430° ANALOG PHASE SHIFTER, 4-8 GHz

Typical Applications

The HMC929LP4E is ideal for:

- EW Receivers
- Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}, 50$ Ohm System

Parameter	Frequency (GHz)	Min.	Typ.	Max.	Units
Phase Shift Range	4-8GHz		430		degrees
Insertion Loss	4-8GHz		4		dB
Return Loss (input and output)	4-8 GHz		15		dB
Control Voltage Range	4-8 GHz	0		13	Volt
Control Current Range	4-8GHz			± 1	mA
Maximum Input Power for Linear Operation	4-8 GHz			10	dBm
Phase Voltage Sensitivity	4-8 GHz		35		deg/volt
Phase Error *	4-8 GHz		± 5		deg
Phase Error (average) *	4-8GHz		2		deg
Modulation Bandwidth	4-8 GHz		20		MHz
Insertion Phase Temperature Sensitivity	4-8 GHz		0.11		$\mathrm{deg} /{ }^{\circ} \mathrm{C}$

* Up to a phase shift range of 380 degrees.

430º ANALOG PHASE SHIFTER， 4－8 GHz

Insertion Loss vs．Frequency

Phase Shift vs．Vctl

Phase Shift vs．Frequency
（Relative to Vctl $=0 \mathrm{~V}$ ）Vctl $=0.5$ to 13 V

［1］ 0 to 10 V provides $0-380$ degrees phase shift range

Phase Shift vs．Frequency＠Vctl＝6V （Relative to Vctl＝OV）

Phase Error vs．
Frequency，Fmean $=6$ GHz ${ }^{[1]}$

Insertion Loss vs．VctI ，F＝6 GHz

v02.1210

Second Harmonics vs. Vctl, F = 6 GHz

13

Input IP3 vs. Vctl, F = 6 GHz

Insertion Loss vs. Pin @ 6 GHz

430° ANALOG PHASE SHIFTER, 4-8 GHz

Insertion Loss vs. Pin @ 4 GHz

Insertion Loss vs. Pin @ 8 GHz

v02．1210

Phase Shift vs．Pin＠ 4 GHz

Phase Shift vs．Pin＠ 8 GHz

Output Return Loss vs．
Frequency，Vctl $=0$ to +13 V

Phase Shift vs．Pin＠ 6 GHz

Input Return Loss vs．

Frequency，Vctl＝ 0 to $\mathbf{+ 1 3 V}$

Reliability Information

Junction Temperature（Tj）	$150^{\circ} \mathrm{C}$
Nominal Junction Temperature $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$, Pin $\left.=10 \mathrm{dBm}\right)$	$87^{\circ} \mathrm{C}$
Thermal Resistance （Junction to GND Paddle）	$45^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Input Power（RFIN）	+27 dBm
Control Voltage（Vctl）	-0.5 V to +15 V
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
ESD Sensitivity（HBM）	Class 1 B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

For price，delivery，and to place orders：Analog Devices，Inc．，
One Technology Way，P．O．Box 9106，Norwood，MA 02062－9106 Phone：781－329－4700 • Order online at www．analog．com Application Support：Phone：1－800－ANALOG－D

Outline Drawing

NOTES：
1．LEADFRAME MATERIAL：COPPER ALLOY
2．DIMENSIONS ARE IN INCHES［MILLIMETERS］．
3．DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE．
4．DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE．
5．ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND．
6．CLASSIFIED AS MOISTURE SENSITIVITY LEVEL（MSL） 1.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC929LP4E	RoHS－compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\underline{\text { H929 }}$

［1］4－Digit lot number XXXX
［2］Max peak reflow temperature of $260^{\circ} \mathrm{C}$

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$\begin{gathered} 1,5-14 \\ 18-20,22-24 \end{gathered}$	N／C	No connection required．These pins may be connected to RF／DC ground without affecting performance．	
2，4，15， 17	GND	Ground：Backside of package has exposed metal ground slug that must be connected to ground thru a short path．Vias under the device are required．	$\begin{aligned} & \text { OGND } \\ & = \end{aligned}$
3	RFIN	Port is DC blocked．	RFIN O－H1
16	RFOUT	Port is DC blocked．	\longrightarrow ORFOUT
21	Vctl	Phase shift control pin．Application of a voltage between 0 and 13 volts causes the transmission phase to change．The DC equivalent circuit is a series connected diode and resistor．	

430° ANALOG PHASE SHIFTER, 4-8 GHz

Evaluation PCB

List of Materials for Evaluation PCB $108812{ }^{[1]}$

Item	Description
J1, J2	PCB Mount SMA Connector, SRI
J3	PCB Mount SMA Connector
U1	HMC929LP4E Analog Phase Shifter
PCB [2]	111296 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

