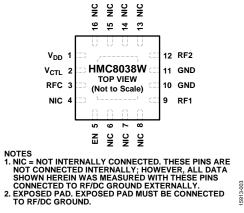


Figure 3. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD}	Supply Voltage Pin.
2	V _{CTL}	Control Input Pin. See Figure 5 for the V _{CTL} interface schematic. Refer to Table 7 and the recommended input control voltage range in Table 2.
3	RFC	RF Common Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
4, 6 to 8, 13 to 16	NIC	Not Internally Connected. These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/dc ground externally.
5	EN	Enable Input Pin. See Figure 5 for the EN interface schematic. Refer to Table 7 and the recommended input control voltage range in Table 2.
9	RF1	RF Port 1. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
10, 11	GND	Ground. The package bottom has an exposed metal pad that must connect to the printed circuit board (PCB) RF ground. See Figure 4 for the GND interface schematic.
12	RF2	RF Port 2. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
	EPAD	Exposed Pad. Exposed pad must be connected to RF/dc ground.

INTERFACE SCHEMATICS

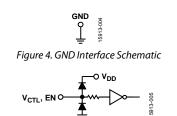


Figure 5. Logic Control Interface Schematic

Table	7.	Truth	Table
-------	----	-------	-------

Contro	Control Input Signal Path State		Path State
V _{CTL} State	EN State	RFC to RF1	RFC to RF2
Low	Low	Off	On
High	Low	On	Off
Low	High	Off	Off
High	High	Off	Off

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, ISOLATION, AND RETURN LOSS

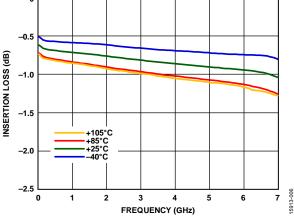


Figure 6. Insertion Loss vs. Frequency over Temperatures, $V_{DD} = 5 V$

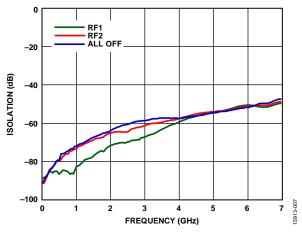
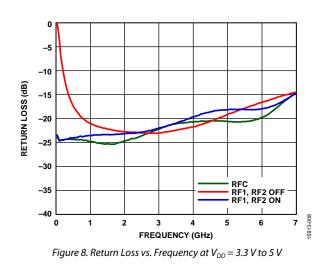



Figure 7. Isolation Between RFC and RF1/RF2 vs. Frequency at V_{DD} = 3.3 V to 5 V

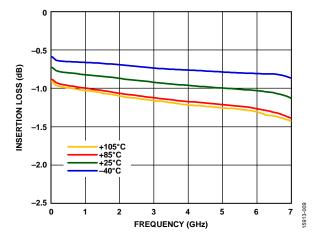


Figure 9. Insertion Loss vs. Frequency over Temperatures, $V_{DD} = 3.3 V$

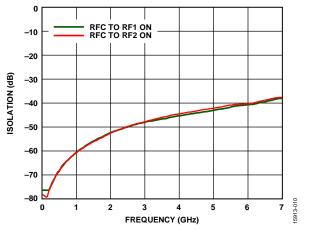


Figure 10. Isolation Between RF1 and RF2 vs. Frequency at V_{DD} = 3.3 V to 5 V

HMC8038W

INPUT COMPRESSION AND INPUT THIRD-ORDER INTERCEPT

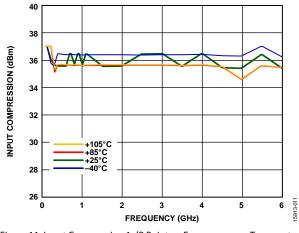


Figure 11. Input Compression 1 dB Point vs. Frequency over Temperature, $V_{DD} = 5 V$

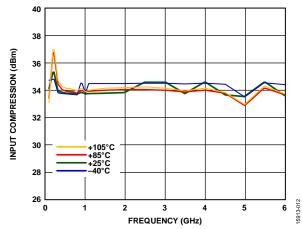


Figure 12. Input Compression 1 dB Point vs. Frequency over Temperature, $V_{DD} = 3.3 V$

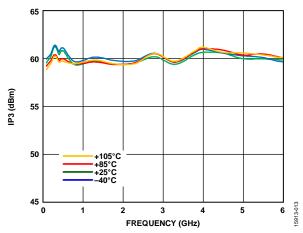


Figure 13. Input Third-Order Intercept (IP3) Point vs. Frequency, $V_{DD} = 5 V$

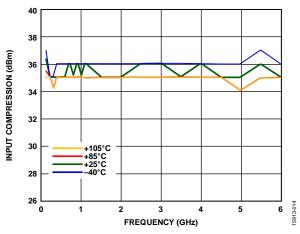


Figure 14. Input Compression 0.1 dB Point vs. Frequency over Temperature, $V_{\rm DD}$ = 5 V

