
						R	EVISI	ONS														
LTR						DE	SCRIF	PTION						С	ATE (YR-M	D-DA)		Al	PPRO\	/ED	
																				4.75SI		
																		-	回数			
																					■	
•			vith A	SME \	Y14.2	4												 - 	l: k	r Item	Draw	ving
Revision Status			vith A	SME \	Y14.2	4			T		T								lendo	r Item	Draw	ving
Revision Status			vith A	SME \	Y14.2	4												 	Jendo	r Item	Draw	ving
Revision Status REV SHEET			vith A	SME \	Y14.2	4													/endo	r Item	Draw	ving
Prepared in ac Revision Status REV SHEET REV	s of She	eets					7	8	9	10	11	12	13	14	15	16		 	/endo	r Item	Draw	ving
Revision Status REV SHEET REV			3	4	5	6	7	8	9	10	11	12	13	14	15	16				r Item	Draw	ving
Revision Status REV SHEET REV SHEET	s of She	eets	3 F		5 ARE	6 D BY	1	8	9	10	11		DI	LA L	AND	ANI		ARIT	IME		Draw	ving
Revision Status REV SHEET REV SHEET	s of She	eets	3 F	4 PREP.	5 ARE	6 D BY	1	8	9	10	11		DI	LA L	AND BUS,	ANI	0 4	ARIT 3218	TIME 8-399	00		ving
Revision Status REV SHEET REV SHEET	s of She	eets 2	3 F	4 PREP.	5 ARE OFFI	6 D BY CER	1	8	9		11 TITLE	htt	DI	LA L	AND BUS,	ANI	0 4	ARIT 3218	IME	00		ving
Revision Status REV SHEET REV SHEET PMIC N/A Original drav	of She	eets 2	3 F	4 PREP RICK	5 ARE OFFI	6 D BY CER			9		TITLE MICR	<u>htt</u> ≣	DI COL ps://	LA L	AND BUS, v.dla	ANI OHI .mil/	O 4 land	ARIT 3218 land	IME 8-399 mari	00 time		ving
Revision Status REV SHEET REV SHEET PMIC N/A Original drav YY-MI	of She	eets 2	3 F	4 PREPARICK CHEC	5 AREI OFFI KED	6 D BY CER	ADIA		9		TITLE MICR ULTF	htt E ROCIF	DI COL ps://	LA LA LUME WWW T, LIN	AND BUS, v.dla IEAR LINE	ANI OHI .mil/	O 4 land	ARIT 3218 land	IME 8-399 mari	00 time		ving
Revision Status REV SHEET REV SHEET PMIC N/A Original drav	of She	eets 2	3 F	4 PREPARICK CHEC RAJE	5 ARE OFFI KED ESH I	6 D BY CER BY PITH	ADIA				TITLE MICR ULTF	htt E ROCIF	DI COL ps://	LA L	AND BUS, v.dla IEAR LINE	ANI OHI .mil/	O 4 land	ARIT 3218 land	IME 8-399 mari	00 time		ving
Revision Status REV SHEET REV SHEET PMIC N/A Original drav YY-M	of She	eets 2	3 F	4 PREP, RICK RAJE APPR JAME	5 ARE OFFI KED ESH I	6 D BY CER PITH, D BY	ADIA	EYER			TITLE MICR ULTR MON	htte	DI COL :ps:// RCUIT GH PS HIC S	LA LA LUME WWW T, LIN	AND BUS, v.dla IEAR LINE	ANI OHI .mil/	O 4 land	ARIT 3218 land	IME 8-399 mari	00 time		ving
Revision Status REV SHEET REV SHEET PMIC N/A Original drav YY-Mi	of She	eets 2	3 F	4 PREPARICK CHEC RAJE	5 ARE OFFI KED ESH I	6 D BY CER PITH, D BY	ADIA	EYER	DE		TITLE MICR ULTF	htte	DI COL :ps:// RCUIT GH PS HIC S	LA LA LUME (WWW T, LIN SRR I	AND BUS, v.dla IEAR LINE	ANI OHI .mil/ , 20 \ AR R	O 4 land /, UL EGU	ARIT 3218 land	IME 8-399 mari	00 time		ving

