

LT1210X DICE/DWF

High Temperature 200°C, 1.0A, 35MHz Current Feedback Amplifier

FEATURES

- Extreme High Temperature Operation: –40°C to 200°C
- 1.0A Minimum Output Drive Current
- 35MHz Bandwidth, $A_V = 2$, $R_L = 10\Omega$
- 900V/ μ s Slew Rate, A_V = 2, R_L = 10 Ω
- High Input Impedance: 10MΩ
- Wide Supply Range: ±5V to ±15V
- Shutdown Mode: I_S < 200µA</p>
- Adjustable Supply Current
- Stable with C_L = 10,000pF

APPLICATIONS

- Down-Hole Drilling and Instrumentation
- Heavy Industrial
- High Temperature Environments
- Cable Drivers
- Buffers
- Test Equipment Amplifiers
- Video Amplifiers

DESCRIPTION

The LT®1210X is a current feedback amplifier with high output current and excellent large-signal characteristics. The combination of high slew rate, 1.0A output drive and \pm 15V operation enables the device to deliver significant power at frequencies in the 1MHz to 2MHz range. Short-circuit protection ensures the device's ruggedness. The LT1210X is stable with large capacitive loads, and can easily supply the large currents required by the capacitive loading. A shutdown feature switches the device into a high impedance and low supply current mode, reducing dissipation when the device is not in use. For lower bandwidth applications, the supply current can be reduced with a single external resistor.

The LT1210X is a member of a growing series of high temperature qualified products offered by Linear Technology. For a complete selection of high temperature products, please consult our website www.linear.com

𝕶, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

DIE CROSS REFERENCE

	Order Part Number
LT®1210X LT1210X	LT1210X DICE LT1210X DWF*

8 Please refer to LT1210X standard product data sheet for other applicable product information. *DWF = DICE in wafer form.

80mils × 134mils, 12mils thick. Backside metal: TiNiAg Backside potential: V⁺

PAD FUNCTION

- 1. V⁺: Positive Supply Voltage. V⁺ and V⁻ must be chosen so that $10V \le (V^+ V^-) < 36V$. Both Pad 1 and Pad 4 must be connected to V⁺.
- 2. **OUT:** Amplifier Output. The output can source/sink a minimum of 1A. Both Pad 2 and Pad 3 must be connected to OUT.
- 3. **OUT:** Amplifier Output. The output can source/sink a minimum of 1A. Both Pad 2 and Pad 3 must be connected to OUT.
- 4. V⁺: Positive Supply Voltage. V⁺ and V⁻ must be chosen so that $10V \le (V^+ V^-) < 36V$. Both Pad 1 and Pad 4 must be connected to V+.
- 5. **–IN:** Inverting Input of Amplifier. Valid input range is ±12V on ±15V supplies.
- 6. **+IN:** Noninverting Input of Amplifier. Valid input range is ±12V on ±15V supplies.
- SHUTDOWN: If the shutdown feature is not used, the SHUTDOWN pin must be connected to Ground or V[−]. The SHUTDOWN pin can be used to either turn off the biasing for the amplifier, reducing the quiescent current to less than 200µA, or to control the quiescent current in normal operation.
- COMP: Adding a 0.01μF capacitor between the output and the COMP pin greatly reduces peaking when driving capacitive loads. To disconnect the optional compensation, leave the COMP pin open.
- 9. V⁻: Negative Supply Voltage. V⁺ and V⁻ must be chosen so that $10V \le (V^+ V^-) < 36V$. This is a double pad (shared with Pad 10).
- 10. V⁻: Negative Supply Voltage. V⁺ and V⁻ must be chosen so that $10V \le (V^+ V^-) < 36V$. This is a double pad (shared with Pad 9).

LT1210X DICE/DWF

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Current	±15mA
Output Short-Circuit Duration	
(Note 2)	Thermally Limited

