LT5570

DESCRIPTION

Demonstration circuit 1078 (DC1078A) is a Mean-Squared RF Power detector featuring the LT5570.

The LT5570 is a wide dynamic range RF detector, operational from 40MHz to 2700MHz. The input dynamic range at 2140MHz with ±1dB nonlinearity is 51dB (from –38dBm to +13dBm. The detector output voltage slope is normally 37mV/dB, and the typical output variation over temperature is ±0.3dB at 2140MHz.

NOTE: DC1078A demo circuit is optimized for input frequency of 2140MHz +/- 150MHz. Refer to page 3 for modifications for 2700MHz and 880MHz.

Design files for this circuit board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

Table 1. Typical Performance Summary ($V_{CC} = 5V$, ENBL = 5V, $T_A = 25$ °C, unless otherwise noted. Test circuit shown in Figure 2.)

PARAMETER	CONDITION	VALUE
Supply Voltage		4.75V to 5.25V
Supply Current		26.5mA
Shutdown Current	ENBL = Low	0.1μΑ
ENDL Valaria	Low, Chip Disabled	1V max
ENBL Voltage	HIGH, Chip Enabled	2V min
CNDL lagget Coursest	V _{ENBL} = 0V	ОμΑ
ENBL Input Current	V _{ENBL} = 5V	68μΑ
Output Start Voltage	No Input Signal Present	0.1V
Rise Time	0.2V to 1.6V, 10% to 90%, C1 = 22nF, F _{RF} = 2140 MHz	0.5µs
Fall Time	1.6V to 0.2V, 90% to 10%, C1 = 22nF, F _{RF} = 2140 MHz	8µs
Input Frequency Range		2140MHz to 2700MHz
f = 2140MHz		·
Linear Dynamic Range	±1 dB linearity error	51 dB
Slope		36.5mV/dB
Logarithmic Intercept		-42.4dBm
Output Variation vs Temperature	P _{IN} = -50 to +13dBm	±0.3 dB
Deviation from CW Response	12 dB peak-to-average ratio (4 carrier WCDMA)	0.2 dB
f = 2700MHz		
Linear Dynamic Range	near Dynamic Range ±1 dB linearity error	
Slope		36.4mV/dB
Logarithmic Intercept		-38.5dBm
Output Variation vs Temperature	P _{IN} = -50 to +13dBm	±0.2 dB
Deviation from CW Response	12 dB peak-to-average ratio (4 carrier WCDMA)	0.5 dB

QUICK START PROCEDURE

Demonstration circuit 1078 is easy to set up to evaluate the performance of the LT5570. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

- 1. Connect voltmeter's negative (-) lead to demo board GND test point (TP2).
- 2. Connect voltmeter's positive (+) lead to the demo board OUTPUT test point (TP4).
- 3. Connect DC power supply's negative (-) output to demo board GND test point (TP2).
- 4. Connect DC power supply's positive (+) output (4.75V to 5.25V) to demo board V_{CC} test point (TP1).

NOTE: Do not exceed 5.5V, the absolute maximum supply voltage.

- Connect signal generator's output to demo board INPUT port (SMA connector J1) via coaxial cable.
 A 3dB attenuator may be inserted to improve input match.
- **6.** Using a jumper cable, connect demo board V_{CC} test point (E3) to ENBL test point (TP3). Now the detector is enabled (on) and is ready for measurement.

NOTE: Make sure that the power is not applied to Enable (EN) test point before it is applied to V_{CC} . The voltage on the EN test point must never exceed V_{CC} + 0.2V.

7. Apply RF input signal and measure OUTPUT DC voltages.

NOTE: Do not exceed +15dBm, the absolute maximum RF input power.