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 20 V, ultralow noise, ultrahigh power supply rejection ratio (PSRR) linear regulator microcircuit, with an operating temperature range of -55°C to +150°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device typeGenericCircuit function01LT3045-EP20 V, ultralow noise, ultrahigh PSRR
linear regulator

1.2.2 Case outline(s). The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
X	12	See figure 1	Plastic micro small outline package (MSOP)

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

<u>inish designator</u>	<u>Material</u>
Α	Hot solder dip
В	Tin-lead plate
С	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy (BGA/CGA)
Z	Other

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

1.4

IN pin voltage	. ±22 V
EN/UV pin voltage	
IN to EN/UV differential voltage	
PG pin voltage	
ILIM pin voltage	
PGFB pin voltage	0.3 V, 22 V <u>2</u> /
SET pin voltage	0.3 V, 16 V <u>2</u> /
SET pin current	
OUTS pin voltage	0.3 V, 16 V <u>2</u> /
OUTS pin current	
OUT pin voltage	
OUT to OUTS differential	
IN to OUT differential voltage	
IN to OUTS differential voltage	. ±22 V
Output short circuit duration	. Indefinte
Junction temperature range (T _J)	55°C to +150°C <u>5</u> /
Junction temperature (TJ)	. +150°C
Storage temperature range (TSTG)	65°C to +150°C
Lead temperature (soldering, 10 seconds)	
Thermal resistance, junction to case (θ JC)	. 8°C/W
Thermal resistance, junction to ambient (θ JA)	. 33°C/W
Recommended operating conditions. 6/	
Operating free-air temperature range (TA)	55°C to +150°C

^{6/} Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 3

Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2/} Parasitic diodes exist internally between the ILIM, PG, PGFB, SET, OUTS, and OUT pins and the GND pin. Do not drive these pins more than 0.3 V below the GND pin during a fault condition. These pins must remain at a voltage more positive than GND during normal operation.

 $[\]underline{3}$ / SET and OUTS pins are clamped using diodes and two 25 Ω series resistors. For less than 5 ms transients, this clamp circuitry can carry more than the rated current. Refer to device Applications Information for more information.

^{4/} Maximum OUT to OUTS differential is guaranteed by design.

^{5/} The device is tested and specified under pulsed load conditions such that TJ ≈ TA. High junction temperatures degrade operating lifetimes. Operating lifetime is derated at junction temperatures greater than 125°C.

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at https://www.jedec.org.)

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 4

TABLE I. Electrical performance characteristics. $\underline{1}/$

Test	Symbol	Conditions	Temperature, TA	Device type	Lim	nits	Unit
					Min	Max	
Input voltage range			-55°C to +150°C	01	2	20	V
Minimum IN pin <u>2</u> /		ILOAD = 500 mA, VIN UVLO rising	-55°C to +150°C	01		2	V
voltage					1.78	typical	
		VIN UVLO hysteresis	+25°C		75	typical	mV
Output voltage reference		VIN > VOUT	-55°C to +150°C	01	0	15	V
SET pin current	ISET	V _{IN} = 2 V, I _{LOAD} = 1 mA,	+25°C	01	99	101	μА
		V _{OUT} = 1.3 V			100	typical	
	2 V < V _{IN} < 20 V, 0 V < V _{OUT}	2 V < V _{IN} < 20 V, 0 V < V _{OUT} < 15 V,	-55°C to +150°C		98	102	-
		1 mA < ILOAD < 500 mA 3/			100	typical	
Fast start up set pin current		VPGFB = 289 mV, V _{IN} = 2.8 V, VSET = 1.3 V	+25°C	01	2	2 typical	mA
Output offset voltage (VOUT – VSET) 4/	Vos	V _{IN} = 2 V, I _{LOAD} = 1 mA, V _{OUT} = 1.3 V	+25°C	01	-1	1	mV
		2 V < V _{IN} < 20 V, 0 V < V _{OUT} < 15 V, 1 mA < I _{LOAD} < 500 mA <u>3</u> /	-55°C to +150°C		-2	2	
Line regulation	ΔISET	VIN = 2 V to 20 V, ILOAD = 1 mA,	-55°C to +150°C	01		±2	nA/V
		V _{OUT} = 1.3 V			0.5	typical	
	ΔVos	VIN = 2 V to 20 V, ILOAD = 1 mA,				±3	μV/V
		VOUT = 1.3 V <u>4</u> /			0.5	typical	
Load regulation	ΔISET	ILOAD = 1 mA to 500 mA, VIN = 2 V, VOUT = 1.3 V	+25°C	01	3	3 typical	nA
	ΔVos	ILOAD = 1 mA to 500 mA, VIN = 2 V,	-55°C to +150°C			0.5	mV
		VOUT = 1.3 V <u>4</u> /			0.1	typical	=
Change in ISET with		VSET = 1.3 V to 15 V, V _{IN} = 20 V,	-55°C to +150°C	01		400	nA
VSET		ILOAD = 1 mA			30	typical	1
Change in Vos with		VSET = 1.3 V to 15 V, VIN = 20 V,	-55°C to +150°C	01		0.6	mV
VSET		$I_{LOAD} = 1 \text{ mA}$ $\frac{4}{4}$			0.03	l 3 typical	-
▼ UL I							

