DESCRIPTION

Demonstration circuit board DC106 provides a constant frequency, 4-output, low noise switching regulator. The outputs include: $5 \mathrm{~V} / 3 \mathrm{~A}, 3.3 \mathrm{~V} / 3 \mathrm{~A}, 12 \mathrm{~V} / 200 \mathrm{~mA}$ and $2.9 \mathrm{~V} / 3 \mathrm{~A}$. Refer to the LTC ${ }^{\circledR} 1438 /$ LTC1439 and LTC1538-AUX/ LTC1539 data sheets for other possible configurations. The 5 V and 3.3 V outputs are complete synchronous buck switching regulators. The 12 V is derived from a secondary winding and is regulated irrespective of the load on the primary 5 V output using a secondary feedback control inputto the first controller. The 2.9 V output is derived from the 3.3 V output using an internal linear regulator controller. The transient response and peak current rating of 3 A
is consistent with Intel P54LM requirements. The controllers operate at a constant frequency of 200 kHz , thereby providing low noise operation. This constant frequency prevents any unpredictable or audible radiation. The controller can operate ata 99% duty cycle for very low dropout conditions. Internal power-on reset and a second uncommitted comparator are included to facilitate a complete system power solution. The demonstration board operates on an input supply of from 5.2 V to 28 V , however, 12 V output power is limited at low input voltages. Gerber files for this circuit board are available. Call the LTC factory.

PGRFORMANCE SUMMARY (continued on page 2) Operating Temperature Range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

Input Voltage/Current Range	Input Voltage Limited by External MOSFET Drive and Breakdown Requirements	5.2 V to 28 V	8 A Max
Output	Output Voltage, Controller 1 (J11-J12)	$5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	3 A
	Output Voltage, Controller 2 (J7-J8)	$3.3 \mathrm{~V} \pm 0.08 \mathrm{~V}$	3 A
	Output Voltage, Auxiliary Regulator (J2-J5)	$2.9 \mathrm{~V} \pm 0.10 \mathrm{~V}$	3 A
	Output Voltage, Controller 1 Synchronous Secondary (J10-J9); $\mathrm{V}_{1 \mathrm{~N}}>=7 \mathrm{~V}$	$12 \mathrm{~V} \pm 0.60 \mathrm{~V}$	0.2 A

Specifications on this data sheet are preliminary only, and subject to change without notice.
Contact the manufacturer before finalizing a design using this part.

TYPICAL PGRFORMANCE CHARACTERISTICS AND BOARD PHOTOS

Back

DEMO MANUAL DC106
 DESIGN-READY SWITCHERS

PERFORMARMCE SUMMARRY (continued from page 1) Operating Temperature Range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	OUTPUT 1	OUTPUT 2	OUTPUT 3	OUTPUT 4	UNITS
Output Voltage		$5 \mathrm{~V} \pm 0.1$	$3.3 \mathrm{~V} \pm 0.08$	$12 \mathrm{~V} \pm 0.6$	$2.9 \mathrm{~V} \pm 0.05$	V
Output Rated Current		3	3	0.2	3	A
Line Regulation	Measured at Rated Current	0.013	0.002	0.16	0.007	\%/V
Load Regulation	10\% to 100\% of Rated Current	0.65	0.52	3.3	0.14	\%
Short-Circuit Current		1.1	2.9	N/A	N/A	A
Ripple Voltage at Rated Current	Measured at Rated Current	40	40	100*	20	mV
Transient Response Load Step Settling Time Load Step Undershoot Transient Load Step Overshoot Transient	10\% to 100% load 100% to 10% load 10% to 100% load 100% to 10% load	$\begin{gathered} 100 \\ 200 \\ 3.6 \\ 4 \end{gathered}$	$\begin{gathered} 50 \\ 100 \\ 2.5 \\ 4.2 \end{gathered}$	$\begin{aligned} & 150 \\ & 150 \\ & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 80 \\ & 1.0 \\ & 2.7 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\%$ $\%$
General						
PARAMETER	CONDITIONS				TYPICAL	UNITS
$\mathrm{V}_{\text {IN }}$ Range	All Outputs in Regulation				7 to 28	V
Supply Current in Shutdown	All Outputs Shut Down, $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$ (LTC1439) All Outputs Shut Down, $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$ (LTC1539)				$\begin{aligned} & 16 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current	All Outputs On, $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$ All Outputs $0 n, V_{I N}=28 \mathrm{~V}$				$\begin{aligned} & 450 \\ & 280 \end{aligned}$	$\mu \mathrm{A}$
Operating Frequency					200	kHz

