$10 \mathrm{MHz}, 6 \mathrm{~V} / \mu \mathrm{s}$, Dual/Quad Rail-†o-Rail Input and Output Precision C-Load Op Amps

PAD FUNCTION

1. OUTA
2. -INA
3. +INA
4. V^{-}
5. +INB
6. -INB
7. OUTB
8. V^{+}
9. V^{+}
$117 \mathrm{mils} \times 82 \mathrm{mils}$,
12 mils thick.
Connect Backside to V^{+}
$117 \mathrm{mils} \times 82 \mathrm{mils}$,
12 mils thick.
Connect Backside to V^{+}

LT1498 Die Pad Coordinates and Pad Opening Info Center of Die: 0,0 Coordinates

PAD NUMBER	PAD NAME	X-COORDINATE $(\boldsymbol{\mu m})$	Y-COORDINATE $(\boldsymbol{\mu \mathrm { m })}$	X-COORDINATE $(\mathbf{M i I})$	Y-COORDINATE $($ Mil $)$	PAD OPENING $(\boldsymbol{\mu m})$	PAD FUNCTION
1	OUTA	-1339.50	-895.0	-52.74	-35.24	105×105	OutPut
2	-INA	-248.50	-895.00	-9.78	-35.24	105×105	Input
3	+INA	461.00	-895.00	18.15	-35.24	105×105	Input
4	V	1399.00	0.00	55.08	0.00	105×105	Supply
5	+INB	461.00	895.00	18.15	35.24	105×105	Input
6	- INB	-248.50	895.00	-9.78	35.24	105×105	Input
7	OUTB	-1339.5	895.00	-52.74	35.24	105×105	Output
8	$\mathrm{~V}^{+}$	-1339.5	0.00	-52.74	0.00	105×105	Supply
9	$\mathrm{~V}^{+}$	652.50	0.00	25.69	0.00	105×105	Supply

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-})36V Input Current.. $\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration (Note 2) \qquad Continuous

LT1498 DICE\#MILDICE DICE SPECIFICATION

LT1498

DICE/DWF ELECTRICAL TEST LIMITS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}=5 v, 0 v ; v_{S}=3 v, 0 v ; v_{\mathrm{cm}}=v_{\text {Our }}=$ hall supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V_{0}	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\underline{\Delta V_{0 S}}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		425	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-toChannel) (Note 3)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}, \mathrm{V}^{-}$		750	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{gathered} 0 \\ -650 \end{gathered}$	$\begin{gathered} 650 \\ 0 \end{gathered}$	nA nA
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}		1300	nA
	Input Bias Current Match (Channel-toChannel) (Note 3)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{gathered} 0 \\ -100 \end{gathered}$	$\begin{gathered} 100 \\ 0 \end{gathered}$	nA nA
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & \hline 65 \\ & 65 \end{aligned}$	nA nA
${ }^{\Delta} \mathrm{l}$ O	Input Offset Current Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}		130	nA
AvoL	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=5 V, V_{0}=75 \mathrm{mV} \text { to } 4.8 V, R_{L}=10 \mathrm{k} \\ & V_{S}=3 V, V_{0}=75 \mathrm{mV} \text { to } 2.8 V, R_{L}=10 \mathrm{k} \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\begin{aligned} & 81 \\ & 76 \\ & \hline \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 3)	$\begin{aligned} & V_{S}=5 V, V_{C M}=V^{-} \text {to } V^{+} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \\ & \hline \end{aligned}$		dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.2 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	88		dB
	PSRR Match (Channel-to-Channel) (Note 3)	$\mathrm{V}_{S}=2.2 \mathrm{~V}$ to 12V, $\mathrm{V}_{\text {CM }}=\mathrm{V}_{0}=0.5 \mathrm{~V}$	82		dB
$V_{0 L}$	Output Voltage Swing (Low) (Note 4)	No Load $\mathrm{I}_{\mathrm{IINK}}=0.5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA}$		$\begin{aligned} & 30 \\ & 70 \\ & 200 \\ & \hline \end{aligned}$	mV mV mV
$\mathrm{V}_{\text {OH }}$	Output Voltage Swing (High) (Note 4)	$\begin{aligned} & \begin{array}{l} \text { No Load } \\ \text { ISounce }=0.5 \mathrm{~mA} \\ \text { ISOURCE }=2.5 \mathrm{~mA} \end{array} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 10 \\ 100 \\ 250 \end{gathered}$	mV mV mV
Isc	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 12 . \\ & \pm 12 . \end{aligned}$		$\mathrm{mA}_{\text {mA }}$
Is	Supply Current per Amplifier			2.2	mA
GBW	Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	6.8		MHz

DICE/DUF ELECTRICAL TEST LIMITS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{v}_{\text {OUT }}=\mathrm{OV}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\triangle \mathrm{V}_{0 \mathrm{~S}}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		650	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-toChannel) (Note 3)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{+}, \mathrm{V}^{-}$		1400	$\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{gathered} 0 \\ -715 \end{gathered}$	$\begin{gathered} 715 \\ 0 \end{gathered}$	nA
Δ	Input Bias Current Shift	$V_{\text {CM }}=V^{-}$to V^{+}		1430	nA
	Input Bias Current Match (Channel-toChannel) (Note 3)	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{gathered} 0 \\ -120 \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 0 \\ \hline \end{gathered}$	nA
$\overline{\mathrm{l}}$	Input Offset Current	$\begin{aligned} & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	nA nA
$\overline{\Delta l_{0 S}}$	Input Offset Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		140	nA
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.5 \mathrm{~V} \text { to } 14.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & 1000 \\ & 500 \end{aligned}$		V / mV V / mV
	Channel Separation	$\mathrm{V}_{0}=-10 \mathrm{~V}$ to 10V, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	116		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	93		dB
	CMRR Match (Channel-to-Channel) (Note 3)	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	87		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	89		dB
	PSRR Match (Channel-to-Channel) (Note 3)	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	83		dB
$\overline{\mathrm{V} \text { OL }}$	Output Voltage Swing (Low) (Note 4)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 30 \\ 80 \\ 500 \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing (High) (Note 4)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=10 \mathrm{~mA} \\ \hline \end{array}$		$\begin{gathered} \hline 10 \\ 120 \\ 800 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 15		mA
IS	Supply Current per Amplifier			2.5	mA
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$	3.5		$\mathrm{V} / \mathrm{\mu s}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 3: Matching parameters are the difference between the two amplifiers on the LT1498DICE.
Note 4: Output voltage swings are measured between the output and power supply rails.

LT1498 DICE\#MILDICE DICE SPECIFICATION

LT1498

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.
Dice data sheet subject to change. Please consult factory for current revision in production.

