$\Delta 7$ Inere
 > DESIGN NOTTES

 DESIGN

 DESIGN NOTES

 NOTES}

250kHz, 1mA IQ Constant Frequency Switcher Tames Portable Systems Power - Design Note 108

Bob Essaff

DC-to-DC power conversion remains one of the toughest tasks for portable system designers. Dealing with various battery technologies and output voltage requirements dictate the need for creative circuit solutions. The two circuits discussed are tailored for operation from a single lithium-ion (Li-lon) cell. These new batteries are finding widespread use due to their high energy storage capabilities. The first circuit has a 3.3 V output and the second circuit has both 5 V and -5 V outputs for applications requiring dual supplies.
At the heart of each circuit is the LT ${ }^{\circledR 1} 1373$ current mode switching regulator. Guaranteed to operate down to 2.7V, this part allows the full energy storage capacity of a single Li-lon battery to be used. The LT1373 draws only 1 mA of quiescent current for high efficiency at light loads and has a low resistance 1.5 A switch for good efficiency at higher loads. Switching at 250 kHz saves space by reducing the size of the magnetics, and the fixed-frequency switching also reduces the noise spectrum generated. To avoid sensitive system frequencies the part can be externally synchronized to a specific frequency from 300 kHz to 360 kHz . The LT1373 can also be shut down where it draws only $12 \mu \mathrm{~A}$ supply current.

3.3V SEPIC Converter

Generating a 3.3 V output from a single Li-lon cell is not straight forward because at full charge the battery voltage is above the outputvoltage and when discharged,
the battery voltage is below the output voltage. A conventional buck or boost regulator topology will not work. The circuit in Figure 1 uses the SEPIC (singleended primary inductance converter) topology which allows the input voltage to be higher or lower than the output voltage. The circuit's two inductors, L1A and L1B, are actually two identical windings on the same inductor core, though two individual inductors can be used. The topology is essentially identical to a $1: 1$ transformer-flyback circuit except for the addition of capacitor C 2 which forces identical AC voltages across both windings. This capacitor performs three tasks. First, it eliminates the power loss and spikes created by flyback-converter leakage inductance. Secondly, it forces the input current to be a triangular waveform riding on top of a DC component instead of forming a large amplitude square wave. Finally, it eliminates the voltage spike across the output diode when the switch turns on. Another feature of the SEPIC topology is that, unlike a typical boost converter, there is no DC path from the input to the output. This means that when the LT1373 is shut down, the load is completely disconnected from the input power source. Figure 2 shows that the 3.3V SEPIC converter maintains reasonable efficiency over two decades of output load current even though 3.3 V circuits typically have low efficiency due to catch diode losses.
GT, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks
of Linear Technology Corporation. All other trademarks are the property of their respective owners.

C1, C3: AVX TPSD 107M010R0100
C2: TOKIN 1E225ZY5U-C203-F
L1: COILTRONICS CTX33-2, SINGLE INDUCTOR WITH TWO WINDINGS

Figure 1. Single Li-Ion Cell to 3.3V SEPIC Converter

Figure 2. 3.3V Efficiency

Dual Output Converter

Many portable systems still require a negative bias voltage to operate interface or other circuitry, where the voltage accuracy is not critical. Using a single inductor, the circuit in Figure 3 generates a regulated 5 V output and a quasi-regulated - 5 V output for such applications. The circuitfirstconverts a single Li-lon cell inputvoltage to a well-regulated 5 V output. It then takes advantage of the switching waveform on the $\mathrm{V}_{\text {Sw }}$ pin to generate the -5 V output in a charge pump fashion. The voltage on the $\mathrm{V}_{\text {Sw }}$ pin is 5 V plus D1's forward voltage when $\mathrm{V}_{\text {Sw }}$ is high. At this time, C 3 charges to the $\mathrm{V}_{\text {SW }}$ voltage minus D2's forward voltage or about 5 V . When the $\mathrm{V}_{S W}$ pin goes low, the minus side of C 3 goes to -5 V which turns on D3 and charges C 5 to -5 V . This generates a

Figure 3. Single Li-Ion to $\pm 5 \mathrm{~V}$
-5 V supply which is only quasi-regulated due to diode drop and switch saturation losses. Figure 4 shows the regulation of the negative output for various positive output load currents. As shown in Figure 5, the dual output converter has high efficiency over two decades of load current.
For more information, please consult the LT1373 data sheet. For parts similar to the LT1373 with higher switching frequencies (500 kHz and 1 MHz), consult the LT1372/LT1377 data sheet.

Figure 4. -5V Regulation

Figure 5. Dual Output Efficiency

For applications help, call (408) 432-1900

