LT8393 60VIN, 100V OUT Synchronous 4-Switch Buck-Boost LED Driver with Low EMI

DESCRIPTIOn

Demonstration circuit 2865A is a synchronous 4 -switch buck-boost LED driver featuring the LT®8393. This demonstration circuit drives a single string of LEDs up to 70 V at 300 mA . DC2865A runs from an input voltage of 9 V to 18 V as-built and is capable of $4 \mathrm{~V}_{\text {IN }}$ to $60 \mathrm{~V}_{\text {IN }}$ if UVLO is adjusted. It runs at 350 kHz switching frequency and features spread spectrum modulation (SSFM) which spreads the switching frequency from f_{SW} to $\mathrm{f}_{\mathrm{SW}}+25 \%$. Both analog and PWM dimming are featured. DC2865A features undervoltage lockout (UVLO) set at 7.9 V with 1.4V hysteresis for turn-on.

The LT8393 has an adjustable switching frequency between 350 kHz and 2 MHz . The SYNC jumper also allows external frequency synchronization.

The LT8393 can be PWM dimmed for accurate brightness control with an external PWM signal and an inter-nally-generated PWM signal. DC2865A has a jumper that can be set to switch between internally-generated PWM signal, externally-generated PWM signal, and no PWM signal (100% on). It can be analog dimmed with a control voltage on its CTRL pin.
When run with both PWM dimming and spread spectrum, the spread spectrum aligns itself with the PWM signal for flicker-free operation.
The LT8393 features both open LED and short LED (LED ${ }^{+}$ to GND) protection as well as a fault output flag.

Small ceramic input and output capacitors save space and cost. The open LED overvoltage protection uses the IC's constant voltage regulation loop to regulate the output to approximately 70 V if the LED string is opened.
The input and output EMI filters on the demo circuit reduce the EMI of this power converter. This is intended for automotive applications where CISPR25 Class 5 standards are observed. Additionally, gate resistors and grounded shield can be added on the demo circuit for further EMI reduction if necessary. In non-automotive applications, where EMI may not be as important, the input and output filter can be removed for higher efficiency.
The UVLO voltage, LED current, output voltage range, switching frequency, brightness control, and SSFM can all be adjusted with simple modifications to the demonstration circuit.

The LT8393 data sheet gives a complete description of the device, operation and applications information. The data sheet must be read in conjunction with this demo manual for DC2865A. The LT8393JFE is assembled in a 28-lead plastic TSSOP package with a thermally enhanced GND.
Design files for this circuit board are available.
All registered trademarks and trademarks are the property of their respective owners.

DEMO MANUAL

DC2865A

BOARD PHOTO

PGRFORMAOC SUMMARY Speciifictions are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Input Voltage $\mathrm{PV}_{\text {IN }}$ Range	Operating $24 \mathrm{~V} \leq \mathrm{V}_{\text {LED }} \leq 70 \mathrm{~V}$	4		60	V
Switching Frequency ($\mathrm{f}_{\text {Sw }}$)	$\begin{aligned} & \text { R3 }=422 \mathrm{k} \Omega, \text { SSFM }=0 \text { FF } \\ & \text { R3 }=422 \mathrm{k} \Omega, \text { SSFM }=0 \mathrm{~N} \end{aligned}$	$\begin{gathered} 350 \\ 350-437.5 \end{gathered}$			$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
LED Current ILED	$\begin{aligned} & \mathrm{R} 2=330 \mathrm{~m} \Omega, 9 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ & 24 \mathrm{~V} \leq \mathrm{V}_{\text {LED }} \leq 70 \mathrm{~V}, V_{\text {CTRL }}=2 \mathrm{~V} \\ & \hline \end{aligned}$	297	300	303	mA
LED Voltage V ${ }_{\text {LED }}$ Range	$\mathrm{R} 5=1 \mathrm{M} \Omega, \mathrm{R} 6=11.3 \mathrm{k} \Omega$, R26 $=0$ PEN	24		70	V
Open LED Voltage $\mathrm{V}_{\text {OUt }}$	$\mathrm{R} 5=1 \mathrm{M} \Omega, \mathrm{R} 6=11.3 \mathrm{k} \Omega, \mathrm{R} 26=0$ PEN	88	94	98	V
Efficiency (100\% PWM DC)	$12.0 \mathrm{~V} \mathrm{~V}_{\text {IN }}, 350 \mathrm{kHz}$, 24 LEDs, SSFM $=0 \mathrm{~N}$		90		\%
Internally-Generated PWM Dimming Range	JP2 = INT, JP3 = INT	1/16384		100	\%
Internally-Generated PWM Dimming Frequency	$\begin{aligned} & \hline \text { JP2 }=\text { INT, JP3 }=\text { INT } \\ & \text { R21 }=51 \mathrm{k} \Omega, \text { R3 }=422 \mathrm{k} \Omega \end{aligned}$		350		Hz
Peak Switch Current Limited Boost Region	$\mathrm{R} 1=0.006 \Omega$		8		A
Peak Switch Current Limited Buck Region	$\mathrm{R} 1=0.006 \Omega$		8		A
$\mathrm{PV}_{\text {IN }}$ Undervoltage Lockout (UVLO) Falling	$\mathrm{R} 7=499 \mathrm{k} \Omega, \mathrm{R} 8=127 \mathrm{k} \Omega$		6.1		V
$\mathrm{PV}_{\text {IN }}$ Enable Turn-On (EN) Rising	$\mathrm{R7}=499 \mathrm{k} \Omega, \mathrm{R} 8=127 \mathrm{k} \Omega$		7.3		V

