OBSOLETE:

FOR INFORMATION PURPOSES ONLY
Contact Linear Technology for Potential Replacement

feATURES

- Complete Solution Under 1.2 mm
- Develops Three Outputs from a 3.3V or 5V Supply
- Externally Programmable VON Delay
- Fixed Frequency Low Noise Outputs
- All Ceramic Capacitors
- Operates at 3MHz Switching Frequency
- Fast Transient Response
- Few External Components Required
- 2.6 V to 6 V Input Range
- Tiny 8-Lead MSOP Package

APPLICATIONS

- TFT-LCD Notebook Display Panels
- TFT-LCD Desktop Monitor Display Panels
- Digital Cameras
- Handheld Computers

DESCRIPTIOn

The LT ${ }^{\circledR} 1948$ is a highly integrated multiple output DC/DC converter designed for use in TFT-LCD panels. The device contains two independent switching regulators: the main regulator has an adjustable output voltage with an internal 1.1A switch that can generate a boosted voltage as high as 30 V while the second regulator generates 23 V at up to 10 mA for positive bias. A simple level-shift charge pump off the main switch node generates the negative bias voltage. An external capacitor sets the delay time from $A V_{D D}$ reaching final value to 23 V appearing at the V_{ON} pin. The 3 MHz switching frequency allows the use of tiny low profile chip inductors and capacitors throughout, providing a low noise, low cost total solution with all components under 1.25 mm in height. The device operates from an input range of 2.6 V to 6 V and is available in an 8 -lead MSOP package.
$\overline{\mathbf{\wedge}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. 3.3V Powered TFT-LCD Bias Generator

ABSOLUTE MAXIMUM RATINGS

(Note 1)
VIN Voltage .. 8 V
CT Voltage.. 6V
SW1, SW2 Voltage ... 36V
FB Voltage ... 3V
VON, VO2 Voltage .. 30V
Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT1948EMS8
	MS8 PART MARKING
	LTNR

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS
The © denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ unless otherwise specified.

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current	Not Switching			7	13	mA
Reference Voltage				1.26		V
Reference Line Reg	$2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<8 \mathrm{~V}$			0.01		\%/V
$\mathrm{C}_{\text {T }}$ Source Current	$\mathrm{V}_{\mathrm{FB} 1}=1.3 \mathrm{~V}$		4.5	5.5	6.5	$\mu \mathrm{A}$
$\mathrm{C}_{\text {T Voltage to Turn On Q3 }}$			1.25	1.28	1.30	V
FB1 Voltage to Begin $\mathrm{C}_{\text {T }}$ Charge			1.17	1.20	1.23	V
SW1 Current Limit	(Note 3)		1.2	1.5		A
SW2 Current Limit	(Note 3)		0.5	0.8		A
SW1 Saturation Voltage	$\mathrm{I}_{\text {SW } 1}=800 \mathrm{~mA}$			350	410	mV
SW2 Saturation Voltage	$\mathrm{I}_{\text {SW } 2}=300 \mathrm{~mA}$			250	300	mV
Oscillator Frequency		\bullet	2.4	3.2	3.6	MHz
Maximum Duty Cycle	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 70 \\ & 69 \\ & 67 \end{aligned}$	75	90	\% \% $\%$
V02 Pin Resistance	Measured to Ground			400		k Ω
SW1, SW2 Error Amp Gain				100		V/V
SW1, SW2 Error Amp Gm				50		$\mu \mathrm{A} / \mathrm{V}$
FB1 Regulation Voltage		\bullet	$\begin{aligned} & 1.240 \\ & 1.230 \end{aligned}$	1.260	$\begin{aligned} & 1.280 \\ & 1.285 \end{aligned}$	V
FB1 Line Regulation	$2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<8 \mathrm{~V}$			0.01	0.05	
V02 Regulation Voltage			22	23	24	V
$\mathrm{V}_{\text {ON }}$ Switch Drop	V02 $=25 \mathrm{~V}, 7 \mathrm{~mA}$ Load from $\mathrm{V}_{\text {ON }}, \mathrm{C}_{\mathrm{T}}$ Voltage $>1.30 \mathrm{~V}$			200	260	mV
SW1 Leakage Current	Switch Off, SW1 Voltage $=3.3 \mathrm{~V}$			0.01	5	$\mu \mathrm{A}$
SW2 Leakage Current	Switch Off, SW2 Voltage $=3.3 \mathrm{~V}$			0.01	2	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1948 is guaranteed to meet performance specifications
from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating
temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: Current limit guaranteed by design and/or correlation to static test.

