TECHNOLOGY

' Ll”l ’ \D Applicution Note 153

July 2016

Linduino for Power System Munagement

Michuel Jones

INTRODUCTION

Most Power System Management designs follow a set
and forget model. Setup and debug of Power System
Management (PSM) devices is simple with LTpowerPlay®
and when combined withabulk programing solution, there
is no need for firmware. However, many large systems
require a Board Management Gontroller (BMC), begging
the question: “What can firmware do for PSM?”

The foundation of PSM firmware is PMBus; the foundation
of PMBus is SMBus; and the foundation of SMBus is I2C.
BuildingaBMC thatadds value with PSM firmware requires
some level of knowledge of each protocol, ora pre-existing
library that frees the programmer from the details.

The Linduino® libraries handle each protocol layer, and
provide an Application Programming Interface (API), that
makes writing PSM firmware easy. Linduino PSM is not
a replacement for a BMC, but rather a set of libraries and
examples that are compatible with typical BMC firmware.

Linduino can also be used with Linear Technology Demo
Circuitsasalearning tool. Many BMC designs already have
an SMBus API and a quick study of how PMBus works is
enough. It is quite common to see engineers copy/paste
Linduino code snippets into an existing application and
use them. But it is also possible to implement one of the
Linduino layersandthen reuse the wholelibrary, including:

 Device and Rail Discovery
e Command API

* Fault Log Decoding

* In System Programming

This Application Note will present the Linduino libraries,
Power System Management programming, setup and use
of Linduino PSM with demo circuits, and PSM debugging
techniques. For detailed information on the protocols
and generic programming questions, refer to Application
Note 135, Implementing Robust PMBus Software for the

LTC3880, and the industry standards for 12C/SMBus/
PMBus.

LINDUINO PSM HARDWARE

Linduino PSM hardware consists of a Linduino (DG2026),
and a shield to connect (DC2294) the 12C pins of the
Linduino to an PMBus/SMBus/I2C Bus of a demo board
or product board.

For optimal learning, start with a DC2026 (Linduino),
DC2294 (Shield), DG1962 (Power Stick), and a Total
Phase Beagle (I2C Sniffer). This allows programming,
debugging, and learning of controllers (LTC388X) and
managers (LTC297X).

Figure 1. Evaluation Hardware, shows the suggested
evaluation hardware all connected together. To use this

Figure 1. Evaluation Hardware

L7, LT LTC, LTM, Linear Technology, the Linear logo, Linduino and LTpowerPlay are registered
trademarks of Linear Technology Corporation. All other trademarks are the property of their
respective owners.

an153fb

LY N

AN153-1

http://cds.linear.com/docs/en/application-note/an135f.pdf
http://cds.linear.com/docs/en/application-note/an135f.pdf

Applicution Note 153

hardware, connect the Linduino and Beagle to a computer
with two USB cables. If you do not have the Beagle USB
connected, disconnect the Beagle ribbon cable from the
DC2294 to prevent interference with PMBus traffic to/
from the DC1962.

If you are connecting to a system board, a DC2086 works
for most situations.

) L) LINEAR |

TECHNOLOGY
@ DC2086A

it i

Figure 2. System Hardware

The DC2086 will accept a connection from the DGC2294,
and supports 12-pin ribbon, 14-pin ribbon, and 4-pin
cables. The DC2086 also supports an external power
input for system boards that require more power than the
Linduino can supply.

LINDUINO PSM SKETCHES

Before jumping into how the PMBus libraries work, a quick
walk through of a DG1962 Sketch will clarify the general
use model of Linduino PSM. It will also demonstrate how
easy it is to write code, even for non-programmers.

To follow along, two downloads are required: the Arduino
tools, and the Linduino Sketchbook. The Arduino tools can
be downloaded from www.arduino.cc, and the Linduino
Sketchbook can be downloaded from www.linear.com/
linduino.

The Arduino tools run on multiple platforms. This Applica-
tion Note was built and run using Arduino 1.6.4 running
on 64-bit Ubuntu 14 TLS.

