QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1077A MEAN-SQUARED RF/IF DETECTOR

LT5570

DESCRIPTION

Demonstration circuit 1077A is a Mean-Squared RF/IF detector featuring the LT $^{\otimes}$ 5570 IC.

The LT5570 is a wide dynamic range Mean Squared RF Power detector, operational from 40MHz to 2700MHz. The input dynamic range at 880MHz, with ± 1 dB nonlinearity, is 61dB (from -48dBm to ± 13 dBm, single-ended 50 Ω input). The detector output voltage slope is normally 37mV/dB, and the typical output variation over temperature is ± 0.4 dB at 880MHz.

The 1077A Demo Board is optimized for wide frequency range of 40MHz to 880MHz.

Design files for this demo board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

PARAMETER	CONDITION	VALUE	
Supply Voltage		4.75V to 5.25V	
Supply Current		26.5mA	
Shutdown Current	ENBL = Low	0.1µA	
	Low, Chip Disabled	1V max	
ENDL VUILAYE	HIGH, Chip Enabled	2V min	
ENDL Input Current	V _{ENBL} = 0V	ΟμΑ	
ENBL INPUT Current	V _{ENBL} = 5V	68µA	
Output Start Voltage	No Input Signal Present	0.1V	
Rise Time	0.2V to 1.6V, 10% to 90%, C1 = 22nF, F_{RF} = 2140 MHz	1µs	
Fall Time	1.6V to 0.2V, 90% to 10%, C1 = 22nF, $F_{_{RF}}$ = 2140 MHz	8µs	
Input Frequency Range	Optimized for DC1077A demo board	40MHz to 880MHz	
f = 500MHz			
Linear Dynamic Range	±1 dB linearity error	62 dB	
Slope		36.9mV/dB	
Logarithmic Intercept		-54.8dBm	
Output Variation vs Temperature	P _{IN} = -50 to +13dBm	±0.5 dB	
Deviation from CW Response	12 dB peak-to-average ratio (4 carrier WCDMA)	0.3 dB	
f = 880MHz			
Linear Dynamic Range	±1 dB linearity error	62 dB	
Slope		36.9mV/dB	
Logarithmic Intercept		-54.8dBm	
Output Variation vs Temperature	P _{IN} = -50 to +13dBm	±0.5 dB	
Deviation from CW Response	eviation from CW Response 12 dB peak-to-average ratio (4 carrier WCDMA)		

Table 1. Typical Performance Summary (V_{CC} = 5V, ENBL = 5V, T_A = 25°C, unless otherwise noted. Test circuit shown in Figure 2.)

QUICK START PROCEDURE

Demonstration circuit 1077A is easy to set up to evaluate the performance of the LT5570. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

- 1. Connect voltmeter's negative (-) lead to demo board GND test point (TP2).
- 2. Connect voltmeter's positive (+) lead to the demo board OUTPUT test point (TP4).
- **3.** Connect DC power supply's negative (-) output to demo board GND test point (TP2).
- 4. Connect DC power supply's positive (+) output (4.75V to 5.25V) to demo board V_{CC} test point (TP1).

Do not exceed 5.5V, the absolute maximum supply voltage.

5. Connect signal generator's output to demo board INPUT port (SMA connector J1) via coaxial cable.

A 3dB attenuator may be inserted to improve input match.

6. Using a jumper cable, connect demo board V_{CC} test point (E3) to ENBL test point (TP3). Now the detector is enabled (on) and is ready for measurement.

Make sure that the power is not applied to ENBL before it is applied to V_{CC} . The voltages on the ENBL test point must never exceed V_{CC} + 0.2V.

<u>NOTE</u>: Make sure that the power is not applied to Enable (EN) test point before it is applied to V_{CC} . The voltage on the EN test point must never exceed V_{CC} + 0.2V.

7. Apply RF input signal and measure OUTPUT DC voltages.

Do not exceed +15dBm, the absolute maximum RF input power.

Figure 1. Proper Measurement Equipment Setup

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1077A MEAN-SQUARED RF/IF DETECTOR

LINEAR TECHNOLOGY

DEMO BOARD MODIFICATIONS:

Modifications for	Single-Ended RF	[:] Input configuration	without RF Input	Transformer:

Part	Value	Manufacturer Part Number	Notes		
T2		MA-COM, MABAES0061	Remove T2 transformer		
C8	3.3pF	AVX, 0402YA330KAT	Remove capacitor C8		
			Place 150 ohm resistor (0402 body size) instead		
C10	1nF	0805 size capacitor from any supplier	Place 1nF capacitor between pins 5 & 1 of T2 trans- former (refer to tr-r pin-out on schematic)		
R2	0-ohm	0-ohm resistor (or copper jumper)	Place 0-ohm resistor between pins 2 & 3 of T2 trans- former (refer to tr-r pin-out on schematic)		
NOTE:	NOTE: Refer to the demo board schematic below				

DC1077A Demo Board Schematic with modifications for Single-Ended RF Input without RF Input Transformer

