DEMO MANUAL DC2067A

LT8710 Synchronous Inverting DC/DC Converter

DESCRIPTIOn

Demonstration circuit 2067A is a synchronous inverting converter (CUK topology) featuring the LT®8710 switching controller. It regulates a $-5 \mathrm{~V}, 6 \mathrm{~A}$ output from a 4.5 V to 28 V input source, and operates at 300 kHz switching frequency.

The LT8710 features simple negative or positive output voltage programming. The DC2067 programs a-5V output with a single resistor.
At light load, the LT8710 can operate at forced continuous conduction mode (CCM) or discontinuous conduction mode (DCM), set by its MODE pin. The DC2067A selects DCM, which maintains high efficiency at light load.
The DC2067A can be modified from a CUK converter to other topology. Synchronous SEPIC and synchronous BOOST schematics are provided in the data sheet. Please consult the factory or LT8710 data sheet for details regarding how to customize the DC2067A or how to design different topologies for custom specifications.

There are some optional components on the DC2067A to facilitate modifications; see Full Schematic Diagram for component designation.

1. The optional N-FET (MN2) or P-FET (MP2) could be added to increase power delivery and improve thermal dissipation.
2. The optional RC snubber (R4, C1) across the flying capacitor could help to damp the feedback control loop for some applications using two separate inductors.
3. The optional input capacitors (CIN5, CIN6) or output capacitors (CO5, CO6) could be installed to reduce voltage ripple for some low voltage and/or high current applications.
4. The optional RC (R24,C19) snubbercould be installed to damp the switch node spike and reduce the EMI noise.
5. The optional current sensing resistor filters (located near CSP and CSN pins, ISP and ISN pins) might be required in certain applications with excessive switching noise.
The LT8710 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this quick start guide for demo circuit 2067A.
Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\Omega}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX
Input Voltage		4.5	12	28
UnIput Voltage	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 6 A	-5	-5.15	V
Maximum Output Current		-4.85	V	
Output Voltage Ripple	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}(20 \mathrm{MHz}$ BW $)$		A	
Typical Switching Frequency		25	mV P-P	
Efficiency	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$	300	kHz	
	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$	85	$\%$	
	$\mathrm{~V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A}$	88.5	$\%$	

DEMO MANUAL DC2067A

PUICK START PROCEDURE

Demonstration circuit 2067A is easy to set up to evaluate the performance of the LT8710. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. With the power off, connect the input power supply to the board through VIN and PGND terminals. Connect the load to the terminals VOUT and PGND on the board. Make sure that the input power supply has sufficient current rating at minimum input voltage for the required output load.
2. Turn on the power at the input.

Note: Make sure that the inputvoltage does not exceed 28V.
3. Check for the proper output voltages. The output should be regulated at $-5.0 \mathrm{~V}(\pm 3 \%)$.
If there is no output, temporarily disconnect the Ioad to make sure that the load is not set too high.
4. Once the proper output voltage is established, adjust the input voltage and load current within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

Note: When measuring the input or output voltage ripples, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN and PGND, or VOUT and PGND terminals. See Figure 2 for proper scope probe technique.
5. The DC2067A is equipped with an output capacitor CO1 (270 1 F) that approximates typical system rail capacitance. If the system board already has capacitance of similar value, CO1 can be removed. The input capacitor CIN1 is used to help with filtering when the board is connected to lab power supply with long leads. The capacitor CIN1 can be removed if the input power source is close and has low source impedance.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Proper Scope Probe Placement for Measuring Input or Output Ripple

Figure 3. Typical Efficiency Curve

DEMO MANUAL DC2067A

PUICK START PROCEDURE

N-FET Temperature Rise vs Input Voltage

Figure 4. N-FET (MN1) Temperature Rise vs Input Voltage

Figure 5. Output Voltage Ripple at $12 \mathrm{~V}_{\mathrm{IN}}$ and $6 \mathrm{~A}_{\mathrm{OUT}}, 20 \mathrm{MHz}$ Bandwidth

