

DICE SPECIFICATION

LT1220 45MHz, 250V/µs Operational Amplifier

PAD FUNCTION

1.	NULL
2.	-IN
3.	+IN
4.	V-
5.	NC
6.	VOUT
7.	V+
8	MELL I

DIE CROSS REFERENCE

Finished	Order
Part Number	Part Number
LT®1220	LT1220DICE

Please refer to ADI standard product data sheet for other applicable product information.

94mils × 72mils, 12mils thick. Backside metal: GOLD Backside potential: V⁻

All registered trademarks and trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS

(Note 1)	
----------	--

Total Supply Voltage (V ⁺ to V ⁻)	36V
Differential Input Voltage	±6V
Input Voltage	±V _S
Maximum Junction Temperature	150°Č
Storage Temperature Range	–65° to 150°C

DICE ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 2)		2	mV
I _{OS}	Input Offset Current			300	nA
I _B	Input Bias Current			300	nA

LT1220

DICE ELECTRICAL TEST LIMITS $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
R _{IN}	Input Resistance	$V_{CM} = \pm 12V$	20		MΩ
V _{CM}	Input Voltage Range (Positive) Input Voltage Range (Negative)	Measured by CMRR	12	-12	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12V$	92		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 5 V$ to $\pm 15 V$	90		dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 10$ V, $R_L = 500\Omega$	20		V/mV
V _{OUT}	Output Swing	R _L = 500Ω	12		±V
I _{OUT}	Output Current	V _{OUT} = ±12V	24		mA
I _S	Supply Current			10.5	mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Input offset voltage is pulse tested and is exclusive of warm-up drift.

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.

I.D.No. 66-13-1220