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 5

TABLE I. Electrical performance characteristics – Continued. $\underline{1}/$

Test	Symbol	Conditions	Temperature, TA	Device type	Lim	nits	Unit
					Min	Max	
Change in ISET with		VSET = 0 V to 1.3 V, V _{IN} = 20 V,	-55°C to +150°C	01		600	nA
VSET		ILOAD = 1 mA			150) typical	
Change in Vos with		VSET = 0 V to 1.3 V, VIN = 20 V,	-55°C to +150°C	01		2	mV
VSET		ILOAD = 1 mA <u>4/</u>			0.3	3 typical	
Dropout voltage		ILOAD = 1 mA, 50 mA	+25°C	01	275	275	mV
					220) typical	
			-55°C to +150°C			330	
		ILOAD = 300 mA <u>5</u> /	+25°C			280	
					220) typical	
			-55°C to +150°C			350	
		ILOAD = 500 mA <u>5</u> /	+25°C			350	
					260	typical	
			-55°C to +150°C			450	
GND pin current 6/		ILOAD = 10 μA	25°C	01	2.2	typical	mA
VIN = VOUT(NOM)		ILOAD = 1 mA	-55°C to +150°C			4	
					2.4	l typical	
		ILOAD = 50 mA	-55°C to +150°C			5.5	
					3.5	typical	
		ILOAD = 100 mA	-55°C to +150°C			7	
					4.3	typical	
		ILOAD = 500 mA	-55°C to +150°C			25	
					15	typical	

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 6

TABLE I. Electrical performance characteristics – Continued. $\underline{1}/$

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
Output noise 4/ 7/ spectral density		ILOAD = 500 mA, frequency = 10 Hz, COUT = 10 μ F, CSET = 0.47 μ F, VOUT = 3.3 V	25°C	01	500	typical	nV/√ Hz
		ILOAD = 500 mA, frequency = 10 Hz, COUT = 10 μ F, CSET = 4.7 μ F, 1.3 V \leq VOUT \leq 15 V			70	typical	
		ILOAD = 500 mA, frequency = 10 kHz, COUT = 10 μ F, CSET = 0.47 μ F, 1.3 V \leq VOUT \leq 15 V			2	typical	
		ILOAD = 500 mA, frequency = 10 kHz, COUT = 10 μF, CSET = 0.47 μF, 0 V \leq VOUT $<$ 1.3 V			5	typical	
Output RMS 4/7/ noise		I_{LOAD} = 500 mA, BW = 10 Hz to 100 kHz, COUT = 10 μF, CSET = 0.47 μF, VOUT = 3.3 V	25°C	01	2.5	typical	μVRMS
		ILOAD = 500 mA, BW = 10 Hz to 100 kHz, COUT = 10 μ F, CSET = 4.7 μ F, 1.3 V \leq VOUT \leq 15 V			0.8	typical	
		ILOAD = 500 mA, BW = 10 Hz to 100 kHz, COUT = 10 μ F, CSET = 4.7 μ F, 0 V \leq VOUT < 1.3 V			1.8	typical	
Reference 4/7/ current RMS output noise		BW = 10 Hz to 100 kHz	25°C	01	6	typical	nARMS