PUICK START PROCEDURE

NOTE: Make sure that the voltage applied to $\mathrm{V}_{\text {IN }}$ does not exceed 60V.

The DC2865A is easy to set up to evaluate the performance of the LT8393. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With power off, connect a string of LEDS that will run with a forward voltage less than or equal to 70 V at 300 mA to the LED^{+}and LED^{-}terminals on the PCB as shown in Figure 1.
2. Connect the EN/UVLO terminal to GND.
3. For always-on LED operation: Set JP2 to EXT/ON and JP3 to ON. Set JP1 to NO SSFM/SYNC to run without SSFM.
4. With power off, connect the input power supply to the V_{IN} and GND terminals.
5. Turn the input power supply on and make sure the voltage is between 9 V and 18 V to start operation.
6. Release the EN/UVLO-to-GND connection.
7. Observe the LED string running at the programmed LED current.
8. To change the brightness with analog dimming, simply attach a voltage source to the CTRL terminal and set the voltage between OV and 2V. See data sheet for details.
9. To change brightness with external PWM dimming, set JP2 to EXT/ON and JP3 to EXT. Keep LED wire length to a minimum to achieve higher dimming ratios. Attach a $0 \mathrm{~V}-3 \mathrm{~V}$ rectangular waveform with varying duty cycle to the PWM terminal.
10. To change brightness with internally-generated PWM dimming, set JP2 to INT and JP3 to INT. Adjust the setting of VR1 variable resistor with a small flathead screwdriver to toggle between 0\% and 100\% PWM dimming duty cycle in $1 / 128$ steps.
11. To enable spread spectrum frequency modulation, set JP1 to SSFM ON.

DEMO MANUAL

PUICK START PROCEDURE

Figure 1. Test Procedure Setup Drawing for DC2865A

TEST RESULTS

Figure 2. DC2865A Efficiency vs Input Voltage with 350 kHz and various LED strings at 300 mA with SSFM ON

Figure 4. DC2865A 50\% to 100\% I LED Load Transient with CTRL Input with SSFM On, $12 V_{\text {IN }}$ and $70 V_{\text {LED }}$

Figure 3. DC2865A High Performance External PWM Dimming with LEDs connected between LED $^{+}$and LED $^{-}$

$20 \mu \mathrm{~s} / \mathrm{DIV}$
dc2865a F05

[^0]Figure 5. Infinite-Persist Scope Shows Internal PWM Dimming and SSFM Working Together for Flicker-Free Brightness Control

DEMO MANUAL DC2865A

TEST RESULTS

(a)

(a)

Figure 6. Infinite-Persist Scope Shows External PWM Dimming and SSFM Working Together for Flicker-Free Brightness Control

Figure 7. Thermal Image with $\mathrm{V}_{\mathrm{LED}}=70 \mathrm{~V}, \mathrm{I}_{\mathrm{LED}}=300 \mathrm{~mA}, \mathrm{SSFM}$ On

EMISSION RESULT

Figure 8. Average and Peak Conducted Emissions Performance Using Current Method with CISPR25 Limits

