

### LT1498

10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps



| PAD FUNCTIO | Ν |
|-------------|---|
|-------------|---|



All registered trademarks and trademarks are the property of their respective owners.

| PAD<br>Number | PAD<br>NAME | X-COORDINATE<br>(µm) | Y-COORDINATE<br>(µm) | X-COORDINATE<br>(Mil) | Y-COORDINATE<br>(Mil) | PAD OPENING<br>(µm) | PAD<br>Function |
|---------------|-------------|----------------------|----------------------|-----------------------|-----------------------|---------------------|-----------------|
| 1             | OUTA        | -1339.50             | -895.0               | -52.74                | -35.24                | 105x105             | OutPut          |
| 2             | -INA        | -248.50              | -895.00              | -9.78                 | -35.24                | 105x105             | Input           |
| 3             | +INA        | 461.00               | -895.00              | 18.15                 | -35.24                | 105x105             | Input           |
| 4             | V-          | 1399.00              | 0.00                 | 55.08                 | 0.00                  | 105x105             | Supply          |
| 5             | +INB        | 461.00               | 895.00               | 18.15                 | 35.24                 | 105x105             | Input           |
| 6             | -INB        | -248.50              | 895.00               | -9.78                 | 35.24                 | 105x105             | Input           |
| 7             | OUTB        | -1339.5              | 895.00               | -52.74                | 35.24                 | 105x105             | Output          |
| 8             | V+          | -1339.5              | 0.00                 | -52.74                | 0.00                  | 105x105             | Supply          |
| 9             | V+          | 652.50               | 0.00                 | 25.69                 | 0.00                  | 105x105             | Supply          |

#### LT1498 Die Pad Coordinates and Pad Opening Info Center of Die: 0,0 Coordinates

## ABSOLUTE MAXIMUM RATINGS

(Note 1)

| Total Supply Voltage (V <sup>+</sup> to V <sup>-</sup> ) | 36V          |
|----------------------------------------------------------|--------------|
| Input Current                                            | ±10mA        |
| <b>Output Short-Circuit Duration (Note 2</b>             | ) Continuous |

| Junction Temperature             | .150°C  |
|----------------------------------|---------|
| Storage Temperature Range65°C to | ) 150°C |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

### LT1498

# **DICE/DWF ELECTRICAL TEST LIMITS** $T_A = 25^{\circ}C$ , $V_S = 5V$ , 0V; $V_S = 3V$ , 0V; $V_{CM} = V_{OUT} =$ half supply, unless otherwise noted.

| SYMBOL           | PARAMETER                                                    | CONDITIONS                                                                                             | MIN            | MAX              | UNITS          |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|------------------|----------------|
| V <sub>OS</sub>  | Input Offset Voltage                                         | $V_{CM} = V^+$<br>$V_{CM} = V^-$                                                                       |                | 475<br>475       | μV<br>μV       |
| ΔV <sub>OS</sub> | Input Offset Voltage Shift                                   | $V_{CM} = V^- \text{ to } V^+$                                                                         |                | 425              | <br>μV         |
|                  | Input Offset Voltage Match (Channel-to-<br>Channel) (Note 3) | $V_{CM} = V^+, V^-$                                                                                    |                | 750              | μV             |
| IB               | Input Bias Current                                           |                                                                                                        | 0<br>650       | 650<br>0         | nA<br>nA       |
| $\Delta I_B$     | Input Bias Current Shift                                     | $V_{CM} = V^-$ to $V^+$                                                                                |                | 1300             | nA             |
|                  | Input Bias Current Match (Channel-to-<br>Channel) (Note 3)   |                                                                                                        | 0<br>-100      | 100<br>0         | nA<br>nA       |
| I <sub>OS</sub>  | Input Offset Current                                         |                                                                                                        |                | 65<br>65         | nA<br>nA       |
| Δl <sub>OS</sub> | Input Offset Current Shift                                   | $V_{CM} = V^-$ to V+                                                                                   |                | 130              | nA             |
| A <sub>VOL</sub> | Large-Signal Voltage Gain                                    | $V_{S} = 5V, V_{0} = 75mV$ to 4.8V, $R_{L} = 10k$<br>$V_{S} = 3V, V_{0} = 75mV$ to 2.8V, $R_{L} = 10k$ | 600<br>500     |                  | V/mV<br>V/mV   |
| CMRR             | Common Mode Rejection Ratio                                  | $V_{S} = 5V, V_{CM} = V^{-} \text{ to } V^{+}$<br>$V_{S} = 3V, V_{CM} = V^{-} \text{ to } V^{+}$       | 81<br>76       |                  | dB<br>dB       |
|                  | CMRR Match (Channel-to-Channel)<br>(Note 3)                  | $V_{S} = 5V, V_{CM} = V^{-} \text{ to } V^{+}$<br>$V_{S} = 3V, V_{CM} = V^{-} \text{ to } V^{+}$       | 75<br>70       |                  | dB<br>dB       |
| PSRR             | Power Supply Rejection Ratio                                 | $V_{\rm S}$ = 2.2V to 12V, $V_{\rm CM}$ = $V_{\rm O}$ = 0.5V                                           | 88             |                  | dB             |
|                  | PSRR Match (Channel-to-Channel)<br>(Note 3)                  | $V_{\rm S}$ = 2.2V to 12V, $V_{\rm CM}$ = $V_{\rm O}$ = 0.5V                                           | 82             |                  | dB             |
| V <sub>OL</sub>  | Output Voltage Swing (Low) (Note 4)                          | No Load<br>I <sub>SINK</sub> = 0.5mA<br>I <sub>SINK</sub> = 2.5mA                                      |                | 30<br>70<br>200  | mV<br>mV<br>mV |
| V <sub>OH</sub>  | Output Voltage Swing (High) (Note 4)                         | No Load<br>I <sub>SOURCE</sub> = 0.5mA<br>I <sub>SOURCE</sub> = 2.5mA                                  |                | 10<br>100<br>250 | mV<br>mV<br>mV |
| I <sub>SC</sub>  | Short-Circuit Current                                        | $V_{S} = 5V$ $V_{S} = 3V$                                                                              | ±12.5<br>±12.0 |                  | mA<br>mA       |
| I <sub>S</sub>   | Supply Current per Amplifier                                 |                                                                                                        |                | 2.2              | mA             |
| GBW              | Gain-Bandwidth Product                                       | V <sub>S</sub> = 5V                                                                                    | 6.8            |                  | MHz            |

