DESCRIPTIO

Demonstration circuit 2383A-A features the LTC®3644: the wide input and output voltage range, high efficiency and power density, quad 1.25A outputs DC/DC synchronous step-down monolithic regulator. The input voltage range of DC2383A-A is 2.7 V to 17 V . The default demo board setting of $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}, \mathrm{V}_{\text {OUT3 }}, \mathrm{V}_{\text {OUT4 }}$ is $1.2 \mathrm{~V}, 3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ and 1.8 V at 1.25 A maximum DC output current per channel. There are two assembly versions. The DC2383A-A features LTC3644 which operates at an internally fixed frequency of 1 MHz (Typ), while the DC2383A-B features LTC3644-2 which operates at an internally fixed frequency of 2.25 MHz (Typ). Peak current limit is internally fixed at 2.2A typical per channel. Each channel comes with independent run pin control and power good indicators. Phase shift selection of either 0 degree or 180 degrees between switch rising edge of channels 1,2 and channels 3,4 is also available.

DC2383A-A provides optional onboard 0Ω jumpers to configure the LTC3644 as 4-phase dual $2.5 \mathrm{~A} / 2.5 \mathrm{~A}$ outputs or 4-phase triple $2.5 \mathrm{~A} / 1.25 \mathrm{~A} / 1.25 \mathrm{~A}$ outputs. Optional 0Ω jumpers connecting $\mathrm{V}_{\text {IN1 }}$ to $\mathrm{V}_{\text {IN2 }}, \mathrm{V}_{\text {IN3 }}, \mathrm{V}_{\text {IN4 }}$ are available
for users to operate selected channels of LTC3644 at different input voltages than $\mathrm{V}_{\text {IN1 }}$.
A user-selectable MODE/SYNC input is provided to allow users to trade off ripple noise for light load efficiency: pulse-skipping mode (PS) or Burst Mode ${ }^{\circledR}$ operation delivers higher efficiency at light load while forced continuous conduction mode (FCM) is preferred for noise sensitive applications. The MODE/SYNC pin can also be used to synchronize the switching frequency to an external clock or set the phase shift between channels 1, 2 and channels 3,4 . Constant frequency, peak current mode control architecture and integrated internal control loop compensation network, allows very fast transient response to line and load changes while maintaining loop stability.

The LTC3644 is available in a thermally enhanced, low profile 36 -lead $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ BGA package.

It is recommended to read the data sheet and demo manual of LTC3644 prior to using or making any changes to DC2383A-A.

Design files for this circuit board are available.

DEMO MANUAL DC2383A-A

PGRFORMARCE SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range $\mathrm{V}_{\text {IN }}$		2.7V to 17V
Demo Board Default Output Voltages $V_{\text {OUT1 }}, V_{\text {OUT2 }}, V_{\text {OUT3 }}, V_{\text {OUT4 }}$	$\begin{aligned} & \mathrm{f}_{\text {SW }}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V} \text { to } 17 \mathrm{~V}\left(\mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}\right) \\ & \mathrm{I}_{\text {LOAD }}=0 \mathrm{~A} \text { to } 1.25 \mathrm{~A} \text { per Channel } \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~V} \pm 2 \% \\ & 3.3 \mathrm{~V} \pm 2 \% \\ & 2.5 \mathrm{~V} \pm 2 \% \\ & 1.8 \mathrm{~V} \pm 2 \% \end{aligned}$
Default Switching Frequency	Internally Fixed Switching Frequency	$1 \mathrm{MHz} \pm 18 \%$
Maximum Continuous Output Current Iout per Channel $I_{\text {OUt1 }}, I_{\text {OUT2 }}, I_{\text {OUt }}, I_{\text {OUT4 }}$	$\begin{aligned} & \mathrm{f}_{\text {SW }}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V} \text { to } 17 \mathrm{~V}\left(\mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}\right) \\ & \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V} \end{aligned}$	1.25A
Efficiency	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \\ & \mathrm{f}_{\text {SW }}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V} \text { at } \mathrm{I}_{\text {OUT1 }}=1.25 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V} \text { at } \mathrm{I}_{\text {OUT2 }}=1.25 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT3 }}=2.5 \mathrm{~V} \text { at } \mathrm{I}_{\text {OUT3 }}=1.25 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT4 } 4}=1.8 \mathrm{~V} \text { at } \mathrm{I}_{\text {OUT4 }}=1.25 \mathrm{~A} \\ & \hline \end{aligned}$	Channel 1: 79.1\% Channel 2: 89.0\% Channel 3: 86.7\% Channel 4: 84.5\% (Figure 4)
Thermal Performance (Peak Temperature)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \\ & \mathrm{f}_{\text {SW }}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT3 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=1.8 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=1.25 \mathrm{~A} \text { per Channel } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { No Heatsink, No Forced Airflow } \end{aligned}$	LTC3644: $56.3^{\circ} \mathrm{C}$ L1: $36.6^{\circ} \mathrm{C}$ L2: $38.7^{\circ} \mathrm{C}$ L3: $38.1^{\circ} \mathrm{C}$ L4: $37.4^{\circ} \mathrm{C}$ (Figure 6)
Dynamic Load Transient Response $V_{\text {OUT1(P-P) }}$ $V_{\text {OUT2(P-P) }}$ Vout3(P-P) $V_{\text {OUT4(P-P) }}$		$V_{\text {OUT1 }}(\mathrm{P}-\mathrm{P})=128 \mathrm{mV}$ (Figure 7a) $V_{\text {OUT2 }}(\mathrm{P}-\mathrm{P})=166 \mathrm{mV}$ (Figure 7d) $V_{\text {OUT3(P-P) }}=141 \mathrm{mV}$ (Figure 7c) $V_{\text {OUT4(P-P) }}=134 \mathrm{mV}$ (Figure 7b)