Operating Temperature Range

LT1210X	40°C to 200°C
Storage Temperature Range	65°C to 200°C

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$. $V_{CM} = 0V$, $\pm 5V \le V_S \le \pm 15V$, pulse tested, $V_{SD} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage			±3	±15	mV
	Input Offset Voltage Drift			10		μV/°C
I _{IN} +	Noninverting Input Current			±2	±5	μA
I _{IN} ⁻	Inverting Input Current			±10	±60	μA
e _n	Input Noise Voltage Density	$f = 10 \text{kHz}, R_F = 1 \text{k}, R_G = 10 \Omega, R_S = 0 \Omega$		3.0		nV/√Hz
+i _n	Input Noise Current Density	$f = 10kHz, R_F = 1k, R_G = 10\Omega, R_S = 10k$		2.0		pA/√Hz
-i _n	Input Noise Current Density	f = 10kHz, R_F = 1k, R_G = 10 Ω , R_S = 10k		40		pA/√Hz
R _{IN}	Input Resistance	$V_{IN} = \pm 12V, V_S = \pm 15V$ $V_{IN} = \pm 2V, V_S = \pm 5V$	1.50 0.25	10 5		ΜΩ ΜΩ
C _{IN}	Input Capacitance	$V_{S} = \pm 15V$		2		pF
	Input Voltage Range	$V_{S} = \pm 15V$ $V_{S} = \pm 5V$	±12 ±2	±13.5 ±3.5		V V
CMRR	Common Mode Rejection Ratio	$V_{S} = \pm 15V, V_{CM} = \pm 12V$ $V_{S} = \pm 5V, V_{CM} = \pm 2V$	55 50	62 60		dB dB
	Inverting Input Current Common Mode Rejection	$V_{S} = \pm 15V, V_{CM} = \pm 12V$ $V_{S} = \pm 5V, V_{CM} = \pm 2V$		0.1 0.1	10 10	μΑ/V μΑ/V
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 5 V$ to $\pm 15 V$	60	77		dB
	Noninverting Input Current Power Supply Rejection	$V_S = \pm 5V \text{ to } \pm 15V$		30	500	nA/V
	Inverting Input Current Power Supply Rejection	$V_{\rm S} = \pm 5 V \text{ to } \pm 15 V$		0.7	5	μA/V
A _V	Large-Signal Voltage Gain	$V_{S} = \pm 15V$, $V_{OUT} = \pm 10V$, $R_{L} = 10\Omega$	55	71		dB
		$V_S = \pm 5V$, $V_{OUT} = \pm 2V$, $R_L = 10\Omega$	55	68		dB
R _{OL}	Transresistance, $\Delta V_{OUT} / \Delta I_{IN}^{-}$	$V_{S} = \pm 15V$, $V_{OUT} = \pm 10V$, $R_{L} = 10\Omega$	100	260		kΩ
		$V_S = \pm 5V$, $V_{OUT} = \pm 2V$, $R_L = 10\Omega$	75	200		kΩ
V _{OUT}	Maximum Output Voltage Swing	$V_{S} = \pm 15 V$, $R_{L} = 10 \Omega$	±10.0	±11.5		V
		$V_S = \pm 5V$, $R_L = 10\Omega$	±2.5	±3.0		V
I _{OUT}	Maximum Output Current	$V_{S} = \pm 15V, R_{L} = 1\Omega$	1.0	2.0		A
ls	Supply Current	$V_{S} = \pm 15V, V_{SD} = 0V$		35	50	mA
	Supply Current, R _{SD} = 51k (Note 3)	$V_{S} = \pm 15V$		15	30	mA
	Positive Supply Current, Shutdown	$V_{\rm S} = \pm 15$ V, $V_{\rm SD} = 15$ V			200	μA
	Output Leakage Current, Shutdown	$V_{S} = \pm 15V, V_{SD} = 15V$			10	μA

ELECTRICAL CHARACTERISTICS T_A = 25°C. V_{CM} = 0V, ±5V \leq V_S \leq ±15V, pulse tested, V_{SD} = 0V, unless

otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
SR	Slew Rate (Note 4)	$A_V = 2, R_L = 400\Omega$ $A_V = 2, R_L = 10\Omega$		900 900		V/µs V/µs
	Differential Gain (Note 5)	Differential Gain (Note 5) $V_S = \pm 15V$, $R_F = 750\Omega$, $R_G = 750\Omega$, $R_L = 15\Omega$				%
	Differential Phase (Note 5)	$V_{S} = \pm 15V, R_{F} = 750\Omega, R_{G} = 750\Omega, R_{L} = 15\Omega$		0.1		DEG
BW	Small-Signal Bandwidth	$\begin{array}{l} A_V = 2, V_S = \pm 15V, Peaking \leq 1dB, \\ R_F = R_G = 680\Omega, R_L = 100\Omega \end{array}$		55		MHz
		$\begin{array}{l} A_V = 2, V_S = \pm 15V, Peaking \leq 1dB, \\ R_F = R_G = 576\Omega, R_L = 10\Omega \end{array}$		35		MHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Junction temperature must be kept below the Absolute Maximum rating. Applies to short circuits to ground only. A short circuit between the output and either supply may permanently damage the part when operated on supplies greater than $\pm 10V$.

