features

- Extreme High Temperature Operation: $-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
- 1.0A Minimum Output Drive Current
- 35MHz Bandwidth, $A_{V}=2, R_{L}=10 \Omega$
- $900 \mathrm{~V} /$ /rs Slew Rate, $\mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=10 \Omega$
- High Input Impedance: 10M Ω
- Wide Supply Range: $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Shutdown Mode: $I_{S}<200 \mu \mathrm{~A}$
- Adjustable Supply Current
- Stable with $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$

APPLICATIONS

- Down-Hole Drilling and Instrumentation
- Heavy Industrial
- High Temperature Environments
- Cable Drivers
- Buffers
- Test Equipment Amplifiers
- Video Amplifiers

LT1210X DICE/DWF

High Temperature $200^{\circ} \mathrm{C}$, 1.0A, 35MHz Current Feedback Amplifier DESCRIPTIOn

The LT ${ }^{\circledR 1210 X}$ is a current feedback amplifier with high output current and excellent large-signal characteristics. The combination of high slew rate, 1.0A output drive and $\pm 15 \mathrm{~V}$ operation enables the device to deliver significant power at frequencies in the 1 MHz to 2 MHz range. Shortcircuit protection ensures the device's ruggedness. The LT1210X is stable with large capacitive loads, and can easily supply the large currents required by the capacitive loading. A shutdown feature switches the device into a high impedance and low supply current mode, reducing dissipation when the device is not in use. For lower bandwidth applications, the supply current can be reduced with a single external resistor.
The LT1210X is a member of a growing series of high temperature qualified products offered by Linear Technology. For a complete selection of high temperature products, please consult our website www.linear.com

[^0]
DICE PINOUT

8 Please refer to LT1210X standard product data sheet for other applicable product information. *DWF = DICE in wafer form.

PAD FUNCTION

1. V^{+}: Positive Supply Voltage. V^{+}and V^{-}must be chosen so that $10 \mathrm{~V} \leq$ $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)<36 \mathrm{~V}$. Both Pad 1 and Pad 4 must be connected to V^{+}.
2. OUT: Amplifier Output. The output can source/sink a minimum of 1 A . Both Pad 2 and Pad 3 must be connected to OUT.
3. OUT: Amplifier Output. The output can source/sink a minimum of 1 A . Both Pad 2 and Pad 3 must be connected to OUT.
4. V^{+}: Positive Supply Voltage. V^{+}and V^{-}must be chosen so that $10 \mathrm{~V} \leq$ $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)<36 \mathrm{~V}$. Both Pad 1 and Pad 4 must be connected to V .
5. -IN: Inverting Input of Amplifier. Valid input range is $\pm 12 \mathrm{~V}$ on $\pm 15 \mathrm{~V}$ supplies.
6. +IN : Noninverting Input of Amplifier. Valid input range is $\pm 12 \mathrm{~V}$ on $\pm 15 \mathrm{~V}$ supplies.
7. SHUTDOWN: If the shutdown feature is not used, the SHUTDOWN pin must be connected to Ground or V^{-}. The SHUTDOWN pin can be used to either turn off the biasing for the amplifier, reducing the quiescent current to less than $200 \mu \mathrm{~A}$, or to control the quiescent current in normal operation.
8. COMP: Adding a $0.01 \mu \mathrm{~F}$ capacitor between the output and the COMP pin greatly reduces peaking when driving capacitive loads. To disconnect the optional compensation, leave the COMP pin open.
9. V^{-}: Negative Supply Voltage. V^{+}and V^{-}must be chosen so that $10 \mathrm{~V} \leq$ $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)<36 \mathrm{~V}$. This is a double pad (shared with Pad 10).
10. V^{-}: Negative Supply Voltage. V^{+}and V^{-}must be chosen so that $10 \mathrm{~V} \leq$ $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)<36 \mathrm{~V}$. This is a double pad (shared with Pad 9).

LT1210X DICE/DWF

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 18 \mathrm{~V}$
Input Current. \qquad
Output Short-Circuit Duration
(Note 2) \qquad Thermally Limited