*5V output loaded with 1 A

PACKAGE DIAGRAM

RUN/SS1 1	36 PLL LPF	LTC1439CGW LTC1539CGW
SENSE ${ }^{+1} 2$	35 PLLIN	
SENSE' 1	34 boost 1	
$\mathrm{V}_{\text {Prog } 1} 4$	33 TGL1	
$1_{\text {TH1 }} 5$	32 SW 1	
POR2 6	31 TGS1	
Cosc 7	30 VIN	
SGND 8	29 BG1	
LBI 9	28 INT V ${ }_{\text {CC }}$	
LBO 10	27 PGND	
SFB1 11	26 BG2	
$1{ }_{\text {TH2 } 2} 12$	25 EXTV $V_{C C}$	
$\mathrm{V}_{\text {PROG2 }} 13$	24 TGS2	
$V_{\text {OSENSE2 }} 11$	23 SW2	
SENSE-2 15	22 TGL2	
SENSE 216	21 BOOST2	
RUN/SS2 17	20 AUXON	
AUX DR 18	19 AUXFB	
36-L	SOP	

LTC1439/LTC1539 Pinout

SCHEMATIC DIAGRAM

DEMO MANUAL DC106
 DESIGN-READY SWITCHERS

PARTS LIST

REFERENCE DESIGNATOR	QUANTITY	PART NUMBER	DESCRIPTION	VENDOR
C1, C21, C22, C25, C26	5	TPSE226M035R0300	224F 35V 20\% Tantalum Capacitor	AVX
C2, C6, C10, C13, C15	5	08055A102MAT1A	1000pF 50V 20\% NPO Capacitor	AVX
C3	1	08055A560KAT1A	56pF 50V 10\% NPO Capacitor	AVX
C4	1	TPSD336M020R0200	334F 20V 20\% Tantalum Capacitor	AVX
C5	1	TPSE337M006R0100	330 F F 6.3 V 20\% Tantalum Capacitor	AVX
C7	1	08055A471KAT1A	470pF 50V 10\% NPO Capacitor	AVX
C8, C9	2	08055A221KAT1A	220pF 50V 10\% NPO Capacitor	AVX
C11, C14, C20, C23, C27	5	08055C104MAT1A	$0.1 \mu \mathrm{~F} 0 \mathrm{~V} 20 \%$ X7R Capacitor	AVX
C12	1	08055C682MAT1A	6800pF 50V 20\% X7R Capacitor	AVX
C16, C19, C28, C29	4	TPSD107M010R0080	100 F F 10V 20\% Tantalum Capacitor	AVX
C17	1	08055A220KAT1A	22pF 50V 10\% NPO Capacitor	AVX
C18	1	08055C103MAT1A	0.01 ${ }^{\text {F }} 50 \mathrm{~V}$ 20\% X7R Capacitor	AVX
C24	1	TAJB475M016R	4.7 $\mathrm{F}^{\text {F 16V 20\% Tantalum Capacitor }}$	AVX
D1, D3	2	MBRS140T3	40V 1A Schottky Diode	Motorola
D2, D4, D6	3	CMDSH-3TR	30V 0.1A Schottky Diode	Central
D5, D7	2	MMBD914LT1	100V General Diode	Motorola
L2	1	CDRH127-100MC	10 $\mu \mathrm{H} 20 \%$ 7A Inductor	Sumida
M1	1	Si9436DY	Dual N-Channel MOSFET	Siliconix
M4, M5	2	Si4412DY	N-Channel MOSFET	Siliconix
M7	1	IRLL014TR	N-Channel MOSFET	IR
