OBSOLETE:

FOR INFORMATION PURPOSES ONLY
Contact Linear Technology for Potential Replacement

500kHz Micropower DC/DC Converter for Flash Memory

features

- 60mA Output Current at 12 V from 3 V or 5 V Supply
- Shutdown to $9 \mu \mathrm{~A}$
- VPP VALID Comparator
- Up to 85\% Efficiency
- Switching Frequency: 500 kHz (Typical)
- Quiescent Current: 650 3 A
- Low V CESAT Switch: 300 mV at 0.5A (Typical)
- Soft Start Reduces Supply Current Transients
- Uses Low Value, Small Size,

Surface Mount Inductors

- Available in 8-Lead SO Package

APPLICATIONS

- Flash Memory VPP Generators
- Type II and III PCMCIA Card DC/DC Converters
- 3V to 12V, 5 V to 12 V Converters
- Portable Computers and Instruments
- Cellular Telephones
- DC/DC Converter Module Replacements

DESCRIPTIOn

The $\mathrm{LT}{ }^{\oplus} 1309$ is a 500 kHz micropower DC/DC converter for Flash Memory. The regulator features Burst Mode ${ }^{\text {TM }}$ operation with a $0.5 \mathrm{~A}, 300 \mathrm{mV}$ switch, enabling 85% efficiency at the fixed 12 V output. High frequency operation permits the use of small value, and therefore small size, surface mount inductors and capacitors. The LT1309 comes in an 8-lead SO package allowing extremely compact PC board layouts. These features make the device attractive for PCMCIA cards, cellular phones and other applications where PC board space is limited.
Quiescent current is $650 \mu \mathrm{~A}$ decreasing to $9 \mu \mathrm{~A}$ when the part shuts down. The device includes a soft start feature which limits supply current transients during turn-on.
The LT1309 contains a VPP VALID comparator with a logic output that goes low when the output voltage is ready to program 12V Flash Memory. This comparator simplifies the interface to external control logic.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

12V, 60mA Flash Memory Programming Supply

12V Output Efficiency

absOLUTE maximum ratings

$V_{\text {CC }}$ Voltage
$7 V$
$V_{\text {Sw }}$ Voltage 20 V
$V_{\text {SENSE }}$ Voltage 20 V
$V_{\text {ON/OFF }}$ Voltage $7 V$
$V_{\text {SEL }}$ Voltage $7 V$
luim Voltage $7 V$
Maximum Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

\qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 v, \mathrm{~V}_{\text {oworf }}=3 \mathrm{v}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Quiescent Current	$V_{\text {SENSE }}=12 \mathrm{~V}$			650	900	$\mu \mathrm{A}$
	Quiescent Current, Shutdown	$V_{\text {ON/ } / \overline{\text { FF }}}=0.2 \mathrm{~V}$			9	15	$\mu \mathrm{A}$
	Input Voltage Range			2		6	V
	Output Sense Voltage		\bullet	11.5	12	12.6	V
	Output Referred Comparator Hysteresis			35			mV
fosc	Oscillator Frequency	Current Limit Not Asserted		400	500	700	kHz
DC	Maximum Duty Cycle		\bullet	80	85	92	\%
t_{ON}	Switch ON Time			1.7			$\mu \mathrm{S}$
	Reference Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$			0.06	0.15	\%/V
$\mathrm{V}_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$			230	350	mV
	Switch Leakage Current	$V_{S W}=12 \mathrm{~V}$, Switch Off			0.1	10	$\mu \mathrm{A}$
	Switch Current Limit	$V_{I N}=5 \mathrm{~V}$, Soft Start Floating $V_{\text {IN }}=3 V$, Soft Start Floating		$\begin{aligned} & 400 \\ & 450 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\begin{aligned} & 900 \\ & 950 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Soft Start Current	Soft Start Grounded			80	120	$\mu \mathrm{A}$
	ON/ $\overline{\text { OFF }}$ Input Voltage Low					0.8	V
	ON/ $\overline{\text { FF }}$ Input Voltage High			1.6			V
	ON/ $\overline{\text { PFF }}$ Bias Current	$\begin{aligned} & V_{\text {ON } / \overline{O F F}}=5 \mathrm{~V} \\ & V_{\text {ON } / \overline{O F F}}=3 \mathrm{~V} \\ & V_{\text {ON } / \overline{O F F}}=0 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 16.0 \\ 8.0 \\ 0.1 \end{array}$	$\begin{array}{r} 24.0 \\ 14.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Sense Pin Input Current	$V_{\text {ON/ } / \overline{\text { FF }}}=0.2 \mathrm{~V}$			$\begin{array}{r} 50.0 \\ 0.1 \\ \hline \end{array}$	$\begin{gathered} 90 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\overline{\text { VPP VALID }}$ Threshold	$\mathrm{V}_{\text {SENSE }}$ Rising (High to Low Transition)		$\mathrm{V}_{\text {SENSE }}-200 \mathrm{mV}$			
	$\overline{\text { VPP VALID }}$ Output Voltage Low	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.13	0.3	V
	VPP VALID Output Voltage High	$\mathrm{I}_{\text {SOURCE }}=2.5 \mu \mathrm{~A}$		4	4.5		V

The denotes specifications which apply over the full operating temperature range.