Figure 9. Average and Peak Conducted Emissions Performance Using Voltage Method with CISPR25 Limits

DEMO MANUAL
DC2865A

EMISSION RESULT

(a)

(b)

Figure 10. CISPR25 Average and Peak Radiated Emissions Performance with CISPR25 Limits

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	2	C1, C6	CAP., X7S, 1 1 F, 100V, 10\% 0805, AEC-Q200	MURATA, GCM21BC72A105KE36L
2	1	C2	CAP, X5R, 4.7 ${ }^{\text {F, 10V, 10\% } 0402}$	TDK, C1005X5R1A475K050BC
3	1	C3	CAP., X5R, 0.47 F , 16V,10\% 0402	MURATA, GRM155R61C474KE01D
4	1	C4	CAP., X7R, $0.015 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \% 0402$	MURATA, GRM155R71C153KA01J
5	3	C5, C7, C8	CAP, X7R, $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% 0402$	AVX, 04023C104KAT2A
6	2	C9, C24	CAP., X7S, 10 1 F, 50V, 10\% 1210, AEC-Q200	MURATA, GCM32EC71H106KA03L
7	1	C10	CAP., ALUM, $22 \mu \mathrm{~F}, 63 \mathrm{~V}, 20 \%$, SMD $6.3 \mathrm{~mm} \times 7.7 \mathrm{~mm}$	SUN ELECTRONICS INDUSTRIES CORP, 63CE22FS
8	2	C15, C16	CAP., X7S, 4.7 $7 \mathrm{~F}, 50 \mathrm{~V}, 10 \% 1206, ~ A E C-Q 200$	MURATA, GCM31CC71H475KA03K
9	2	C17, C18	CAP., X7S, 4.7 $\mu \mathrm{F}, 100 \mathrm{~V}, 10 \% 1210$, AEC-Q200	MURATA, GCM32DC72A475KE02L
10	1	C21	CAP., X7S, 10 ${ }^{\text {FF, 50V, } 10 \% ~ 1210, ~ A E C-Q 200 ~}$	MURATA, GCM32EC71H106KA03L
11	1	C22	CAP., X7R, $0.01 \mu \mathrm{~F}, 100 \mathrm{~V}, 10 \% 0805$, AEC-Q200	MURATA, GCD21BR72A103KA01L
12	2	D1, D2	DIODE, SCHOTTKY, 100V, 250mA, SOD-323F, AEC-Q101	NEXPERIA, BAT46WJ,115
13	1	D6	DIODE, SCHOTTKY, 100V, 10A, SMPC (T0-277A), AEC-Q101	VISHAY, V1010HM_A/H
14	1	L1	IND., $22 \mu \mathrm{H}$, PWR, SHIELDED, $20 \%, 4.1 \mathrm{~A}, 75.44 \mathrm{~m} \Omega$, 4040DD, IHLE-5A SERIES, AEC-Q200	VISHAY, IHLE4040DDER220M5A
15	1	L2	IND., 5.6 H , PWR, SHIELDED, 20\%, 7.2A $25.80 \mathrm{~m} \Omega, 5.28 \mathrm{~mm} \times 5.48 \mathrm{~mm}$, AEC-Q200	COILCRAFT, XAL5050-562MEB
16	2	M1, M2	XSTR., MOSFET, N-CH, 40V, 40A, PG-TSDSON-8-32, AEC-Q101	INFINEON, IPZ40N04S5L-7R4
17	2	M3, M4	XSTR., MOSFET, N-CH, 100V, 11A, DFN5 (SO-8FL), AEC-Q101	ON SEMICONDUCTOR, NVMFS6B14NLT1G
18	1	Q1	XSTR., MOSFET, P-CH, 100V, 13A, DPAK (TO-252), AEC-Q101	ROHM, RD3P130SPFRATL
19	1	R1	RES., 0.006 $\Omega, 1 \%, 1.5 \mathrm{~W}, 1206$, LONG-SIDE TERM, SENSE, AEC-Q200	SUSUMU, KRL3216E-C-R006-F-T1
20	1	R2	RES., $0.33 \Omega, 1 \%, 1 / 3 W, 0805$, SHORT-SIDE TERM., SENSE	SUSUMU, RL1220S-R33-F
21	1	R3	RES., 422k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRCO4F4223TRF
22	1	R4	RES., 1.5k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRCO4F1501TRF
23	1	R5	RES., 1M, 1\%, 1/10W, 0603, AEC-Q200	NIC, NRC06F1004TRF
24	1	R6	RES., 11.3k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRCO4F1132TRF
25	2	R15, R17	RES., 0 ${ }^{\text {R, } 1 / 16 \mathrm{~W}, 0402}$	NIC, NRCO4ZOTRF
26	1	U1	IC, LED DRIVER CTRLR, TSSOP-28	ANALOG DEVICES, LT8393JFE\#WPBF