Q1	1	MMBT2907ALT1	2907A PNP Transistor	Motorola
Q2	1	FZT849TA	FZT849TA NPN Transistor	Zetex
R1	1	CR21-270J-T	27 Ω 1/10W 5\% Chip Resistor	AVX
R2, R18, R19	3	CR21-101J-T	100 1 1/10W 5\% Chip Resistor	AVX
R3	1	CR21-1003F-T	100k 1/10W 1\% Chip Resistor	AVX
R4	1	CR21-1132F-T	11.3k 1/10W 1\% Chip Resistor	AVX
R5	1	CR21-472J-T	4.7k 1/10W 5\% Chip Resistor	AVX
R6	1	LR2512-01-R020-F	0.02Ω 1W 1\% Chip Resistor	IRC
R7	1	CR21-2213F-T	221k 1/10W 1\% Chip Resistor	AVX
R8	1	CR21-3163F-T	316k 1/10W 1\% Chip Resistor	AVX
R9	1	CR21-473J-T	47k 1/10W 5\% Chip Resistor	AVX
R10	1	LR2010-01-R033-F	0.033 $1 / 2 \mathrm{~W}$ 1\% Chip Resistor	IRC
R11, R17, R20, R21	4	CR21-100J-T	10л 1/10W 5\% Chip Resistor	AVX
R12	1	CR21-102J-T	1k 1/10W 5\% Chip Resistor	AVX
R13, R15	2	CR21-103J-T	10k 1/10W 5\% Chip Resistor	AVX
R16	1	CR21-335J-T	3.3M 1/10W 5\% Chip Resistor	AVX
T1	1	LPE-6562-A236; Gapped SMT E-Core	9.5 $\mu \mathrm{H}$ 3.5A 1:1.42 Inductor	Dale
T1 (Alternate Supplier)		501-0655; Gapped SMT Toroid	9.5uH 3.5A 1:1.41 Inductor	BH Electronics
U1	1	LTC1439CGW/LTC1539CGW	LTC1439/LTC1539 36-Pin SSOP IC	LTC

mAnUFACTURER TELEPHCG \in DIRECTORY

MANUFACTURER	USA	EUROPE	JAPAN	HONG KONG	SINGAPORE	TAIWAN
AVX	$(207) 282-5111$	$(0252) 336868$		3633303		
BH Electronics	$(612) 894-9590$					
Central	$(516) 435-1110$	49816143963				
Dale	$(605) 665-9301$	49928771434			657472767	
IR	$(310) 322-3331$	44883713215		$(852) 8037380$		
IRC	$(512) 992-7900$					
Siliconix (TEMIC)	$(408) 970-5700$	$490713167-0$		$(852) 23-789-789$		
LTC	$(408) 432-1900$					
Motorola	(602) $244-5768$	4989921030		$(852) 4808333$		
Sprague	(207) $324-4140$	3347540575		$(852) 7979893$	654751826	88627719582
Sumida	$(708) 956-0666$		8806688	2963388	$02-726-2177-9$	
Zetex	(516) $543-7100$	44616275105				

QUICK START GUIDE

This demonstration board is easily set up to evaluate the performance of the LTC1439 or LTC1539. Please follow the procedure outlined below for proper operation.