DEMO MANUAL DC2067A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	6	C2, C3, C4, CIN2, CIN3, CIN4	CAP., X7R, 10 ${ }^{\text {F }}$ F, 50V, 10\% 1210	MURATA, GRM32ER71H106KA12L
2	1	C5	CAP., X7R, 0.47山F, 16V, 10\% 0805	MURATA, GRM21BR71C474KA01L
3	2	C11, C14	CAP., X7R, 2.2 $2 \mathrm{~F}, 16 \mathrm{~V}, 10 \%, 0805$	MURATA, GRM21BR71C225KA12L
4	1	C13	CAP., X7R, 4.7 FF, 50V, 10\%, 1206	TDK, C3216X7R1H475K
5	1	C15	CAP., X7R, 4.7nF, 16V, 10\%, 0603	MURATA, GRM188R71C472A01D
6	1	C16	CAP., COG, 100pF, 50V, 5\%, 0603	TDK, C1608COG1H101J
7	1	C17	CAP., X7R, 470nF, 16V, 10\%, 0603	MURATA, GRM188R71C474KA88D
8	1	C18	CAP., X7R, 47nF, 16V, 10\%, 0603	TDK, C1608X7R1C473K
9	1	CIN1	ALUMINUM CAP., 330^F, 35V,	NIPPON, EMZA350ADA331MJA0G
10	1	C01	OS-CON, 270^F, 10V, E7 SIZE	SANYO/PANASONIC, 10SVPC270M
11	3	CO2, C03, CO4	CAP., X5R, 100 ${ }^{\text {F }}$, 6.3V, 20\% 1210	MURATA, GRM32ER60J107ME20L
12	1	D1	DIODE, PMEG4030EP, SOD128	NXP, PMEG4030EP
13	1	D2	DIODE, SCHOTTKY 30V 500MA SOD323F	NXP, PMEG3005EJ+115
14	1	L1	IND, $2.2 \mu \mathrm{H}$	WÜRTH, 74485540220
15	1	MN1	N-CH FET, POWERPAK SO-8	FAIRCHILD, FDMS86500L
16	1	MP1	P-CH FET, DPAK	FAIRCHILD, FDD4141
17	1	R1	RES., SENSE, $0.002 \Omega, 1 \mathrm{~W}, 1 \%$ RL3720W	SUSUMU, RL3720WT-R002-F
18	1	R3	RES., SENSE, $0.006 \Omega, 1 \mathrm{~W}, 1 \%$ RL3720W	SUSUMU, RL3720WT-R006-F
19	8	R5, R6, R7, R9 ,R12, R15, R16, R18	Res., Chip, 0, 0.1W, 0603	VISHAY, CRCW06030000Z0EA
20	1	R5, R6, R7, R9, R12, R15, R16, R19	Res., Chip, 499』, 0.1W, 1\%, 0603	VISHAY, CRCW0603499RFKEA
21	1	R13	Res., Chip, 60.4k, 0.1W, 1\%, 0603	VISHAY, CRCW060360K4FKEA
22	1	R17	Res., Chip, 12.7k, 0.1W, 1\%, 0603	VISHAY, CRCW060312K7FKEA
23	2	R19, R23	Res., Chip, 100k, 0.1W, 1\%, 0603	VISHAY, CRCW0603100KFKEA
24	1	R20	Res., Chip, 10k, 0.1W, 1\%, 0603	VISHAY, CRCW060310KOFKEA
25	1	R21	Res., Chip, 118k, 0.1W, 1\%, 0603	VISHAY, CRCW0603118KFKEA
26	1	R22	Res., Chip, 12.1k, 0.1W, 1\%, 0603	VISHAY, CRCW060312K1FKEA
27	1	U1	IC, DC/DC CONVERTER, TSSOP-20	LINEAR TECH., LT8710EFE\#PBF
28	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 2067A REV 4

Additional Demo Board Circuit Components

1	0	C1 (OPT)	CAP., 2220	
2	0	C20, CIN5, CIN6, CO5, CO6 (OPT)	CAP., 1210	
3	0	C6, C7, C8, C9, C10 (OPT)	CAP., 0603	
4	0	C12 (OPT)	CAP., 1206	
5	0	C19 (OPT)	CAP., 0805	
6	0	MN2 (OPT)	N-CH FET, POWERPAK S0-8	
7	0	MP2 (OPT)	P-CH FET, DPAK	
8	0	R2 (OPT)	RES., SENSE, RL3720W	
9	0	R4, R24 (OPT)	RES., 1210	
10	0	R10, R11, R14 (OPT)	RES., 0603	

Hardware-For Demo Board Only

1	14	E1-E14	TESTPOINT, TURRET, 0.094" PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
2	1	JP1	3-PIN 0.079 SINGLE ROW HEADER	SULLINS, NRPN031PAEN-RC
3	1	XJP1	SHUNT, 0.079" CENTER	SAMTEC, 2SN-BK-G
4	4	MH1-MH4	STAND-OFF, NYLON 0.50"	KEYSTONE, 8833(SNAP 0N)

DEMO MANUAL DC2067A

simple schematic diagram

DEMO MANUAL DC2067A

fULL SCHEMATIC DIAGRAM (OPTIONAL COMPONEחTS SHOWN)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC2067A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

