42V, Low I_{Q}, Quad Output Triple Monolithic Buck Converter with Boost Channel as SEPIC

DESCRIPTIOn

Demonstration circuit 2469A features the LT®8603 with triple monolithic buck regulators and the boost channel as SEPIC. The demo circuit is designed for $8 \mathrm{~V}, 5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 1.8 V outputs from a nominal 12 V input. The 4th channel is set as a SEPIC converter and its output is regulated at 8 V over a wide input range. The two high voltage buck regulators are powered from VOUT4. VOUT1 is regulated at 5 V with 1.5 A maximum output load current, and VOUT2 is at 3.3 V with 2.5 A maximum output load current. The low voltage buck is powered from VOUT2 (3.3V), and the output VOUT3 is regulated at 1.8 V with 1.8 A maximum load current. Thanks to the SEPIC converter, all four outputs can ride through a cold crank in automotive applications while providing regulated output voltages.
All regulators are synchronized to an internal oscillator that can be programmed with one resistor at RT pin. Programmable frequency allows optimization between efficiency and external component size. To avoid the audio band, the DC2469A sets the switching frequency at 2MHz for the three buck regulators, and the SEPIC converter is at 400 kHz . At all frequencies, a 180° phase shift is maintained between 1 and 2 channels, reducing the input peak current and voltage ripple.

Many popular features such as soft-start, cycle-by-cycle current limit, power good for each of the four channels are packed in the 40 -lead $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN package to simplify the complex design of quad-output power converters. Each buck regulator can be independently disabled using its own TRKSS or RUN pin. The SEPIC can be disabled by pulling down both the FSEL4A and FSEL4B. The EN/UVLO can be used to shut down the circuit to reduce the input current to $1 \mu \mathrm{~A}$.
Table 1 summarizes the performance of the demo board at room temperature. The demo circuit can be easily modified for various automotive, transportation and industry applications. For applications that need 4th channel configured as a boost converter, the DC2114A should be used.
The LT8603 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this quick start guide for DC2469A.

> Design files for this circuit board are available at http://www.linear.com/demo/DC2469A

All registered trademarks and trademarks are the property of their respective owners.

PGRFORMA \mathcal{C} SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 1.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operation Input Voltage Range		3	12	42	V
Minimum Start-Up, VIN ${ }_{\text {MIN }}$				4.5	V
Standby Current When Switching	IOUT1,2,3,4 $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$		40		$\mu \mathrm{A}$
Channel 4 Output Voltage, VOUT4	IOUT4 $=1 \mathrm{~A}$	7.68	8	8.32	V
Channel 1 Output Voltage, VOUT1	IOUT1 $=1.5 \mathrm{~A}$	4.86	5	5.14	V
Channel 2 Output Voltage, VOUT2	IOUT2 $=2.5 \mathrm{~A}$	3.17	3.3	3.43	V
Channel 3 Output Voltage, VOUT3	IOUT3 $=1.8 \mathrm{~A}$	1.73	1.8	1.87	V
Maximum Output Current, IOUT1	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	1.5			A
Maximum Output Current, IOUT2	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{IOUT3}=0 \mathrm{~A}$	2.5			A

DEMO MANUAL DC2469A

PERFORmARCE SUMmARY

Table 1.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Output Current, IOUT3	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, IOUT2 $=0 \mathrm{~A}$	1.8			A
Maximum Output Current, IOUT4	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, IOUT1,2,3 $=0 \mathrm{~A}$	1.5			A
Switching Frequency, Channel 1~3	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, IOUT1,2,3 $=1 \mathrm{~A}$	1.85	2	2.15	MHz
Switching Frequency, Channel 4	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$, IOUT4 $=1 \mathrm{~A}$	370	400	430	kHz
Efficiency, Channel 4	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$, IOUT4 $=2.5 \mathrm{~A}$		84		\%
Efficiency, CH1, 5V	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{IOUT} 1=1.5 \mathrm{~A}$		89		\%
Efficiency, $\mathrm{CH} 2,3.3 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, IOUT2 $=2.5 \mathrm{~A}$		84		\%
Efficiency, CH3, 1.8V	PVIN3 $=3.3 \mathrm{~V}, \mathrm{IOUT3}=1.8 \mathrm{~A}$		83		\%
Efficiency, Overall	$\mathrm{V}_{\text {IN }}=14 \mathrm{~V}$, IOUT1,2,3 $=1 \mathrm{~A}$		75		\%