Let’s get started:

Step 1: Configuration

When the Arduino software is run the first time, it will be
using a default Sketchbook, not the Linduino Sketchbook
downloaded from www.linear.com.

To change to the Linduino Sketchbook, use the File | Pref-
erences selection on the menu bar as shown in Figure 3.
Finding Preferences Dialog.

sketchJ'l'*MSa | Arduino 1.6.4

P8 Edit Sketch Tools Help

MNew CErl+M
Open... Ctrl+O
Sketchbook ’
Examples v
Close Cerl+w/
Save Ckrl+S
Save As... Cerl+Shift+5
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U
Page Setup Ctrl+Shift+P
Print Cerl+P
- Preferences Ctrl+Comma
Quit Cerl+Q

Figure 3. Finding Preferences Dialog

Figure 4. Preferences Dialog, shows that the Sketchbook
Location is at the top of the dialog box. Using the Browse
button, navigate to the LTSketchbook that was downloaded

o Preferences

Sketchbook location:

fhome/username/Linduino/LTSketchbook Browse -
Editor language: | System Default = | (reqguires restart of Arduino)
Editor Font size: |12 (requires restart of Arduino)
Show verbose output during: & compilation] upload
Compiler warnings: | MNone v
& Display line numbers
& Verify code after upload
[[] Use external editor
& Check for updates on startup
& Update sketch files to new extension on save (.pde ->.ino)
& Save when verifying or uploading
Proxy Settings
Server (HTTP): Port (HTTP): |8080
Server: (HTTPS) Port (HTTPS): |8443
Username: Password:
Additional Boards Manager URLs: “
Mare preferences can be edited directly in the file
/home/mike/.arduino15/preferences. txt
(edit only when Arduino is not running) [}
OK Cancel

Figure 4. Preferences Dialog
an153fb

AN153-2

LY N

www.arduino.cc
www.linear.com/linduino
www.linear.com/linduino
www.linear.com

Figure 1. Art Titles — Text for Graphics

Applicution Note 153

from www.linear.com/linduino. It is also helpful to check
ON Display line numbers, and Show verbose output during
compilation. The latter setting scrolls compiler messages
on the command line where they are easier to see.

Aftersetting the path, all Arduino windows must be closed,
andthe Arduino software must be restarted. When Arduino
is restarted, it re-scans the Sketchbook directory and
builds up the Arduino menus. If the Arduino software is
not restarted, the menus will not reflect the LTSketchbook,
and will instead point to the previous Sketchbook.

Step 2: Load Your First Sketch

Load the hello_world Sketch by imitating Figure 5. Load-
ing hello_world.

sketch_jun15a | Arduino 1.6.4
JFil8) Edic Sketch Tools Help
New Cerl+N
Open... Cerl+0

EEEET N = <rpleDesigns

Examples + Part Number

0

Close Cerl+W Audio_Spectrum_Analyzer

Save CtrleS | Urllities . Faultlog
Save As... Ctrl+Shift+S fpeatedly: DoxygenExample
Upload Cerl+U FAE_April_2013 logo s
Upload Using Programmer Cerl+Shift+U Precision_Voltage_Source program
Page Setup Crrl+Shift+P Synth store

Print Ctrl+P vmClock svid
Preferences Ctrl+Comma training

Figure 5. Loading hello_world

After the Sketch is loaded, a window with the Sketch pops
up, as shown in Figure 6. Sketch Window.

Step 3: Compile and Run

Compile the Sketch by pressing the checkmark on the
toolbar, as shown in Figure 7. Arduino Toolbar.

Thearrow pointing right willcompile and load the compiled
Sketchintothe Linduino hardware. The magnifier displays
the output of the Sketch. Think of the arrow as sending the
code to the display console, or compiling and sending the
code to the Linduino hardware so that the display console
has something to talk to.

Note: The Arduino Board type should be set fto Arduino
Uno, and the port should be selected. See Tools Menu.