- Refer to Figure 2 below for board orientation and proper measurement equipment setup.
- Set the three DIP switches, (SW1A, B, and C) to the left position (switches closed).
- Connect the desired loads between the $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2, }}$ $V_{\text {OUT3, }} V_{\text {OUT4 }}$ and their closest PGND terminals on the board. The loads can be up to 3 A for $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}$, and $V_{\text {OUT4; }}$; and 200 mA for $\mathrm{V}_{\text {OUT3 }}$. Soldered wires should be used when the load current exceeds 1A in order to achieve proper testing results.
- Connect the input power supply to the V_{IN} and the adjacent PGND terminals at the top of the board. It is safest to start with a voltage less than 6V to verify all of the connections without inadvertently forcing too much voltage on one of the tantalum output capacitors. Once
the output voltage and loading conditions have been verified, it will be safe to increase the input supply to the maximum allowed value of 28V. Do NOT increase $\mathrm{V}_{\text {IN }}$ over 28 V or the MOSFETs MAY BE DAMAGED.
- Switch the desired output(s) on by moving SW1 A, B, or C to the right position ($5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 2.9 V respectively). The 12 V output will be properly generated when the 5 V output is turned on and when the input supply voltage is a minimum of 7 V . The 2.9 V output can only be produced when the $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 2.9 V output switches are turned on due to this particular demonstration board design.
- Measure $V_{\text {OUT1 }}, V_{\text {OUT2 }}$ and $V_{\text {OUT4 }}$ to verify output voltages of $5 \mathrm{~V} \pm 0.1 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.08 \mathrm{~V}$ and $2.9 \mathrm{~V} \pm 0.05 \mathrm{~V}$ respectively at load currents of 1 A each.
- Verify the input supply voltage is at a minimum of 7 V . Measure $\mathrm{V}_{\text {OUT3 }}$ to verify the output voltage of 12 V $\pm 0.6 \mathrm{~V}$ over the allowed load current range of 0 mA to 200 mA .

operation

The circuit shown in the Schematic Diagram generates 5V, $3.3 \mathrm{~V}, 12 \mathrm{~V}$ and 2.9 V . It provides 5 V at currents up to 3 A . The 2.9 V output is derived from the 3.3 V output using a low dropout linear regulator using the on-chip auxiliary controller. The total current available at the 2.9 V and 3.3 V outputs combined is 6 A with a maximum of 3 A for the 2.9 V output. The 12 V output can deliver up to several hundred milliamps. Figure 2 illustrates the correct measurement setup in order to verify the typical numbers found in the Performance Summary table. The use of small spring-clip leads is very convenient for small-signal bench testing but should not be used at the current and impedance levels associated with this switching regulator. Soldered wire connections are required to properly evaluate the performance of this demonstration board.

In addition to the input and output pins, a 10-pin male connector, J1, allows the user to examine other functions included on the LTC1439/LTC1539 system demonstration board. Three pins, 5V RUN (J1-Pin 9), 3.3V RUN (J1Pin 2) and 2.9V RUN (J1-Pin 3) operate in parallel with the

Figure 2. Proper Measurement Setup
manual switches on the board to allow electronic ON/OFF switching of the voltage outputs.

A power-on reset (POR, J1-Pin6) output can be externally pulled up to an external supply of less than 12 V . The LTC1439 keeps the POR output low in shutdown and for 65536 oscillator clock periods after the first controller's output is within 5% of its final value. The LTC1539 has the

DEMO MANUAL DC106
 DESIGN-READY SWITCHERS

operation

same POR functionality with the exception that the second controller's output is monitored rather than the first.

The Low-Battery Input, (LBI, J1-Pin 5) and the Low-Battery Output, (LBO, J1-Pin 4) are available as connections to a separate comparator. LBI is tied to the noninverting input of the comparator whose other input is tied to the internal $1.19 \mathrm{~V}, 1 \%$ accurate voltage reference. The comparator is active in shutdown (5V RUN and 3.3V RUN inputs low) on the LTC1539 but is shut down on the LTC1439.

