DESCRIPTIOn

Demonstration circuit DC1920A is a micropower USB power manager with Li-ion charger, buck $D C / D C$, and always-on LDO regulator featuring the LTC®3553EUD-2.

Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\boxed { }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
VBUS	Bus Input Voltage Range		4.35	5.5	V
V(BAT $)$	Battery Float Voltage	Constant Voltage Mode	4.15	4.23	V
I(BAT $)$	Battery Charge Current	Constant Current Mode, RPROG $=1.87 \mathrm{k}$	380	420	mA
VLDO	LDO Output Voltage	I(VLDO $) \leq 150 \mathrm{~mA}$	3.25	3.35	V
VBUCK	Buck Regulator Output Voltage	$I(V B U C K) \leq 200 \mathrm{~mA}$	1.15	1.25	V

PUICK START PROCEDURE

Refer to Figure 1 for the proper measurement equipment setup and jumper settings and follow the procedure below.
NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VBUS or $\operatorname{VOUT}(x)$ and GND terminals. See Figure 2 for proper scope probe technique.

1. Set PS1 = OV, PS2 $=3.6 \mathrm{~V}$. Application of power to BAT (PS2), causes a POR. As shown in Figure 5 of the data sheet, the POR causes the LTC3553EUD-2 to enter the PDN1 state. In the PDN1 state VLDO is on, and VBUCK is off. After 1s, the LTC355EUD-2 transitions to the Hard Reset (HR) state. In HR VLDO is off, and total current draw from the battery is less than $1 \mu \mathrm{~A}$.
2. Press "REGS ON" button for > 0.5 seconds. Observe I(BAT) (AM2), VBUCK (VM5) and VLDO (VM6). Pressing the "REGS ON" button for > 0.5 seconds causes the LTC3553EUD-2 to enter the PUP1 state. In the PUP1 state both regulators are on. After 5 seconds, the LTC3553EUD-2 enters the PON state. Observe VLDO (VM6). VLDO is always-on, and is 3.3 V . The LTC3553EUD-2 is in standby mode which reduces the battery current to less than $15 \mu \mathrm{~A}$, even with both regulators running. In standby mode the maximum current from the buck regulator is reduced to 10 mA . Since BUCK_ON (pin 7) on the LTC3553EUD-2 is pulled up by the buck output, the buck regulator will remain on, and at 1.2 V .

DEMO MANUAL DC1920A

PUICK START PROCEDURE

3. Set STBY (JP6) to "OFF", and observe I(BAT) (AM2) and VPROG (VM2). The LTC3553EUD-2 is now operating in normal mode drawing more current from the battery. However the buck regulator is now capable of delivering up to 200 mA , VLDO can deliver 150 mA in either standby or normal mode.
4. Set PS1 to 5V. Observe I(VBUS) (AM1), I(BAT) (AM2) and VPROG (VM2). Since VBUS is now available, the battery charger is operating, butcharge current is limited by the input current limit to 100 mA (max.).
5. Set HPWR (JP2) to " 500 mA ". Observe I(VBUS) (AM1), I(BAT) (AM2) andVPROG (VM2). The input current limit is now 500 mA (max.) so the battery charger is delivering the full programmed charge current of $\sim 400 \mathrm{~mA}$ to the battery.
6. Set LD2 to 200 mA , LD3 to 150 mA . Observe VBUCK (VM5), VLDO (VM6) and I(BAT) (AM2). The buck regulator is supplying 200 mA , and the always-on LDO is supplying 150 mA . At $\sim 90 \%$ efficiency the buck regulator is drawing $\sim 50 \mathrm{~mA}$ and the LDO is drawing 150 mA from the VBUS supply. So, the battery charger is delivering approximately 250 mA . This is because the input current limit is $450 \mathrm{~mA}-150 \mathrm{~mA}-50 \mathrm{~mA}=250 \mathrm{~mA}$.
7. Set LD2 to OA, LD3 to OA and PS1 to OV. Press "Buck OFF" button. Observe VBUCK (VM5) and VLDO (VM6). The buck regulator is now off. To turn off the LDO hold down the ON button for at least 14 seconds. This puts the LTC3553EUD-2 in "Hard Reset" and shuts off the LDO.
8. Reset the Jumpers to their default position.

Note: All connections from equipment should be Kelvin connected directly to the board pins which they are connected on this diagram (Figure 1) and any input or output leads should be twisted pair.