After the Sketch is loaded, press the magnifier on the right
side of the toolbar to open the console window. Set the
line ending to Carriage return and baud rate to 115200 to
match Figure 8. Arduino Command Window.

hello_world | Arduino 1.6.4
File Edit Sketch Tools Help

hello_world

1|+ -
2 Linear Technology DC1962C Demonstration Board | |
3 LTC3880, LTC2974, LTC2977: Power Management Solution for Applicil
4

S @verbatim

7 NOTES
Setup:
Set the terminal baud rate to 115200 and select the newline

11 @endverbatim
12 http://www,linear.com/product/LTC3880

14 http://www.linear.com/product/LTC2974
15 http://www,linear.com/product/LTC2977

17 http://www.linear.com/demo/DC1962C

19 REVISION HISTORY
20 $Revision: 3033 §
21 4$Date: 2014-12-05 14:58:30 -0800 (Fri, 05 Dec 2014) §

23 Copyright (c) 2014, Linear Technology Corp. (LTC)
4])

Compile and Load
Figure 7. Arduino Toolbar

To interact with the sketch, put the cursor in the box at the
top (left ofthe Send button), type anumber fromthe menu,
and then press the Send button or <CR>. The Sketch will
then execute the command and then re-display the menu.

Step 4: Explore Menu ltems

Figure 9. Sketch Menus, shows what happens when press-
ing 1to change to the Basic Commands window, followed
by pressing 1 to Read All Voltages. The measured VOUT
values of all rails of the DC1962 are read and printed.

The Sketch runs until the console is closed by pressing
the X in the top left corner. If the console is reopened, it
will restart the Sketch.

You can now explore the other menu options, and if you
are familiar with a Beagle, run some traces and examine
the bus transactions.

an153fb

LY N

AN153-3

www.linear.com/linduino

Applicution Note 153

£ JdevjttyACMO

DC1962C Hello World Demonstration Program
*

Send

* This program demonstrates how to send and receive data from
* the LTC1962C demo board.
*

LR R

Set the baud rate to 115200 and select the newline terminator.
* *

1-Basic Commands
2-PEC On

3-PEC Off

4-Bus Probe
5-Reset

Enter a command:

4] D

115200 baud | «

& Autoscroll Carriage return | «

Figure 8. Arduino Command Window

Step 5: Modifying of Code

The Sketch has two entry points. There is a setup() func-
tion that is called once, and a loop() function that is called
forever in a loop. These are part of the Arduino coding
environment. If you are an experienced C programmer,
you are probably wondering where is main()? The Arduino
libraries have a predefined main() that calls setup() and
an infinite loop calling loop().

The menusare coded as helperfunctionsinside the Sketch,
and loop() calls the main menu. Each menu is supported
with a case statement, where each case handles one menu
number.

0K, enough programmer-speak. Modifying the applica-
tion is simply making changes to the case statements in
the Sketch, using the provided API. The functions (API)
in the Sketch that issue PMBus commands come from a
separate library, and have simple names that sound like
what you want the code to do. For example:

voltage = pmbus->readVout (0x30, false);

[

Send

F-PEL UTT &
4-Bus Probe
S-Reset

Enter a command:l
1-Read ALl Voltages
2-Read A1l Currents
3-Read All Status
4-Sequence Off/on
5-Margin High
5-Margin Low
7-Margin Off
8-Set LTC3880 PAGE @ to 0.87V
9-Set LTC3830 PAGE O to 0,78V
m-Main Menu

Enter a command: 1
LTC2880 VOUT 0, 8500076562
LTC2880 VOUT 1,0998535156
LTCZ2974 VOUT 1.5000000000
LTC2974 VOUT 1.7998046875
LTC2974 VOUT 1.9993895484
LTC2974 VOUT 2,1999511718
LTC2977 VOUT ©,9000244140
LTC2977 VOUT ©,9998779296
LTC2977 VOUT 1,0999755859
LTC2977 VOUT 1,2000732421
LTC2977 VOUT 2,5004882812
LTC2977 VOUT 2.7003173828
LTC2977 VOUT 3. 0001220703
LTC2977 VWOUT 3.2095826171
1-Read All Voltages
2-Read All Currents
3-Read All Status
4-Sequence Off/On
S-Margin High
6-Margin Low
7-Margin Off
8-Set LTC3880 PAGE @ to 0.87V
9-Set LTC3880 PAGE @ to 0.78V
m-Main Menu

Enter a command: -
a0] v

& Autoscroll Carriage return | » | (115200 baud | »

Figure 9. Sketch Menus

means, using the PMBus API, read the output voltage at
address 0x30, without polling, and put it into a variable
named voltage.