The 5V Standby (J1-Pin 7) is also active in shutdown on the LTC1539 but inactive for the LTC1439. This 5V, 4\% accurate standby supply can be very useful in an application which requires power for a "wake-up" function such as a keyboard controller. The cost of leaving these functions alive in the LTC1539 is a typical shutdown current of $70 \mu \mathrm{~A}$, an increase of $50 \mu \mathrm{~A}$ over the LTC1439. The LTC1439 turns off all internal functionality (except for holding POR low) to minimize supply current in shutdown.
The first controller generates the 5 V and 12 V outputs using a $9 \mu \mathrm{H}$ primary and a secondary winding with a turns ratio of $1: 1.42$. The technique used to generate the 12 V is superior to using a simple rectifying diode in terms of regulation accuracy and efficiency. Synchronous MOSFETs M1B and M7 are driven in parallel. The primary output voltage storage capacitor is used to provide power during the synchronous MOSFET's active period by transforming the well-controlled 5 V output by the turns ratio and stacking this output on top of the 5 V output. A well-coupled transformer and low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ MOSFETs provide an output which is controlled to within $\pm 5 \%$ over all primary and secondary loading conditions. A 12 V secondary output load current is normally limited to an amount less than that which is being drawn from the primary winding. This is not the case with the design here! A secondary feedback input to the first controller senses the 12 V output voltage via a resistive divider, compares this to the internal 1.19 V reference, and forces synchronous MOSFET operation on the primary 5 V controller as required to maintain a minimum output voltage. The resistive divider is set for a value of less than 12 V to guarantee that synchronous operation will only be forced as required by the 12 V load when the primary is unloaded. The demonstration board design sets
this value to be 11.7 V -comfortably below the 12.2 V which is generated during continuous inductor current operation. The secondary winding approach also requires that the synchronous switch have adequate on-time duration as set by the $\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$ voltage ratio for the primary regulator. This particular design requires approximately 7 V minimum input voltage to properly generate the 12 V at its maximum rated load. A secondary winding from a 3.3V output would work down to 5.4 V input but would be slightly less efficient and accurate. The design does not use the Adaptive Power ${ }^{\text {TM }}$ mode to prevent a higher secondary output voltage generated due to the increased voltage across the primary when the Schottky rectifier, D1, is conducting. Foldback current limit is provided by D5 to protect the bottom MOSFET from overheating during short-circuit conditions.

The 3.3 V output uses a $10 \mu \mathrm{H}$ inductor and a 0.02Ω sense resistor to provide up to 6 A for the combined 3.3 V and 2.9 V loads. R20, R21, C10 and C9 provide HF decoupling from the output for the current and voltage sensing of the output. The loop compensation components have been optimized for the higher current output level and the transient response performance. A slightly larger inductor can be substituted in order to reduce the ripple current requirements on the input and output capacitors. Foldback current limit is provided by D7 and R12 to protect the bottom MOSFET from overheating during short-circuit conditions.

The 2.9 V output is generated from the 3.3 V output using an internal auxiliary regulator controller. The significant base current required by the output NPN pass device, Q2, is taken from the 5 V switcher output. This approach provides a reasonably efficient, high performance linear regulator solution for Intel P54LM applications. The output accuracy is set by the internal, 1% accurate reference and an external resistive divider. The external divider allows flexibility in output voltage as well as remote voltage sensing, a requirement in high current applications. While additional low ESR capacitance is required at the load in order to capitalize on the full performance potential of the regulator, care must be taken to make sure that the overall loop is stable. Additional suggestions for stability include: a resistor in series with C12 to provide a