PUICK START PROCEDURE

Demonstration circuit 2383A-A is easy to set up to evaluate the performance of the LTC3644. Please refer to Figure 1 for proper measurement equipment setup and follow the test procedures below:

1. With power off, connect the input power supply between $\mathrm{V}_{\text {IN }}$ (E1) and GND (E7). $\mathrm{V}_{\text {IN2 }}, \mathrm{V}_{\text {IN3 }}$ and $\mathrm{V}_{\text {IN4 }}$ are tied to $\mathrm{V}_{\text {IN1 }}$ (use onboard 0Ω jumpers R31, R29 and R30) by default.
2. Connect the first load between $\mathrm{V}_{\text {OUT1 }}$ (E18) and GND (E20) for channel 1, connect the second load between Vout2 (E14) and GND (E16) for channel 2, connect the third load between $V_{0 U T 3}$ (E15) and GND (E17), connect the fourth load between $\mathrm{V}_{\text {OUT4 }}$ (E19) and GND (E21). Preset all the loads to OA.
3. Connect the DMMs between the input test points: $\mathrm{V}_{\text {IN }}$ (E1) and GND (E7) to monitor the input voltage. Connect DMMs between Vout1 (E18) and GND (E20), $V_{\text {OUT2 }}$ (E14) and GND (E16), Vout3 (E15) and GND (E17), V ${ }_{\text {OUT4 }}$ (E19) and GND (E21) to monitor the corresponding DC output voltages of channel 1, channel 2 , channel 3 and channel 4.
4. Turn on the power supply at the input. Measure and make sure the input supply voltage is 12 V . Place the RUN 1 (JP1), RUN2 (JP2), RUN3 (JP5) and RUN4 (JP6) jumpers to the ON position. The output voltages should be $1.2 \mathrm{~V}, 3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ and $1.8 \mathrm{~V} \pm 2 \%$ for $\mathrm{V}_{\text {OUT1 }}, \mathrm{V}_{\text {OUT2 }}, \mathrm{V}_{\text {OUT3 }}$ and $\mathrm{V}_{\text {OUT4 }}$. Four onboard RUN1, RUN2, RUN3 and RUN4 jumpers allow users to enable or disable each channel independently for evaluation purpose. Users need to disable $\mathrm{V}_{\text {OUT2 }}(3.3 \mathrm{~V})$ and $\mathrm{V}_{\text {OUT3 }}$ (2.5V) when varying the input supply voltage down to 2.7 V minimum.
5. Once the input and output voltages are properly established, adjusting the input voltage between 2.7 V to 17 V and the load current within the operating range of 0 A to 1.25 A max per channel. Observe the output voltage regulation, output voltage ripples, switching node waveform, load transient response and other parameters. Refer to Figure 2 for proper output voltage ripple measurement. Note 1: To measure the input/output voltage ripples properly, do not use the long ground lead on the oscilloscope probe. See Figure 2 for the
proper scope probe technique. Short, stiff leads need to be soldered to the (+) and (-) terminals of an input or output capacitor. The probe's ground ring needs to touch the (-) lead and the probe tip needs to touch the (+) lead.
6. To program other output voltages for channel 1 , channel 2, channel 3 and channel 4, put the RUN1 (JP1), RUN2 (JP2), RUN3 (JP5), RUN4 (JP6) jumpers to the OFF positions, move JP9, JP7, JP8, JP10 to the output voltage marking of USER SEL for each channel. Calculate and insert the bottom feedback resistors at R26, R20, R21 and R27 and repeat step 1 to step 5.