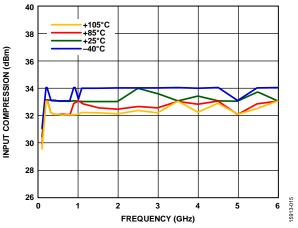


Figure 15. Input Compression 0.1 dB Point vs. Frequency over Temperature, $V_{\rm DD}$ = 3.3 V

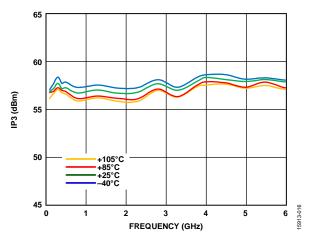


Figure 16. Input Third-Order Intercept (IP3) Point vs. Frequency, V_{DD} = 3.3 V

THEORY OF OPERATION

The HMC8038W requires a single-supply voltage applied to the $\rm V_{\rm DD}$ pin. By passing capacitors are recommended on the supply line to minimize RF coupling.

The HMC8038W is controlled via two digital control voltages applied to the V_{CTL} pin and the EN pin. A small bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation.

The HMC8038W is internally matched to 50 Ω at the RF input port (RFC) and the RF output ports (RF1 and RF2); therefore, no external matching components are required. The RFx pins are dc-coupled, and dc blocking capacitors are required on the RF lines. The design is bidirectional; the input and outputs are interchangeable.

The ideal power-up sequence is as follows:

- 1. Power up GND.
- 2. Power up V_{DD} .
- Power up the digital control inputs. The relative order of the logic control inputs is not important. Powering the digital control inputs before the V_{DD} supply can inadvertently forward bias and damage ESD protection structures.
- 4. Power up the RF input.

Digi	ital Control Inputs	Switch N	Node
V _{en}	V _{CTL}	RFC to RF1	RFC to RF2
0	0	Off mode. The RF1 port is isolated from the RFC port and is internally terminated to a 50 Ω load to absorb the applied RF signals.	On mode. A low insertion loss path from the RFC port to the RF2 port.
0	1	On mode. A low insertion loss path from the RFC port to the RF1 port.	Off mode. The RF2 port is isolated from the RFC port and is internally terminated to a 50 Ω load to absorb the applied RF signals.
1	Don't care	All off mode. Both the RF1 and RF2 ports are isolated from the	RFC port, and the RFC port is reflective.

With the EN pin is logic low, the HMC8038W has two operation modes: on and off. Depending on the logic level applied to the V_{CTL} pin, one RF output port (for example, RF1) is set to on mode, by which an insertion loss path is provided from the input to the output, as the other RF output port (for example, RF2) is set to off mode, by which the output is isolated from the input. When the RF output port (RF1 or RF2) is in isolation mode, internally terminate it to 50 Ω , and the port absorbs the applied RF signal.

When the EN pin is logic high, the EN pin sets the HMC8038W switch to off mode. In off mode, both output ports are isolated from the input, and the RFC port is open reflective.

APPLICATIONS INFORMATION

The HMC8038W application circuit is shown in Figure 17. Bypass capacitors are used on the supply and control traces to filter high frequency noise. Signal lines at the RF ports are designed to have 50 Ω impedance. The GND, NIC pins, and the exposed pad of the package are directly connected to the

ground plane. For optimum high frequency and thermal grounding, as many plated through vias as possible are arranged around the RF transmission lines and under the exposed pad of the package.

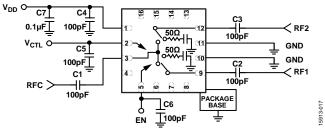
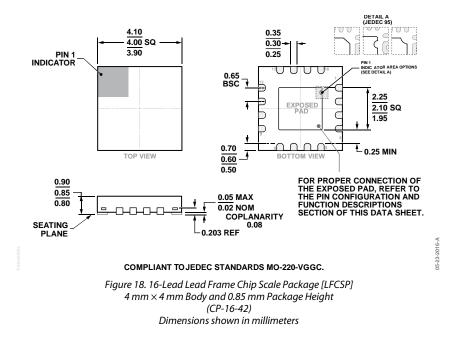



Figure 17. HMC8038W Application Circuit

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	MSL Rating ³	Package Description	Package Option	Quantity	Branding ^{4,5}
HMC8038WLP4CE	–40°C to +105°C	MSL3	16-Lead Lead Frame Chip Scale Package [LFCSP], Reel	CP-16-42	50	8038W #XXXXX MMYY
HMC8038WLP4CETR	–40°C to +105°C	MSL3	16-Lead Lead Frame Chip Scale Package [LFCSP], Reel	CP-16-42	500	8038W #XXXXX MMYY

¹ E = RoHs Compliant Part.

² W = Qualified for Automotive Applications.

³ The maximum peak reflow temperature is 260°C. See the Absolute Maximum Ratings section.

⁴ 5-digit lot number: XXXXX.

⁵ 4-digit date code: MMYY.

AUTOMOTIVE PRODUCTS

The HMC8038W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

Rev. 0 | Page 11 of 11