operation

zero in the forward response to reduce phase shift at high frequencies (50Ω to 500Ω); changing the value of feedforward capacitor, C 17 (5 pF to 50 pF), to minimize any peaking in the fed-back response; and increasing R1 (20Ω to 100Ω) to reduce the open-loop gain of the amplifier (making sure Q1 can still provide enough base current for Q2). $500 \mu \mathrm{~F}$ of low ESR tantalum capacitance is recommended for CPU power applications. Extremely low ESR ceramic capacitors are not recommended due to the particular NPN emitter follower output stage design.
The power to drive the output power MOSFETs is taken from the IC's INT $V_{\text {CC }}$ pin. The voltage at this pin is normally derived from the $\mathrm{V}_{\text {IN }}$ supply using an internal, low dropout linear regulator. The power MOSFET's gate currents alone can be in the range of 0 mA to 50 mA depending upon the oscillator frequency, the MOSFETs used and the particular output loading condition. The "gate charge" current times the voltage drop between VIN and the INT $V_{C C}$ output voltage can result in significant power loss and thermal demands upon the IC. It is for this reason that an additional input pin, EXT $\mathrm{V}_{\text {CC }}$, is provided. When the voltage applied to the EXTV $V_{C C}$ pin is greater than 4.8 V the internal regulator is turned off and an internal switch is closed between the INT $V_{C C}$ and EXT $V_{C C}$ pins. The current normally delivered by the INT V C S supply is now provided by the voltage source applied to the EXT V CC_{C} pin. Efficiency and thermal dissipation are improved significantly. The 5V output of the IC's switching controller or another external supply of 5 V to 9 V can be used to provide the EXT V ${ }_{\text {CC }}$ power. Connecting the EXT $V_{\text {CC }}$ pin to the 5 V switcher output takes full advantage of the high efficiency of the DC/DC converter and reduces the IC's required thermal dissipation, truly a win-win situation! At high input voltage using large output MOSFETs, this may be the only way to stay within the worst-case IC package power dissipation limits.

An uncommitted comparator referenced to 1.19 V is available at terminals $\mathrm{J} 1-\mathrm{P} 4$ and $\mathrm{J} 1-\mathrm{P} 5$, and an open-drain power-on reset output for channel 2 for the LTC1439 (channel 1 for the LTC1539) is available at terminal J1-P6. Refer to the LTC1439 and LTC1539 data sheets for further information on these functions.

LTC1439 AND LTC1539 EFFICIENCY MEASUREMENT

The measurement of efficiency depends upon the operating conditions of all four regulators so care and thought must be given when doing so. Efficiency figures ideally should be taken with only the minimum required circuitry operating on an individual regulator. Since there is much common circuitry operating when more than one regulator is running, overall efficiency numbers will actually increase when the two switching regulators are active. The increase is not significant at high output currents, but can become very significant at low output currents when the IC supply current becomes an appreciable part of the total system supply current.

IC FUNCTIONAL DESCRIPTION

The LTC1439/LTC1539 switching regulators accomplish high efficiency DC/DC voltage conversion while maintaining constant frequency using a current mode architecture. The externally adjustable free-running oscillator frequency can be phase-locked to an external input, or it can be logically switched using the PLL FLTR pin. High efficiency, maintained at lower currents even when operating at constant frequency, is made possible by using a new Adaptive Power architecture employing two automatically switched output stages. The high current output stage uses a better-than-90\% efficient synchronous regulator with the ability to disable the synchronous MOSFET during each period if the current in the output inductor (transformer) reverses. The low current output stage uses a constant frequency nonsynchronous switch technique using a second, smaller switching MOSFET. Adaptive Power operation is featured in demonstration circuit DC096B.

Adaptive Power operation is not employed in the DC106B circuit, rather, the smaller MOSFET is eliminated, resulting in Burst Mode ${ }^{\text {TM }}$ operation. Subharmonics of the oscillator switching frequency will be present at low current levels, and an assessment needs to be made as to any potential interference problems.

DEMO MANUAL DC106
 DESIGN-READY SWITCHERS

PCB LAYOUT AnD FILm all as viewed from topside.

Top Silkscreen

Top Copper Layer

Third Copper Layer

Bottom Silkscreen

PGND-SGND Ground Plane

Bottom Copper Layer