PIn functions

FB1 (Pin 1): Feedback Pin for First Switcher. Connect resistor divider tap here. Set $A V_{D D}$ according to $A V_{D D}=$ $1.26 \mathrm{~V}(1+\mathrm{R} 1 / \mathrm{R} 2)$.
$\mathbf{C}_{\mathbf{T}}$ (Pin2): Timing Capacitor Pin. Connecta 22nF capacitor from C_{T} to ground to program a 3 ms delay from FB1 reaching 1.26 V to $\mathrm{V}_{\text {ON }}$ turning on.

SW1 (Pin 3): AV ${ }_{\text {DD }}$ Switch Node. Connect inductor and D1 here (see Figure 1). Minimize trace area at this pin to keep EMI down.
GND (Pin 4): Ground. Connect directly to local ground plane.
$\mathrm{V}_{\text {IN }}$ (Pin 5): Input Supply Pin. Must be bypassed with a ceramic capacitor close to the pin.
SW2 (Pin 6): V02 Switch Node. Connect inductor and D2 here. Minimize trace area at this pin to keep EMI down.
V02 (Pin 7): Sense Pin for 23V Output. Connect to V02 output capacitor. This node is also internally connected to the emitter of Q3 (see Block Diagram), the high side switch between V02 and V_{ON}.
$\mathrm{V}_{\text {ON }}$ (Pin 8): This is the Delayed 23V Output. $\mathrm{V}_{\text {ON }}$ becomes 23 V after the internal timer times out.

operation

To best understand operation of the LT1948, please refer to the LT1948 Block Diagram. The device contains two switching regulators, a timer and a high side switch. Three outputs can be generated: an adjustable $A V_{D D}$ output, a charge-pumped inversion of the $\mathrm{AV}_{\mathrm{DD}}$ output, called $\mathrm{V}_{0 F F}$, and a $23 \mathrm{~V} / 15 \mathrm{~mA}$ output, called $\mathrm{V}_{\text {ON }}$. Q3 keeps $\mathrm{V}_{\text {ON }}$ off for an externally settime interval, set by a capacitor connected to the $\mathrm{C}_{\boldsymbol{T}}$ pin.

The switching frequency of both switchers is 3 MHz , set internally. The switchers are current mode and are internally compensated. The main $A V_{D D}$ switcher is current limited at 1.5 A , while the second V_{ON} switcher is limited to 800 mA . They share the same 1.26 V reference voltage.

When the input voltage is below approximately 2.4 V , an undervoltage lockout circuit disables switching.
When $A V_{D D}$ is less than its final voltage, $Q 4$ is turned on, holding the C_{T} pin at ground. When $A V_{D D}$ reaches final value, Q 4 lets go of the C_{\top} pin, allowing the $5.5 \mu \mathrm{~A}$ current source to charge the external capacitor, C_{T}. When the voltage on the C_{\top} pin reaches 1.25 V , Q3 turns on, connecting VO2 to $\mathrm{V}_{\text {ON }}$. Capacitor value can be calculated using the following formula:

$$
\mathrm{C}=\left(5.5 \mu \mathrm{~A} \bullet \mathrm{t}_{\mathrm{DELAY}}\right) / 1.25 \mathrm{~V}
$$

A 22 nF capacitor results in approximately 3 ms of delay.

Figure 2. Recommended Component Placement

BLOCK DIAGRAM

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1949	600kHz, 1A Switch PWM DC/DC Converter	10 V at 175 mA from 3.3V Input
LT1317	2-Cell Micropower DC/DC with Low-Battery Detect	3.3 V at 200 mA from 2-Cell Input
LT1308B	600 kHz Single Cell Step-Up Regulator	5 V at 1A from a 1-Cell Li-lon Battery
LT1615	Micropower Step-Up Regulator in SOT-23	20V at 12mA from 2.5V Input, 5-Lead SOT-23 Package
LT1930	1.2MHz, Step-Up Regulator in S0T-23	5 V at 480mA from 3.3V, 5-Lead S0T-23 Package