Note 3: R_{SD} is connected between the Shutdown pad and ground. Note 4: Slew rate is measured at ±5V on a ±10V output signal while operating on ±15V supplies with $R_F = 1.5k$, $R_G = 1.5k$ and $R_L = 400\Omega$. Note 5: NTSC composite video with an output level of 2V.

SMALL-SIGNAL BANDWIDTH _.. _-

$R_{SD} = 0\Omega, I$	$R_{SD} = 0\Omega$, $I_S = 30mA$, $V_S = \pm 5V$, Peaking $\leq 1dB$						
A _V	RL	R _F	R _G	-3dB BW (MHz)			
-1	150	549	549	52.5			
	30	590	590	39.7			
	10	619	619	26.5			
1	150	604	-	53.5			
	30	649	-	39.7			
	10	619	-	27.4			
2	1505623059010576		562 590 576	51.8 38.8 27.4			
10	150	392	43.2	48.4			
	30	383	42.2	40.3			
	10	215	23.7	36.0			

$H_{SD} = 0\Omega_2, I$	s = 35 mA, vg	s = ± 15V, Pea	iking s lab	

	J	_ · · · · , · · · ·	_ · • · , · • • · · · · y _ · • _				
Av	RL	R _F	R _G	-3dB BW (MHz)			
-1	150	604	604	66.2			
	30	649	649	48.4			
	10	665	665	46.5			
1	150	750	-	56.8			
	30	866	-	35.4			
	10	845	-	24.7			
2	150	665	665	52.5			
	30	715	715	38.9			
	10	576	576	35.0			
10	150	453	49.9	61.5			
	30	432	47.5	43.1			
	10	221	24.3	45.5			

d CV. De alvine - c d dD

 $R_{SD} = 7.5k$, $I_S = 15mA$, $V_S = \pm 5V$, Peaking $\leq 1dB$

Av	RL	R _F	R _G	–3dB BW (MHz)
-1	150	562	562	39.7
	30	619	619	28.9
	10	604	604	20.5
1	150	634	-	41.9
	30	681	-	29.7
	10	649	-	20.7
2	150	576	576	40.2
	30	604	604	29.6
	10	576	576	21.6
10	150	324	35.7	39.5
	30	324	35.7	32.3
	10	210	23.2	27.7

 $R_{SD} = 47.5k$, $l_S = 18mA$, $V_S = \pm 15V$, Peaking < 1dB

15D - +1.01	, 1 <u>5 – 101117</u> ,	$v_S = \pm 15v, r$	caking 2 ru	
Av	RL	R _F	R _G	-3dB BW (MHz)
-1	150	619	619	47.8
	30	698	698	32.3
	10	698	698	22.2
1	150	732	-	51.4
	30	806	-	33.9
	10	768	-	22.5
2	150	634	634	48.4
	30	698	698	33.0
	10	681	681	22.5
10	150	348	38.3	46.8
	30	357	39.2	36.7
	10	205	22.6	31.3

SMALL-SIGNAL BANDWIDTH

$R_{SD} = 15k$, $I_S = 7.5mA$, $V_S = \pm 5V$, Peaking $\leq 1dB$			$R_{SD} = 82.5k, I_S = 9mA, V_S = \pm 15V, Peaking \le 1dB$						
Av	RL	R _F	R _G	-3dB BW (MHz)	Av	RL	R _F	R _G	-3dB BW (MHz)
-1	150 30 10	536 549 464	536 549 464	28.2 20.0 15.0	-1	150 30 10	590 649 576	590 649 576	34.8 22.5 16.3
1	150 30 10	619 634 511	- - -	28.6 19.8 14.9	1	150 30 10	715 768 649	- - -	35.5 22.5 16.1
2	150 30 10	536 549 412	536 549 412	28.3 19.9 15.7	2	150 30 10	590 665 549	590 665 549	35.3 22.5 16.8
10	150 30 10	150 118 100	16.5 13.0 11.0	31.5 27.1 19.4	10	150 30 10	182 182 100	20.0 20.0 11.0	37.2 28.9 22.5

. . .v 5V D 1 4 D 4 - 1. 7 6

SIMPLIFIED SCHEMATIC