### LT1498

# **DICE/DWF ELECTRICAL TEST LIMITS** $T_A = 25^{\circ}C$ , $V_S = \pm 15V$ , $V_{CM} = 0V$ , $V_{OUT} = 0V$ , unless otherwise noted.

| SYMBOL           | PARAMETER                                                    | CONDITIONS                                                               | MIN         | MAX              | UNITS          |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-------------|------------------|----------------|
| V <sub>OS</sub>  | Input Offset Voltage                                         | V <sub>CM</sub> = V <sup>+</sup><br>V <sub>CM</sub> = V <sup>-</sup>     |             | 800<br>800       | μV<br>μV       |
| ΔV <sub>OS</sub> | Input Offset Voltage Shift                                   | $V_{CM} = V^- \text{ to } V^+$                                           |             | 650              | μV             |
|                  | Input Offset Voltage Match (Channel-to-<br>Channel) (Note 3) | V <sub>CM</sub> = V <sup>+</sup> , V <sup>-</sup>                        |             | 1400             | μV             |
| I <sub>B</sub>   | Input Bias Current                                           | $V_{CM} = V^+$ $V_{CM} = V^-$                                            | 0<br>715    | 715<br>0         | nA<br>nA       |
| ΔI <sub>B</sub>  | Input Bias Current Shift                                     | $V_{CM} = V^- \text{ to } V^+$                                           |             | 1430             | nA             |
|                  | Input Bias Current Match (Channel-to-<br>Channel) (Note 3)   | $V_{CM} = V^+$ $V_{CM} = V^-$                                            | 0<br>–120   | 120<br>0         | nA<br>nA       |
| I <sub>OS</sub>  | Input Offset Current                                         | $V_{CM} = V^+$ $V_{CM} = V^-$                                            |             | 70<br>70         | nA<br>nA       |
| $\Delta I_{OS}$  | Input Offset Current Shift                                   | $V_{CM} = V^- \text{ to } V^+$                                           |             | 140              | nA             |
| A <sub>VOL</sub> | Large-Signal Voltage Gain                                    | $V_0 = -14.5V$ to 14.5V, $R_L = 10k$<br>$V_0 = -10V$ to 10V, $R_L = 2k$  | 1000<br>500 |                  | V/mV<br>V/mV   |
|                  | Channel Separation                                           | $V_0 = -10V$ to 10V, $R_L = 2k$                                          | 116         |                  | dB             |
| CMRR             | Common Mode Rejection Ratio                                  | $V_{CM} = V^- \text{ to } V^+$                                           | 93          |                  | dB             |
|                  | CMRR Match (Channel-to-Channel)<br>(Note 3)                  | $V_{CM} = V^- \text{ to } V^+$                                           | 87          |                  | dB             |
| PSRR             | Power Supply Rejection Ratio                                 | $V_{\rm S} = \pm 5 V$ to $\pm 15 V$                                      | 89          |                  | dB             |
|                  | PSRR Match (Channel-to-Channel)<br>(Note 3)                  | $V_{\rm S} = \pm 5V$ to $\pm 15V$                                        | 83          |                  | dB             |
| V <sub>OL</sub>  | Output Voltage Swing (Low) (Note 4)                          | No Load<br>I <sub>SINK</sub> = 0.5mA<br>I <sub>SINK</sub> = 10mA         |             | 30<br>80<br>500  | mV<br>mV<br>mV |
| V <sub>OH</sub>  | Output Voltage Swing (High) (Note 4)                         | No Load<br>I <sub>SOURCE</sub> = 0.5mA<br>I <sub>SOURCE</sub> = 10mA     |             | 10<br>120<br>800 | mV<br>mV<br>mV |
| I <sub>SC</sub>  | Short-Circuit Current                                        |                                                                          | ±15         |                  | mA             |
| I <sub>S</sub>   | Supply Current per Amplifier                                 |                                                                          |             | 2.5              | mA             |
| SR               | Slew Rate                                                    | $A_V = -1$ , $R_L = Open$ , $V_0 = \pm 10V$<br>Measure at $V_0 = \pm 5V$ | 3.5         |                  | V/µs           |

**Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

**Note 2:** A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

**Note 3:** Matching parameters are the difference between the two amplifiers on the LT1498DICE.

**Note 4:** Output voltage swings are measured between the output and power supply rails.

LT1498

Wafer level testing is performed per the indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.

Dice data sheet subject to change. Please consult factory for current revision in production.

I.D.No. 66-13-1498