Operating Temperature Range LT1210X. $-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
 $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$, pulse tested, $\mathrm{V}_{\mathrm{SD}}=0 \mathrm{~V}$, unless

 otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | Input Offset Voltage | | | ± 3 | ± 15 | mV |
| | Input Offset Voltage Drift | | | 10 | | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| lin^{+} | Noninverting Input Current | | | ± 2 | ± 5 | $\mu \mathrm{A}$ |
| ln^{-} | Inverting Input Current | | | ± 10 | ± 60 | $\mu \mathrm{A}$ |
| e_{n} | Input Noise Voltage Density | $f=10 \mathrm{kHz}, R_{F}=1 \mathrm{k}, R_{G}=10 \Omega, R_{S}=0 \Omega$ | | 3.0 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| $\underline{+i_{n}}$ | Input Noise Current Density | $f=10 \mathrm{kHz}, \mathrm{R}_{F}=1 \mathrm{k}, \mathrm{R}_{G}=10 \Omega, R_{S}=10 \mathrm{k}$ | | 2.0 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| - i_{n} | Input Noise Current Density | $f=10 \mathrm{kHz}, \mathrm{R}_{F}=1 \mathrm{k}, \mathrm{R}_{G}=10 \Omega, R_{S}=10 \mathrm{k}$ | | 40 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | $\begin{aligned} & V_{I N}= \pm 12 \mathrm{~V}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{I N}= \pm 2 \mathrm{~V}, V_{S}= \pm 5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 1.50 \\ & 0.25 \end{aligned}$ | $\begin{gathered} \hline 10 \\ 5 \end{gathered}$ | | $\begin{aligned} & \hline \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ | | 2 | | pF |
| | Input Voltage Range | $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{S}= \pm 5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \pm 12 \\ \pm 2 \end{gathered}$ | $\begin{gathered} \pm 13.5 \\ \pm 3.5 \end{gathered}$ | | V |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{C M}= \pm 12 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{C M}= \pm 2 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 55 \\ & 50 \end{aligned}$ | $\begin{aligned} & 62 \\ & 60 \end{aligned}$ | | dB
 dB |
| | Inverting Input Current Common Mode Rejection | $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{C M}= \pm 12 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{C M}= \pm 2 \mathrm{~V} \end{aligned}$ | | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\mu \mathrm{A} / \mathrm{V}$
 $\mu \mathrm{A} / \mathrm{V}$ |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | 60 | 77 | | dB |
| | Noninverting Input Current Power Supply Rejection | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | | 30 | 500 | $n \mathrm{~A} / \mathrm{V}$ |
| | Inverting Input Current Power Supply Rejection | $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | | 0.7 | 5 | $\mu \mathrm{A} / \mathrm{V}$ |
| $\overline{A_{V}}$ | Large-Signal Voltage Gain | $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{L}=10 \Omega \end{aligned}$ | 55 | 71 | | dB |
| | | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega$ | 55 | 68 | | dB |
| $\overline{\mathrm{R}_{\mathrm{OL}}}$ | Transresistance, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \\|_{\text {IN }}{ }^{-}$ | $\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{L}=10 \Omega \end{aligned}$ | 100 | 260 | | $\mathrm{k} \Omega$ |
| | | $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega$ | 75 | 200 | | $\mathrm{k} \Omega$ |
| $\overline{V_{\text {OUT }}}$ | Maximum Output Voltage Swing | $V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{L}=10 \Omega$ | ± 10.0 | ± 11.5 | | V |
| | | $V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega$ | ± 2.5 | ± 3.0 | | V |
| IOUT | Maximum Output Current | $V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \Omega$ | 1.0 | 2.0 | | A |
| IS | Supply Current | $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {SD }}=0 \mathrm{~V}$ | | 35 | 50 | mA |
| | Supply Current, $\mathrm{R}_{\text {SD }}=51 \mathrm{k}$ (Note 3) | $V_{S}= \pm 15 \mathrm{~V}$ | | 15 | 30 | mA |
| | Positive Supply Current, Shutdown | $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{S D}=15 \mathrm{~V}$ | | | 200 | $\mu \mathrm{A}$ |
| | Output Leakage Current, Shutdown | $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{S D}=15 \mathrm{~V}$ | | | 10 | $\mu \mathrm{A}$ |