PUICK START PROCEDURE

Demonstration circuit 2469A is easy to set up to evaluate the performance of the LT8603. Refer to Figure 1 for proper equipment setup and follow these procedures.

1. With power off, connect the input power supply to the board through V_{IN} and GND terminals on the top layer. Connect the loads to the terminals VOUT1 and GND, VOUT2 and GND, VOUT3 and GND on the board. The default positions of the headers are given in Table 2.

Table 2. Default Positions of the Headers

NAME		POSITION
EN/UVLO	JP4	ON
TRKSS1	JP1	ON
TRKSS2	JP2	ON
RUN3	JP3	RUN

2. Turn on the power at the input. Increase $\mathrm{V}_{\text {IN }}$ to 4.5 V . Make sure that the input voltage is always within spec. Refer to data sheet on the switching in high $\mathrm{V}_{\text {IN }}$ condition and the Burst Mode ${ }^{\circledR}$ operation in light load. The minimum start-up voltage for the SEPIC converter (and the board) is 4.5 V . Once it starts, the circuit runs with input going down below 3 V at light load.
3. Check for the proper switching frequency and output voltage at channel 4. The output is set at $8 \mathrm{~V}(\pm 4 \%)$. The SEPIC converter output current capability depends on the input voltage. If the 4th output is not regulated, temporarily disconnect the load, and disable the two high voltage buck regulators (channels 1,2) as well. Check if the EN/UVLO is set in correct position. Check if too much load is applied to VOUT4. SEPIC does not have overcurrent or short-circuit protection capability.

NOTE: By default, the switching frequency of the SEPIC converter is optimized with 400 kHz with FSEL4A low and FSEL4B high. The switching frequency can be changed with RT, or different FSEL4A / FSEL4B settings. An accompanying change of inductors might be necessary to achieve desirable performance of the converter.
4. Check for the proper output voltages of the buck regulators. The output should be regulated at $5 \mathrm{~V}(\pm 4 \%)$, $3.3 \mathrm{~V}(\pm 4 \%), 1.8 \mathrm{~V}(\pm 4 \%)$ for the channels 1,2 and 3 , respectively. Do not overload the buck regulators simultaneously at high line unless proper thermal cooling method such as air flow or heat sink is applied. If there is no output, temporarily disconnect the load of the corresponding channels to make sure that the

DEMO MANUAL DC2469A

PUICK START PROCEDURE

loads are not set too high, and the headers of EN/UVLO, TRKSS1, TRKSS2, RUN3 are set in right positions.
5. Once the proper output voltage is established, adjust the input voltage and load currents within the operating range, and observe the output voltage regulation, transient, ripple voltage, efficiency and other parameters. By default the circuit is set in low ripple Burst Mode operation with SYNC grounded. Remove R11, and add 0Ω at R10, the circuit is set in pulse-skipping mode. The circuit runs in full frequency with lower load current in this mode. To synchronize to an external clock, apply the external clock to the SYNC turret.
6. When measuring the input or output voltage ripples, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ capacitor terminals. See Figure 2 for proper scope probe technique.
NOTE: Refer to the thermal derating curves in LT8603 data sheet for high input voltage and/or high ambient temperature operations.