7. (Option) Operation with Different Input Voltages:

Channel 2, channel 3 and channel 4 can operate with different input voltages than $\mathrm{V}_{\mathrm{IN} 1}$ and other channels' $V_{\text {IN. }}$ DC2383A-A provides onboard 0Ω jumpers connecting the main $\mathrm{V}_{\text {IN }}$ (or $\mathrm{V}_{\text {IN1 }}$) to $\mathrm{V}_{\text {IN2 }}$ (R31), $\mathrm{V}_{\text {IN3 }}$ (R29) and $V_{\text {IN4 }}$ (R30) by default. Each of these 0Ω jumpers can be removed to disconnect $\mathrm{V}_{\text {IN2 }}, \mathrm{V}_{\text {IN3 }}, \mathrm{V}_{\text {IN4 }}$ of selected channel from $\mathrm{V}_{\mathrm{IN} 1}$. Different input voltages for channel 2, channel 3 and channel 4 should be applied between $\mathrm{V}_{\mathrm{IN} 2}$ (E23) and GND (E22), $\mathrm{V}_{\text {IN3 }}$ (E24) and GND (E26), VIN4 (E25) and GND (E26) test points.
Note: $\mathrm{SV}_{\text {IN }}$ is the input voltage to power the internal LDO and this pin is tied to $\mathrm{V}_{\text {IN }}$ (or $\mathrm{V}_{\text {IN1 }}$) by default. When operating with different channel input voltages, it is important to make sure $\mathrm{V}_{\text {IN1 }}$ is on and INTV ${ }_{C C}$ is present. SV IN can also be disconnected from $\mathrm{V}_{\text {IN1 }}$ (remove R7) and tied to an external voltage source at test point $\mathrm{SV}_{\text {IN }}(E 2) . \mathrm{SV}_{\text {IN }}$ can be a different voltage than $\mathrm{V}_{\text {IN1 }}, \mathrm{V}_{\text {IN2 }}, \mathrm{V}_{\text {IN3 }}, \mathrm{V}_{\text {IN4 }}$ and should be tied to the highest input supply voltage.

8. (Option) Frequency Synchronization/Phase Selection:

The MODE/SYNC pin can be used to synchronize the internal oscillator clock frequency to the external clock signal. Place JP3 (MODE/PLLIN) at CLKIN position, apply an external clock signal at CLKIN test point (E10) to vary the switching frequency within $\pm 50 \%$ of the internal programmed frequency.

DEMO MANUAL DC2383A-A

PUICK START PROCEDURE

The MODE/SYNC pin can also be used to set the phase shift between channels 1,2 and channels 3 , 4 while keeping the PHASE pin tied to INTV ${ }_{c c}$. The phase shift can be set by modulating the duty cycle of an external clock on the MODE/SYNC pin. In this case, the phase shift will be determined by the applied external clock rising and falling edges. The switch rising edge of channels 1,2 is synced to the rising edge of the external clock and switch rising edge of channels 3, 4 synced to the falling edge of the external clock. Crosstalk between channels can be avoided by adjusting the phase shift between channels such that the SW edges do not coincide.

9a. (Option) 4-Phase Dual 2.5A/2.5A Output Circuit Configuration:

DC2383A-A can be configured as dual 2.5A/2.5A outputs.

Channel 1 and channel 4 are master channels, channel 2 and channel 3 are slaves
The following simple modification is required:

1. Tie $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}, \mathrm{~V}_{\mathrm{IN} 3}, \mathrm{~V}_{\text {IN4 }}$ together or tie $\mathrm{V}_{\text {IN1 }}$ and $\mathrm{V}_{\text {IN2 }}, \mathrm{V}_{\text {IN3 }}$ and $\mathrm{V}_{\text {IN4 }}$ together if operating channel 1 and channel 2 at different input voltage than that of channel 3 and channel 4 . Make sure $\mathrm{SV}_{\text {IN }}$ is tied to the highest input supply voltage.
2. Tie SW1 and SW2, SW3 and SW4 together. Since SW1 and SW2, SW3 and SW4 are tied together, there is only one inductor needed for each output voltage rail. Calculate and insert the inductors needed for L1 and L4, remove L2 and L3.
3. Tie FB2 and FB3 to INTV Cc .
4. Float (do not use) PGOOD2 and PGOOD3. Only PGOOD1 and PGO0D4 are active.
5. Tie RUN1 and RUN2, RUN3 and RUN4 together. Note: Make sure to float all the unused onboard RUN pin jumpers to avoid accidently shorting $\mathrm{V}_{\text {IN }}$ to GND.
6. Tie PHASE pin to $I^{\prime} \mathrm{IV}_{\mathrm{Cc}}$.

Refer to the demo board DC2383A-A schematic for more details.
9b. (Option) 4-Phase Triple 2.5A/1.25A/1.25A Output Circuit Configuration:

DC2383A-A can be configured as triple $2.5 \mathrm{~A} / 1.25 \mathrm{~A} /$ 1.25A outputs.

Channel 1 is master channel, channel 2 is slave. Channel 3 and channel 4 are independent channels.

The following simple modification is required:

1. Tie $\mathrm{V}_{\text {IN } 1}, \mathrm{~V}_{\text {IN2 } 2}, \mathrm{~V}_{\text {IN3 }}, \mathrm{V}_{\text {IN4 }}$ together or tie $\mathrm{V}_{\text {IN1 }}$ and $\mathrm{V}_{\text {IN } 2}$ together, $\mathrm{V}_{\text {IN3 }}$ and $\mathrm{V}_{\text {IN4 }}$ can be at different input voltages than $\mathrm{V}_{\operatorname{IN1} 1}$ and $\mathrm{V}_{\mathrm{IN} 2}$. Make sure $\mathrm{SV}_{\mathrm{IN}}$ is tied to the highest input supply voltage.
2. Tie SW1 and SW2 together. There is only one inductor needed for this output voltage rail. Calculate and insert the inductor needed for L1 and remove L2.
3. Tie FB2 to INTV ${ }_{C C}$.
4. Float (do not use) PG00D2. Only PGO0D1, PGOOD3 and PGOOD4 are active.
5. Tie RUN1 and RUN2 together. Note: Make sure to float all the unused onboard RUN pin jumpers to avoid accidently shorting $\mathrm{V}_{\text {IN }}$ to GND.
6. Tie PHASE pin to $I N T V_{C C}$.
7. Channel 3 and channel 4 are left unchanged since these two channels operate as independent channels.
Refer to the demo board DC2383A-A schematic for more details.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Scope Probe Placement for Measuring Input or Output Voltage Ripples

DEMO MANUAL DC2383A-A

PUICK START PROCEDURE

Figure 3. Measured Efficiency at $V_{I N}=5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}$, Burst Mode Operation

$\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=1.8 \mathrm{~V}$
$\mathrm{I}_{\text {LOAD }}=1.25 \mathrm{~A}$ PER CHANNEL
$T_{A}=25^{\circ} \mathrm{C}$, NO HEAT SINK, NO FORCED AIRFLOW
Figure 5. Thermal Performance at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}$

Figure 4. Measured Efficiency at $V_{I N}=12 \mathrm{~V}, \mathrm{f}_{\text {SW }}=1 \mathrm{MHz}$, Burst Mode Operation

$\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=1.8 \mathrm{~V}$
ILOAD $=1.25 \mathrm{~A}$ PER CHANNEL
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, NO HEAT SINK, NO FORCED AIRFLOW
Figure 6. Thermal Performance at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}$

DEMO MANUAL DC2383A-A

PUICK START PROCEDURE

Figure 7. Load Transient Responses
Load Transient Response Test Conditions:
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{f}_{\text {SW }}=1 \mathrm{MHz}$ Typical
$\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUT3 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=1.8 \mathrm{~V}$
$\mathrm{L} 1=\mathrm{L} 4=2.2 \mu \mathrm{H}$
$\mathrm{L} 2=\mathrm{L} 3=4.7 \mu \mathrm{H}$
Load Step $=0.625 \mathrm{~A}$ to 1.25 A at $\mathrm{di} / \mathrm{dt}=0.625 \mathrm{~A} / \mu \mathrm{s}$
COUT_ceramic $=1 \times 47 \mu \mathrm{~F} / 16 \mathrm{~V} / \mathrm{X} 5 \mathrm{R} / 1206$ (per Channel)
Feedforward Capacitor: CFF = 22pF (per Channel)