LT1210X DICE/DWF

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{C M}=0 \mathrm{~V}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$, pulse tested, $\mathrm{V}_{S D}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SR	Slew Rate (Note 4)	$\begin{aligned} & A_{V}=2, R_{L}=400 \Omega \\ & A_{V}=2, R_{L}=10 \Omega \end{aligned}$		$\begin{aligned} & 900 \\ & 900 \end{aligned}$		V/us $\mathrm{V} / \mathrm{\mu s}$
	Differential Gain (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=750 \Omega, \mathrm{R}_{\mathrm{G}}=750 \Omega, \mathrm{R}_{\mathrm{L}}=15 \Omega$		0.3		\%
	Differential Phase (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{F}=750 \Omega, \mathrm{R}_{\mathrm{G}}=750 \Omega, \mathrm{R}_{\mathrm{L}}=15 \Omega$		0.1		DEG
BW	Small-Signal Bandwidth	$\begin{aligned} & A_{V}=2, V_{S}= \pm 15 \mathrm{~V}, \text { Peaking } \leq 1 \mathrm{~dB}, \\ & R_{F}=R_{G}=680 \Omega, R_{L}=100 \Omega \end{aligned}$		55		MHz
		$\begin{aligned} & A_{V}=2, V_{S}= \pm 15 \mathrm{~V}, \text { Peaking } \leq 1 \mathrm{~dB}, \\ & R_{F}=R_{G}=576 \Omega, R_{L}=10 \Omega \end{aligned}$		35		MHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Junction temperature must be kept below the Absolute Maximum rating. Applies to short circuits to ground only. A short circuit between the
output and either supply may permanently damage the part when operated on supplies greater than $\pm 10 \mathrm{~V}$.
Note 3: $R_{S D}$ is connected between the Shutdown pad and ground.
Note 4: Slew rate is measured at $\pm 5 \mathrm{~V}$ on $a \pm 10 \mathrm{~V}$ output signal while operating on $\pm 15 \mathrm{~V}$ supplies with $R_{F}=1.5 \mathrm{k}, R_{G}=1.5 \mathrm{k}$ and $R_{L}=400 \Omega$.
Note 5: NTSC composite video with an output level of 2 V .

SMALL-SIGNAL BANDUIDTH

$\mathrm{R}_{\mathrm{SD}}=0 \Omega, \mathrm{I}_{\mathrm{S}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{3 d B} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	150	549	549	52.5
	30	590	590	39.7
	10	619	619	26.5
1	150	604	-	53.5
	30	649	-	39.7
	10	619	-	27.4
2	150	562	562	51.8
	30	590	590	38.8
	10	576	576	27.4
10	150	392	43.2	48.4
	30	383	42.2	40.3
	10	215	23.7	36.0

$\mathrm{R}_{\mathrm{SD}}=0 \Omega, \mathrm{I}_{\mathrm{S}}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{- 3 d B} \mathbf{~ B W}$ $(\mathbf{M H z})$
-1	150	604	604	66.2
	30	649	649	48.4
	10	665	665	46.5
	150	750	-	56.8
	30	866	-	35.4
	10	845	-	24.7
	150	665	665	52.5
	30	715	715	38.9
	10	576	576	35.0
10	150	453	49.9	61.5
	30	432	47.5	43.1
	10	221	24.3	45.5

$R_{S D}=7.5 \mathrm{k}, \mathrm{I}_{\mathrm{S}}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$-3 \mathbf{d B} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	150	562	562	39.7
	30	619	619	28.9
	10	604	604	20.5
1	150	634	-	41.9
	30	681	-	29.7
	10	649	-	20.7
2	150	576	576	40.2
	30	604	604	29.6
	10	576	576	21.6
10	150	324	35.7	39.5
	30	324	35.7	32.3
	10	210	23.2	27.7

$\mathrm{R}_{\mathrm{SD}}=47.5 \mathrm{k}, \mathrm{I}_{\mathrm{S}}=18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{3 d B} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	150	619	619	47.8
	30	698	698	32.3
	10	698	698	22.2
1	150	732	-	51.4
	30	806	-	33.9
	10	768	-	22.5
2	150	634	634	48.4
	30	698	698	33.0
	10	681	681	22.5
10	150	348	38.3	46.8
	30	357	39.2	36.7
	10	205	22.6	31.3

LT1210X DICE/DWF

SMALL-SIGNAL BANDUIDTH

$\mathrm{R}_{\mathrm{SD}}=15 \mathrm{k}, \mathrm{I}_{\mathrm{S}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{3 d B} \mathbf{~ B W}$ $\mathbf{(M H z)}$
-1	150	536	536	28.2
	30	549	549	20.0
	10	464	464	15.0
1	150	619	-	28.6
	30	634	-	19.8
	10	511	-	14.9
2	150	536	536	28.3
	30	549	549	19.9
	10	412	412	15.7
10	150	150	16.5	31.5
	30	118	13.0	27.1
	10	100	11.0	19.4

$\mathrm{R}_{\mathrm{SD}}=82.5 \mathrm{k}, \mathrm{I}_{\mathrm{S}}=9 \mathrm{~mA}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, Peaking $\leq 1 \mathrm{~dB}$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{3 d B} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	150	590	590	34.8
	30	649	649	22.5
	10	576	576	16.3
	150	715	-	35.5
	30	768	-	22.5
	10	649	-	16.1
	150	590	590	35.3
	30	665	665	22.5
	10	549	549	16.8
10	150	182	20.0	37.2
	30	182	20.0	28.9
	10	100	11.0	22.5

SIMPLIFIED SCHEmATIC

[^0]: IT, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