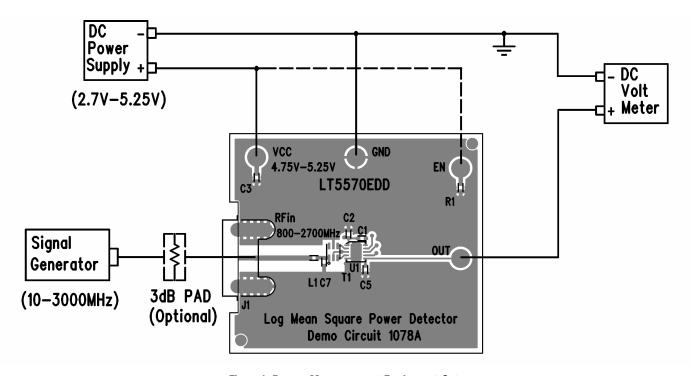
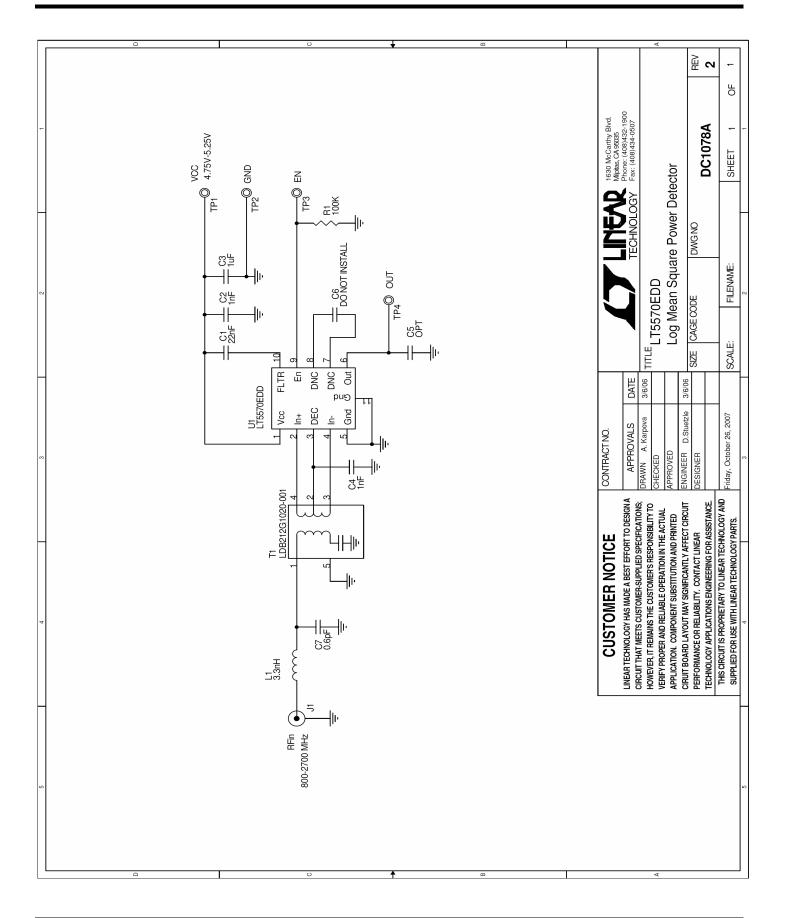


Figure 1. Proper Measurement Equipment Setup

DEMO BOARD MODIFICATIONS:

Demo board modifications for RF input frequency of 2700MHz

Part	Notes	Value	Manufacturer Part Number		
L1	Remove L1 inductor.	1.2pF	Murata, GRM1555C1H1R2CZ01		
	Place 1.2pF capacitor instead of inductor L1.				
C 7	Remove capacitor C7.	2.2nH	TOKO, LL1005-FHL2N2S		
	Place 2.2nH inductor instead of capacitor C7.				
T1	Remove T1 balun (LDB212G1020C-001).		Murata, LDB212G4020C-001		
	Place LDB212G4020C-001 Murata balun instead.				
NOTE: Refer to demo board schematic on Page 4					


Demo board modifications for RF input frequency of 880MHz

Part	Notes	Value	Manufacturer Part Number		
L1	Remove L1 inductor.	1.8nH	TOKO, LL1005-FHL1N8S		
	Place 1.8nH inductor instead.				
C7	Remove capacitor C7.	No placement	n/a		
T1	Remove T1 balun (LDB212G1020C-001).		Murata, LDB21869M20C-001		
	Place LDB21869M20C-001Murata balun instead.				
NOTE: Refer to demo board schematic on Page 4					

Note: Consult factory for demo board modifications for other frequencies.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1078 MEAN-SQUARED RF POWER DETECTOR