DEMO MANUAL DC2383A-A

PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION |
| :--- | :--- | :--- | :--- | MANUFACTURER/PART NUMBER \quad| Required Circuit Components |
| :--- |

1	4	CFF1, CFF2, CFF3, CFF4	CAP, 0402 22pF 5\% 50V COG	MURATA GRM1555C1H220JA01D
2	1	C1	CAP, 2917 22 $\mu \mathrm{F} 20 \% 35 \mathrm{~V}$ TANT	AVX TPSE226M035R0125
3	7	C2, C4, C5, C7, C9, C10, C14	CAP, 0805 10んF 10\% 25V X5R	MURATA GRM21BR61E106KA73L
4	5	C3, C6, C11, C12, C15	CAP, 0603 4.7 ${ }^{\text {F } 20 \% ~ 25 V ~ X 5 R ~}$	MURATA GRM188R61E475ME11D
5	1	C16	CAP, $06031 \mu \mathrm{~F} 10 \% 25 \mathrm{~V}$ X7R	MURATA GRM188R71E105KA12D
6	4	C19, C21, C23, C25	CAP, 1206 47 F 10\% 16V X5R	MURATA GRM31CR61C476ME44L
7	4	C20, C22, C24, C26	CAP, 1206 10 F F 10\% 16V X7R	TDK C3216X7R1C106K160AC
8	2	L1, L4	IND, $2.2 \mu \mathrm{H}$	COILCRAFT XFL4020-222ME
9	2	L2, L3	IND, $4.7 \mu \mathrm{H}$	COILCRAFT XFL4020-472ME
10	5	RSET1, RSET2, RSET3, RSET4, R25	RES, 0402 619k 1% 1/16W	VISHAY CRCW0402619KFKED
11	9	$\begin{aligned} & \text { R1, R2, R9, R13, R14, R17, } \\ & \text { R18, R23, R24 } \end{aligned}$	RES, 04020Ω JUMPER	VISHAY CRCW04020000ZOED
12	4	R3, R4, R5, R6	RES, 0402 100k $31 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW0402100KFKED
13	1	R7	RES, 04022.2Ω 1\% 1/16W	VISHAY CRCW04022R20FNED
14	6	R8, R10, R11, R12, R15, R16	RES, 0402 10M $1 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW040210MOFKED
15	1	R19	RES, 0402 137k $1 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW0402137KFKED
16	1	R22	RES, 0402 196k $1 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW0402196KFKED
17	1	R28	RES, 0402 309k 1\% 1/16W	VISHAY CRCW0402309KFKED
18	3	R29, R30, R31	RES, 08050Ω JUMPER	VISHAY CRCW08050000ZOEA
19	1	U1	IC, QUAD 17V, 1A SYNCHRONOUS STEP-DOWN REGULATOR	ANALOG DEVICES LTC3644BGA

Additional Demo Board Circuit Components

1	0	C8, C13, C17, C18	CAP, 0402 OPTION	OPTION
2	0	C27, C28, C29, C30	CAP, 1206 OPTION	OPTION
3	0	R20, R21, R26, R27	RES, 0402 OPTION	OPTION
4	0	R33, R34, R37, R38, R39	RES, 0603 OPTION	OPTION
5	0	R32, R35, R36	RES, 0805 OPTION	OPTION

Hardware: For Demo Board Only

1	16	E1 T0 E7, E12, E14 TO E21	TURRET	MILL-MAX 2501-2-00-80-00-00-07-0
2	10	E8 T0 E11, E13, E22 T0 E26	TURRET	MILL-MAX 2308-2-00-80-00-00-07-0
3	5	JP1, JP2, JP4, JP5, JP6	HEADER, 3PIN, 2mm	WURTH ELEKTRONIK 62000311121
4	1	JP3	HEADER, 2x4PINS, 2mm	WURTH ELEKTRONIK 62000821121
5	4	JP7 T0 JP10	HEADER, 2PIN, DBL ROW 2mm	WURTH ELEKTRONIK 62000421121
6	4	MH1 T0 MH4	STANDOFF, SNAP 0N 12.7mm	WURTH ELEKTRONIK 702935000
7	10	XJP1 T0 XJP10	SHUNT, 2mm	WURTH ELEKTRONIK 60800213421

SCHEMATIC DIAGRAM

DEMO MANUAL DC2383A-A

sCHEmATIC DIAGRAM

SCHEMATIC DIAGRAM

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