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 7

TABLE I. Electrical performance characteristics – Continued. $\underline{1}/$

Test	Symbol	Conditions	Temperature, Devic		Lin	nits	Unit
					Min	Max	
Ripple rejection $4/7/1.3 \text{ V} \leq \text{V}_{OUT} \leq 15 \text{ V},$ VIN – VOUT = 2 V Avg	VRIPPLE = 500 mVp-p, 25°C fRIPPLE = 120 Hz, ILOAD = 500 mA, COUT = 10 μF, CSET = 4.7 μF		01	117 typical		dB	
		VRIPPLE = 150 mVp-p, fRIPPLE = 10 kHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF			90 typical 77 typical		
		VRIPPLE = 150 mVp-p, fRIPPLE = 100 kHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF					
		VRIPPLE = 150 mVp-p, fRIPPLE = 1 MHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF			76	S typical	
		VRIPPLE = 80 mVp-p, fRIPPLE = 10 MHz, ILOAD = 500 mA, COUT = 10 µF, CSET = 0.47 µF			53	3 typical	
Ripple rejection $4/7/0 \text{ V} \leq \text{VOUT} \leq 1.3 \text{ V},$ VIN – VOUT = 2 V Avg		VRIPPLE = 500 mVp-p, fRIPPLE = 120 Hz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF	25°C	01	104	typical	dB
		VRIPPLE = 50 mVp-p, fRIPPLE = 10 kHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF			88	5 typical	
		VRIPPLE = 50 mVp-p, fRIPPLE = 100 kHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF			72	2 typical	

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/21614
COLUMBUS, OHIO		REV	PAGE 8

TABLE I. Electrical performance characteristics – Continued. $\underline{1}/$

Test	Symbol	Conditions	Temperature, TA	Device type	Lim	its	Unit	
					Min	Max		
Ripple rejection $4/7/1.3 \text{ V} \leq \text{VOUT} \leq 15 \text{ V},$ VIN – VOUT = 2 V Avg		VRIPPLE = 50 mVp-p , fRIPPLE = 1 MHz , ILOAD = 500 mA , COUT = $10 \mu\text{F}$, CSET = $0.47 \mu\text{F}$	25°C	01	64	typical	dB	
		VRIPPLE = 50 mVp-p, fRIPPLE = 10 MHz, ILOAD = 500 mA, COUT = 10 μF, CSET = 0.47 μF			54	typical		
EN/UV pin threshold		EN/UV trip point rising (turn on)	-55°C to +150°C	01	1.18	1.32	V	
		VIN = 2 V			1.24 typical			
EN/UV pin hysteresis		EN/UV trip point hysteresis, VIN = 2 V	25°C	01	130 typical		mV	
EN/UV pin current		VEN/UV = 0 V, VIN = 20 V	-55°C to +150°C	01		±1	μΑ	
		VEN/UV = 1.24 V, VIN = 20 V	25°C	-	0.03 typical			
		VEN/UV = 20 V, VIN = 0 V	-55°C to +150°C			15		
					8	typical		
Quiescent current in		VIN = 6 V	25°C	01		1	μА	
shutdown					0.3	typical		
(VEN/UV = 0 V)			T _J ≤ +150°C			20		
Internal current limit <u>8</u> /		V _{IN} = 2 V, V _{OUT} = 0 V	-55°C to +150°C	01	570	850	mA	
					710 typical			
		V _{IN} = 12 V, V _{OUT} = 0 V	25°C		700	typical		
		VIN = 20 V, VOUT = 0 V	-55°C to +150°C		230	430		
					330	typical		

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 9

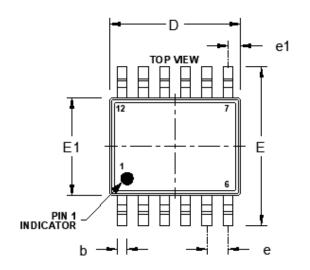
TABLE I. Electrical performance characteristics – Continued. $\underline{1}/$