LTC3553 Product Options (for Reference only)

Part Number	LDO	PGOOD	Hard Reset Time
LTC3553	On/Off Control	No	5 Seconds
LTC3553-2	Always On	Yes	14 Seconds

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup for DC1920A

Figure 2. Measuring Input or Output Ripple

DEMO MANUAL DC1920A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	3	C2, C7, C10	CAP, CHIP, X5R, 10 $\mu \mathrm{F}, \pm 20 \%, 6.3 \mathrm{~V}, 0603$	TDK, C1608X5R0J106K
2	1	C4	CAP, CHIP, X5R, 4.7 $\mu \mathrm{F}, \pm 20 \%, 4 \mathrm{~V}, 0402$	MURATA, GRM155R60G475M
3	1	C5	CAP, CHIP, X5R, $1 \mu \mathrm{~F}, \pm 10 \%, 10 \mathrm{~V}, 0402$	MURATA, GRM155R61A105KE15D
4	1	C6	CAP, CHIP, COG, 10pF, $\pm 5 \%$, 50V, 0402	MURATA, GRM1555C1H100JZ01D
5	1	C9	CAP, CHIP, X5R, 2.2 $2 \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 0402$	MURATA, GRM155R60J225ME15D
6	1	L1	IND, SMT, $10 \mu \mathrm{H}, 459 \mathrm{~m} \Omega, \pm 20 \%, 0.631 \mathrm{~A}, 2 \mathrm{~mm} \times 2 \mathrm{~mm}$	COILCRAFT, EPL2014-103MLC
7	1	R3	RES, CHIP, $1.87 \mathrm{k} \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04021K87FKED
8	2	R7, R11	RES, CHIP, 100k $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW0402100KFKED
9	3	R8, R10, R17	RES, CHIP, 0Ω JUMPER, 1/16W, 0402	VISHAY, CRCW04020000Z0ED
10	2	R11, R14	RES, CHIP, 649k Ω, $\pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW0402649KFKED
11	1	R12	RES, CHIP, 2.05M $\Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04022M05FKED
12	1	R15	RES, CHIP, 332k Ω, $\pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW0402332KFKED
13	1	U1	MICROPOWER USB POWER MANAGER WITH LI-ION CHARGER, LDO AND BUCK REGULATOR	LINEAR TECH., LTC3553EUD-2

Additional Demo Board Circuit Components

1	1	C1	CAP, CHIP, X5R, $10 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 0603$	TDK, C1608X5ROJ106K
2	0	C3-OPT	CAP, CHIP, COG, $1 \mathrm{pF}, \pm 5 \%, 50 \mathrm{~V}, 0402$	VISHAY, VJ0402A1ROJXAA
3	1	C8	CAP, CHIP, X5R, $100 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 1206$	MURATA, GRM31CR60J107ME39L
4	1	D1	LED, GREEN, 0603	LITE-ON, LTST-C190KGKT
5	4	R1, R19-R21	RES, CHIP, $1 \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04021R00JNED
6	3	R2, R18, R23	RES, CHIP, $100 \mathrm{k} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW0402100KJNED
7	1	R4	RES, CHIP, $10 \mathrm{k} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW040210K0JNED
8	1	R5	RES, CHIP, $510 \mathrm{k} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW0402510KJNED
9	0	R6	RES, CHIP, $1 \mathrm{M} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04021M00JNED
10	2	R13, R16	RES, CHIP, $20 \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW040220R0JNED
11	1	R22	RES, CHIP, $1 \mathrm{k} \Omega, \pm 5 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW06031K00JNED

Hardware For Demo Board Only

1	11	E1-E2, E7-E11, E13-E14, E16-E17	TURRET, 0.09 DIA	MILL-MAX, 2501-2-00-80-00-00-07-0
2	6	E3-E6, E12, E15	TURRET, 0.061"	MILL-MAX, 2308-2-00-80-00-00-07-0
3	1	J1	CONN, USB MINI-B	TYC0, 1734035-2
4	0	J2-OPT	CONN, 3 PIN POLARIZED	HIROSE, DF3-3P-2DSA
5	7	JP1-JP7	HEADER, 3 PIN, 2mm	SAMTEC, TMM-103-02-L-S
6	7	JP1-JP7	SHUNT, 2mm	SAMTEC, 2SN-BK-G
7	2	PB1, PB2	SWITCH, N.O. MOMENTARY, 3.5mm $\times 6 \mathrm{~mm}$ SMT	PANASONIC, EVQPPFA25
8	4		STAND-OFF, NYLON, 0.375"	KEYSTONE, 8832

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1920A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