DEMO MANUAL DC2865A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Additional Demo Board Components				
27	2	C11, C12	CAP., OPTION, 1210	
28	3	C13, C14, C29	CAP., OPTION, 0603	
29	2	C19, C20	CAP, OPTION, 0805	
30	1	C23	CAP., X7S, 2.2 $2 \mathrm{~F}, 10 \mathrm{~V}, 10 \% 0603$, AEC-Q200	TDK, CGA3E3X7S1A225K080AB
31	1	C28	CAP., X5R, 0.1 FF, 100V, 10\% 0402	MURATA, GRM155R62A104KE14D
32	2	D3, D4	DIODE, OPTION, SOD-532	
33	5	D5, D8, D9, D10, D11	DIODE, SCHOTTKY, 100V, 250mA, SOD-323F, AEC-Q101	NEXPERIA, BAT46WJ,115
34	1	D7	DIODE, OPTION, SOD-123	
35	2	FB1, FB2	IND., FERRITE BEAD, OPTION, 0805	
36	1	FB3	IND., 1k AT100MHz, FERRITE BEAD, 25\%, 1.5A, $150 \mathrm{~m} \Omega$, 0805, AEC-Q200	TDK, MPZ2012S102ATD25
37	1	Q4	XSTR., OPTION, NPN, SOT-23	
38	1	R7	RES., 499k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRC04F4993TRF
39	1	R8	RES., 127k, 1\%, 1/16W, 0402	VISHAY, CRCW0402127KFKED
40	3	R9, R11, R12	RES., 100k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRC04F1003TRF
41	5	R10, R14, R16, R23, R24	RES., OPTION, 0402	
42	5	R18, R19, R22, R27, R28	RES., OPTION, 0603	
43	1	R20	RES., 91k, 5\%, 1/16W, 0402, AEC-Q200	NIC, NRC04J913TRF
44	1	R21	RES., 51k, 1\%, 1/16W, 0402, AEC-Q200	NIC, NRC04F5102TRF
45	1	R46	RES., 20k, 1\%, 1/10W, 0603	NIC, NRC06F2002TRF
46	1	VR1	RES., 100k, 20\%, 1/4W, SMD 4mm SQ, 1-TURN, TOP ADJ., TRIMPOT	BOURNS, 3314J-1-104E

Hardware: For Demo Board Only

47	6	E1, E2, E8, E9, E12, E13	TESTPOINT, TURRET, 0.094" PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
48	8	E3, E4, E5, E6, E7, E10, E11, E14	TESTPOINT, TURRET, 0.061" PBF	MILL-MAX, 2308-2-00-80-00-00-07-0
49	2	JP1, JP3	HEADER 3-PIN 0.079" DOUBLE ROW	WURTH ELEKTRONIK, 62000621121
50	1	JP2	HEADER 2-PIN 0.079" DOUBLE ROW	WURTH ELEKTRONIK, 62000311121
51	4	MH1, MH2, MH3, MH4	STANDOFF, NYLON, SNAP-ON, 0.375"	WURTH ELEKTRONIK, 702933000
52	3	XJP1, X JP2, XJP3	CONN., SHUNT, FEMALE, 2-POS, 2mm	WURTH ELEKTRONIK, 60800213421

SCHEMATIC DIAGRAM

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

[^0]: $V_{I N}=12 \mathrm{~V}, \mathrm{~V}_{\text {LED }}=70 \mathrm{~V}, \mathrm{I}_{\text {LED }}=300 \mathrm{~mA}$
 $\mathrm{f}_{\text {SW }}=350 \mathrm{kHz}+$ SSFM ON
 350Hz INTERNAL PWM DIMMING INFINITE PERSIST