TYPICAL PERFORMANCE CHARACTERISTICS

1309 G04

1309 G05

TYPICAL PERFORMAOCE CHARACTERISTICS

PIn functions

SOFT START (Pin 1): A $0.1 \mu \mathrm{~F} / 1 \mathrm{M} \Omega$ parallel RC from this pin to GND provides a Soft Start function upon device turn-on. Initially about $80 \mu A$ will flow from the pin into the capacitor. When the voltage at the pin reaches approximately 0.4 V , current ceases flowing out of the pin.
$V_{\text {CC }}$ (Pin 2): Input Supply. At least $1 \mu \mathrm{~F}$ input bypass capacitance is required. More capacitance reduces ringing on the supply line.
PGND (Pin 3): Power Ground. Connect to ground plane.
$V_{\text {SW }}$ (Pin 4): Collector of Power Switch. High dV/dt present on this pin. To minimize radiated noise keep layout short and direct.

GND (Pin 5): Signal Ground. Connect to ground plane.
VPP VALID (Pin 6): This pin provides a logic signal indicating that output voltage has reached 12V. Active low with internal 200k pull-up resistor.
SENSE (Pin 7): Output Sense Pin. This pin connects to a resistive divider that sets the output voltage. In shutdown, the resistor string is disconnected and current into this pin reduces to $<1 \mu \mathrm{~A}$.
ON/DFF (Pin 8): Shutdown Control. When pulled below 1.5 V , this pin disables the LT1309 and reduces supply current to $9 \mu \mathrm{~A}$. All circuitry is disabled in shutdown. The part is enabled when ON/OFF is greater than 1.5 V .

BLOCK DIAGRAM

OPERATION

The LT1309 is a current limited, Burst Mode (gated oscillator) type switching regulator that produces a 12 V output from a 3.3 V or 5 V input. Operation can best be understood by referring to the Block Diagram. When the voltage at the Sense pin (Pin 7) is less than 12V, comparator C1 enables the oscillator, turning switches Q1 and Q2 on. The switch turns off when current limit is reached or when the oscillator maximum on-time is reached. When

Q2 turns off, current built up in the inductor flows into the output capacitor and load. This action occurs until the output voltage reaches 12V. During start-up, the Sense pin voltage is either 3.3 V or 5 V , depending on the input. The VPP VALID signal remains high until the output voltage reaches 12 V , signaling correct voltage level to program flash memory. Connecting a $1 \mu \mathrm{~F} / 0.1 \mu \mathrm{~F}$ parallel RC to the Soft Start pin limits inrush current during start-up.

APPLICATIONS Information

Inductor Selection

The low inductance value required with the LT1309 (10 $\mu \mathrm{H})$ allows the use of very small units such as the Murata-Erie LQH3C100. Requirements for the inductor include low DCR, ability to perform efficiently at 500 kHz and a saturation current rating of 700 mA to 900 mA . Often inductor manufacturers rate maximum current for a small inductor based on self-heating considerations. For use in switching regulators where the inductor current is not constant the maximum specified DC current can be safely exceeded.

Capacitor Selection

The LT1309 needs very little input and output capacitance to function. Output capacitance should be $1 \mu \mathrm{~F}$ or $2 \mu \mathrm{~F}$ for acceptable output ripple voltage. Flash memory tolerates higher ripple voltage than might be suitable for a low noise system. The capacitor can be either a single high capacitance ceramic unit such as Tokin 1E105ZY5U-203 or Murata-Erie GRM230Y5V105Z016, or can be distributed as 10 to $200.1 \mu \mathrm{~F}$ ceramic units. Lower ripple can be
obtained by increasing the capacitance to the $5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ level. $2 \mu \mathrm{~F}$ to $5 \mu \mathrm{~F}$ of tantalum (low-Q) capacitance is recommended on the input side to reduce resonance effects which can otherwise cause hundreds of millivolts of ripple voltage at the input.

Diode Selection

The LT1309's high switching speed demands a high speed rectifier. Schottky diodes are preferred for their low forward drop and fast recovery. A suitable choice is the Motorola MBR0520. This is a $0.5 \mathrm{~A}, 20 \mathrm{~V}$ Schottky in a very small package that is 1.35 mm high.

PC Board Layout

The component placement shown in Figure 1 is recommended for PC board layouts. The high speed current paths are kept to a minimum distance and the switch node copper is minimized to keep radiated noise low. Notice the placement of the input decoupling capacitor next to the IC. This is necessary for best performance.

Figure 1. LT1309 Recommended Layout

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH

SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1106	Micropower Step-Up DC/DC Converter, 12V at 60mA	Thin TSSOP Package for Type I PCMCIA Card
LT1109-12	Micropower Step-Up DC/DC Converter, 12V at 60mA	Flash Memory VPP Generator, Adjustable Also
LT1109A-12	Micropower Step-Up DC/DC Converter, 12V at 120mA	VPP Generator, Adjustable Also
LTC ${ }^{\circledR} 1262$	Inductorless Flash Memory Programming Supply, 12V at 30mA	Switched Capacitor Converter, No Inductor
LT1303	Micropower High Efficiency DC/DC Converter with Low-Battery Detector	Adjustable and Fixed 5V, Iout up to 200mA