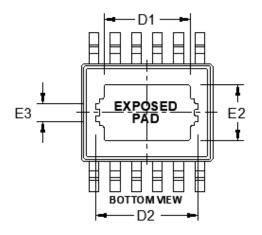
Test	Test Symbol Conditions Temperature,		· ·	Device type	Limits		Unit
					Min	Max	
Programmable current limit		Programming Scale Factor: 2 V < VIN < 20 V <u>9</u> /	25°C	01	150	typical	mA•kΩ
		V _{IN} = 2 V, V _{OUT} = 0 V, R _{ILIM} = 300 Ω	-55°C to +150°C		450	550	mA
					500	typical	
		V _{IN} = 2 V, V _{OUT} = 0 V, R _{ILIM} = 1.5 kΩ			90	110	
					100	typical	
Power good feedback		PGFB trip point rising	-55°C to +150°C	01	291	309	mV
(PGFB) trip point					300 typical		
PGFB hysteresis		PGFB trip point hysteresis	25°C	01	7 typical		mV
PGFB pin current		VIN = 2 V, VPGFB = 300 mV (current flows out of pin)	25°C	01	25 typical		nA
Power good (PG) output		IPG = 100 μA	-55°C to +150°C	01		100	mV
low voltage					30 typical		
PG leakage current		Vpg = 20 V	-55°C to +150°C	01		1	μА
Reverse input current		V _{IN} = -20 V, V _{EN/UV} = 0 V, V _{OUT} = 0 V, V _{SET} = 0 V	-55°C to +150°C	01		100	μА
Reverse output current		V _{IN} = 0 V, V _{OUT} = 5 V,	25°C	01		25	μА
		SET = Open	ET = Open		14 typical		
Minimum load <u>10</u> / required		VOUT < 1 V	-55°C to +150°C	01	10		μА
Thermal shutdown		TJ rising		01	165 typical		°C
		Hysteresis		-	8 typical		1

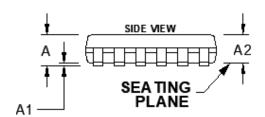
DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 10

TABLE I. Electrical performance characteristics – Continued. 1/

Test	Symbol	Conditions	Temperature, Device type		Lim	Unit	
					Min	Max	
Start up time		VOUT(NOM) = 5 V, ILOAD = 500 mA, CSET = 0.47 μF, VIN = 6 V, VPGFB = 6 V		25°C 01		typical	ms
		V _{OUT(NOM)} = 5 V, I _{LOAD} = 500 mA, C _{SET} = 4.7 μF, V _{IN} = 6 V, V _{PGFB} = 6 V		550 typical			
		VOUT(NOM) = 5 V, ILOAD = 500 mA, CSET = 4.7 μ F, VIN = 6 V, RPG1 = 50 k Ω , RPG2 = 700 k Ω (with fast start-up to 90% of VOUT)			10	typical	
Thermal regulation		10 ms pulse	25°C	01	-0.01	typical	%/W


- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- 2/ The EN/UV pin threshold must be met to ensure device operation.
- Maximum junction temperature limits operating conditions. The regulated output voltage specification does not apply for all possible combinations of input voltage and output current, especially due to the internal current limit foldback which starts to decrease current limit at VIN VOUT > 12 V. If operating at maximum output current, limit the input voltage range.
 If operating at the maximum input voltage, limit the output current range.
- 4/ OUTS ties directly to OUT.
- Dropout voltage is the minimum input to output differential voltage needed to maintain regulation at a specified output current. The dropout voltage is measured when output is 1% out of regulation. This definition results in a higher dropout voltage compared to hard dropout, which is measured when VIN = VOUT(NOMINAL). For lower output voltages, below 1.5 V, dropout voltage is limited by the minimum input voltage specification. Please consult the device typical performance characteristics for curves of dropout voltage as a function of output load current and temperature measured in a typical application circuit.
- 6/ GND pin current is tested with VIN = VOUT(NOMINAL) and a current source load. Therefore, the device is tested while operating in dropout. This is the worst case GND pin current. GND pin current decreases at higher input voltages. Note that GND pin current does not include SET pin or ILIM pin current but, quiescent current does include them.
- 7/ Adding a capacitor across the SET pin resistor decreases output voltage noise. Adding this capacitor bypasses the SET pin resistor's thermal noise as well as the reference current's noise. The output noise then equals the error amplifier noise. Use of a SET pin bypass capacitor also increases start-up time.


DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 11


TABLE I. Electrical performance characteristics – Continued. 1/

- 8/ The internal back up current limit circuitry incorporates fold back protection that decreases current limit for VIN VOUT > 12 V. Some level of output current is provided at all VIN VOUT differential voltages. Consult the device typical performance characteristics graph for current limit versus VIN VOUT.
- 9/ The current limit programming scale factor is specified while the internal backup current limit is not active. Note that the internal current limit has foldback protection for VIN VOUT differentials greater than 12 V.
- $\underline{10}$ / For output voltages less than 1 V, the device requires a 10 μ A minimum load current for stability.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 12

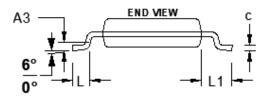


FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 13

Symbol	Dimensions				
	Inc	hes	Millimeter		
	Minimum	Maximum	Minimum	Maximum	
А		.043		1.10	
A1	.002	.006	0.05	0.15	
A2	.034	REF	0.86	REF	
A3	.010	GAGE PLANE	0.25	GAGE PLANE	
С	.005	.009	0.127	0.230	
D	.155	.163	3.937	4.141	
D1	.104	REF	2.65 REF		
D2	.124	REF	3.15 REF		
е	.025	REF	0.65 REF		
e1	.015	REF	0.395 REF		
E	.187	.199	4.748	5.052	
E1	.114	.122	2.898	3.102	
E2	.067	REF	1.70 REF		
E3	.032 REF		0.81 REF		
L	.015	.027	0.378	0.682	
L1	.037	REF	0.95 REF		

NOTE:

1. Controlling dimensions are millimeter, inch dimensions are given for reference only.

FIGURE 1. <u>Case outline</u> - Continued.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 14

Device type	01			
Case outline	Х			
Terminal number	Terminal symbol	Description		
1	IN	Input. This pin supplies power to the regulator.		
2	IN	Input. This pin supplies power to the regulator.		
3	IN	Input. This pin supplies power to the regulator.		
4	EN/UV	Enable/UVLO. Pulling the device's EN/ UV pin low places the part in shutdown. Quiescent current in shutdown drops to less than 1 μA and the output voltage turns off. Alternatively, the EN/UV pin can set an input supply undervoltage lockout (UVLO) threshold using a resistor divider between IN, EN/UV and GND. The device typically turns on when the EN/UV voltage exceeds 1.24 V on its rising edge, with a 130 mV hysteresis on its falling edge. The EN/UV pin can be driven above the input voltage and maintain proper functionality. If unused, tie EN/UV to IN. Do not float the EN/UV pin		
5	PG	Power good. PG is an open collector flag that indicates output voltage regulation.		
6	ILIM	Current limit programming pin. Connecting a resistor between ILIM and GND programs the current limit.		
7	PGFB	Power good feedback. The PG pin pulls high if PGFB increases beyond 300 mV on its rising edge, with 7 mV hysteresis on its falling edge. Connecting an external resistor divider between OUT, PGFB and GND sets the programmable power good threshold with the following transfer function: 0.3 V • (1 + RPG2/RPG1). In the device applications information section, PGFB also activates the fast start up circuitry. Tie PGFB to IN if power good and fast start-up functionalities are not needed, and if reverse input protection is additionally required, tie the anode of		
		a 1N4148 diode to IN and its cathode to PGFB. See the device typical applications section for details. A parasitic substrate diode exists between PGFB and GND pins of the device; do not drive PGFB more than 0.3 V below GND during normal operation or during a fault condition.		
8	SET	SET. This pin is the inverting input of the error amplifier and regulation set point for the device.		
9	GND	Ground.		
10	OUTS	Output sense. This pin is the noninverting input to the error amplifier.		
11	OUT	Output. This pin supplies power to the load.		
12	OUT	Output. This pin supplies power to the load.		
13	EXPOSED PAD	Ground. The exposed backside is an electrical connection to GND.		

FIGURE 2. <u>Terminal connections</u>.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 15

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

- 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Mode of transportation and quantity	Top side marking	Vendor part number
V62/21614-01XE	24355	Tube, 37 units	3045EP	LT3045HMSE#Z-EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices
Route 1 Industrial Park

P.O. Box 9106 Norwood, MA 02062

Point of contact: 20 Alpha Road

Chelmsford, MA 01824-4123

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/21614
		REV	PAGE 16