DEMO MANUAL DC2469A

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC2469A

PUICK START PROCEDURE

Figure 2. Proper Scope Probe Placement for Measuring Input or Output Ripple

A) $V_{\text {IN }}=6 V$

B) $V_{I N}=24 V$

Figure 3. Thermal Image Top View, IOUT1 $=1 \mathrm{~A}, I O U T 2=1 \mathrm{~A}, I O U T 3=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}_{\text {SW }}=2 \mathrm{MHz}$

DEMO MANUAL DC2469A

PUICK START PROCEDURE

Figure 4. Load Transient from 50 mA to 450 mA at VOUT4, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=400 \mathrm{kHz}$, Burst Mode Operation

Figure 5. SEPIC Maximum Output Current vs Input Voltage

DEMO MANUAL DC2469A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CVIN	Cap, X5R 1 $\mu \mathrm{F} 50 \mathrm{~V}$ 10\% 0603	Murata, GRM188R61H105KAALD
2	2	C26, C27	Cap, X7R 4.7 ${ }^{\text {F }}$ 50V 10\% 1206	Murata, GRM31CR71H475KA12L
3	2	CVIN1, CVIN2	Cap, X7R 4.7 $\mu \mathrm{F} 16 \mathrm{~V}$ 10\% 0805	Murata, GRM21BR71C475KA73L
4	1	CVIN3	Cap, X5R 10^F 6.3V 20\% 0603	Murata, GRM188R60J106ME47D
5	4	CVIN4, CVIN5, CVIN6, CVIN7	Cap, X5R 10ヶFF 50V 10\% 1206	Murata, GRM31CR61H106KA12L
6	1	C1	Cap, Alum 22 2 F 50V 10\%	Sun Elect Ind, 50CE22BSS
7	3	C2, C3, C32		Murata, GRM155R71H104KE14J
8	2	C6, C9	Cap, X5R 47 $\mu \mathrm{F} 16 \mathrm{~V}$ 10\% 1210	Murata, GRM32ER61C476KE15K
9	1	C7	Cap, Alum 47 F 16V 20\%	Sun Elect Ind, 16CE47BS
10	1	C8	Cap, X7R $0.1 \mu \mathrm{~F} 50 \mathrm{~V} 10 \% 0603$	Murata, GRM188R71H104KA93D
11	2	C10, C17		Murata, GRM155R71C104KA88D
12	2	C11, C15	Cap, X7R 47nF 25V 20\% 0603	Murata, GRM188R71C473KA01D
13	2	C12, C22	Cap, X5R 47 $\mu \mathrm{F} 10 \mathrm{~V}$ 10\% 1206	Murata, GRM31CR61A476KE15L
14	3	C13, C19, C23	Cap, X7R 2.2 $\mu \mathrm{F}$ 10V 10\% 0402	Murata, GRM155R61A225KE95D
15	1	C18	Cap, X5R 100 μ F 6.3V 20\% 1206	Murata, GRM31CR60J107ME39K
16	2	C20, C21	Cap, X7R 4.7 $\mu \mathrm{F}$ 10V 10\% 0603	Murata, GRM188R61A475KE15D
17	1	C25	Cap, COG 1500pF 25V 5\% 0603	Murata, GRM1885C1E152JA01D
18	1	C29	Cap, COG 2.2pF 50V $\pm 0.25 \mathrm{pF} 0603$	Murata, GRM1885C1H2R2CA01D
19	1	C30	Cap, COG 4.7pF 50V $\pm 0.25 \mathrm{pF} 0603$	Murata, GRM1885C1H4R7CA01D
20	1	C31	Cap, COG 22pF 50V 5\% 0603	Murata, GRM1885C1H220JA01D
21	2	C34, C38	Cap, X7R 10¢F 50V 10\% 1210	Murata, GRM32ER71H106KA12L
22	1	D1	Schottky Rectifier, 60V, 5A, SOT1289	Nexperia, PMEG060V050EPD
23	2	D2, D3	Schottky Rectifier, 0.2A, SOD523	NXP, PMEG6002EB
24	1	FB1	BEAD, 4A 1206	Wurth Elektronik, 742792150
25	1	L1	Res, Jumper, Chip, 0 0805	Vishay, CRCW08050000Z0EA
26	1	L2	Inductor, 3.3 ${ }^{\text {H H XEL4030 }}$	Coilcraft, XEL4030-332ME
27	1	L3	Inductor, 1.5 ${ }^{\text {H H XEL4030 }}$	Coilcraft, XEL4030-152ME
28	1	L4	Inductor, $1 \mu \mathrm{H}$ NPIM42P	NIC Comp Corp, NPIM42P1R0MTRF
29	1	L5	Inductor, 1.5 $\mu \mathrm{H}$	Wurth Elektronik, 7448700015
30	1	Q1	MOSFET-N Channel, PG-TSDSON-8	Infineon, BSZ067N06LS3 G
31	1	R1	RES, CHIP, 0.008, 1W, 1\%, 0815	Susumu, RL3720WT-R008-F
32	4	R2, R3, R4, R5	Res, Chip 24.9k 0.1W 1\% 0603	Vishay, CRCW060324K9FKEA
33	1	R6	Res, Chip 3.32M 0.1W 1\% 0603	Vishay, CRCW06033M32FKEA
34	1	R7	Res, Chip 365k 0.1W 1\% 0603	Vishay, CRCW0603365KFKEA
35	1	R8	Res, Chip 806k 0.1W 1\% 0603	Vishay, CRCW0603806KFKEA
36	5	R9, R11, R13, R14, R19	Res, Chip 200k 0.1W 1\% 0603	Vishay, CRCW0603200KFKEA
37	1	R12	Res, Chip 464k 0.1W 1\% 0603	Vishay, CRCW0603464KFKEA
38	1	R15	Res, Chip 1M 0.1W 1\% 0603	Vishay, CRCW06031M00FKEA
39	1	R16	Res, Chip 30.1k 0.1W 1\% 0603	Vishay, CRCW060330K1FKEA
40	1	R17	Res, Chip 187k 0.1W 1\% 0603	Vishay, CRCW0603187KFKEA
41	1	R18	Res, Chip 150k 0.1W 1\% 0603	Vishay, CRCW0603150KFKEA

DEMO MANUAL DC2469A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
42	1	R23	Res, Chip 2.49M 0.1W 1\% 0603	Vishay, CRCW06032M49FKEA
43	1	R21	Res, Chip 10k 0.1W $1 \% 0603$	Vishay, CRCW060310KOFKEA
44	6	R24, R27, R32, R33, R36, R37	Res, Jumper, Chip, $0 \Omega 0603$	Vishay, CRCW06030000Z0EA
45	1	R34	Res, Jumper, Chip, $0 \Omega 0805$	Vishay, CRCW08050000Z0EA
46	1	U1	IC, Buck Regulator QFN (40) (UJ)	Analog Device, LT8603EUJ

Additional Demo Board Circuit Components

1	0	C4, C5	Cap, 0402	
2	0	C14, C16, C28, C36, C37, C41, C43	Cap, 0603	
3	0	C33	Cap, 1206	
4	0	Q2	NPN. MMBT3904, S0T-23	
5	0	R10, R20, R25, R26, R29, R30, R31, R35, R38, R39	Res, 0603	
6	0	R28	Res, 1210	
7	0	U2	IC, LTC6908CS6-1 TSOT-23-6	Analog Device, LTC6908CS6-1\#PBF

Hardware: For Demo Board Only

1	20	E1 to E20	Turret, Testpoint	Mill Max, 2501-2-00-80-00-00-07-0
2	5	JP1, JP2, JP3, JP4, JP5	Headers, 3 Pins 2mm Ctrs	Wurth Elektronik, 62000311121
3	5	XJP1, XJP2, XJP3, XJP4, XJP5	Shunt, 2mm Ctrs	Samtec, 2SN-BK-G
4	4	MH1 to MH4	STAND-OFF, NYLON 0.25" Tall (SNAP ON)	Wurth Electronik, 702931000

SCHEMATIC DIAGRAM

[^0]
Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

[^0]: A

 ## ESD Caution

 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