Now you should make a few changes. For example, add
a menu item to read and print output power. If you’re not
ready yet, just read on to learn more about writing code.
If your are ready, here is a hint:

float readPout (uint8 t address, bool polling);

Try this on the LTC3880 at address 0x30 on the Power
Stick. To prove it works, add some resistance or a current
load to Channel 0 on the Power Stick and verify it matches
what the Sketch prints.

LINDUINO PSM PMBus LIBRARY

The PMBus library resides in the LTSketchbook tree in the
directory LTSketchbook/libraries/LT_PMBUS. The library
is layered: starting with TWI (Two Wire Interface), then 12C,
SMBus, and finally PMBus. There is a number conversion

an153fb

AN153-4

LY N

Applicution Note 153

API to convert values from L11/L16 (PMBus formats)
to/from floating point. Finally, there is Group Command
Protocol assistance, device and rail discovery, Fault Log
decoding, and even In System Programming.

Each layer is a simple C++ class, similar to how Arduino
uses a class for Serial and other 10 functions. If your final
environmentis G, don’tworry. Simple means you can either
use the C++ class without a lot of memory overhead, or
you can remove the class wrapping and use it as pure G
very easily. The C++wrapper just simplifies the application
code and makes it easier for non-programmers.

LT _PMBus LT SMBus

iy

LT_SMBusB LT_12CBus LT _Wire

LT SMEBusGroup LT SMBusNoPec LT SMEusPec

Figure 10. LT_PMBus Class Diagram

For programmers that just have to know what is under
the hood, the SMBus classes are in a hierarchy so that
application code is independent from turning PEC on and
off, and aids porting. The LT_I2C.h, LT_SMBus.h, and
LT_PMBus.h, form layers of APIs. To port the Linduino
PSM libraries, you can choose any one of the APIs and
implement it on your platform using your own libraries.
The mostcommon portre-implementsthe LT_SMBusBase
class, and then the PMBus class just works, the math
conversions just work, and all the other functions and
examples just work.

Using the PMBus Library

The library can be used without understanding all this
class stuff; just a few imports and static variables and the
Sketch is ready for action.

Normally the library is added with the Sketch menu shown
in Figure 11. Include Library, but the most important in-
cludes are shown in Figure 12. Base Includes.

Linduine

hello_world | Arduino 1.6.4

File Edit |SREEERI Tools Help LiquidCrystal

Verify / Compile Ctriep LT_I2C
hello_wt Show SketchFolder Ctri+K ['H.m
) e y LT_SPI
52 to t d bra |
: LTC1592 i

3 http addFile,..

54 onnon e

Figure 11. Include Library

#include <LT SMBusPec.h>
#include <LT SMBusNoPec.h>
#include <LT SMBus.h>
#include <LT SMBusMath.h>

Figure 12. Base Includes

A Sketch has at least two static variables, one for SMBus
and onefor PMBus, as shownin Figure 13. Static Variables.
The SMBus variable is eitherthe Pec or NoPec version. One
nice feature of the clean layers is one can write application
code as SMBus or PMBus code depending on their project
needs. Writing an application with the PMBus API hides
the details of the command codes and data formatting,
and writing an application with the SMBus API enables
access to all possible command codes and direct access
to raw values.

static LT SMBus *smbus

- new LT SMBusPec();
static LT SMBus *smbus

new LT PBusPec (smbus);

Figure 13. Static Variables

Once the two variables are initialized, the full SMBus API
is available via smbus-> and the full PMBus APl is avail-
able via pmbus->. It is possible to use both APIs in the
same application.

LT_PMBusMath

The LT_PMBusMath class is a highly optimized number
conversion library toand from L11/L16 and floating point.
Floating point is not required for PMBus code, and some
end user applications are written only with integers, es-
pecially if voltage and current values are known ahead of
time, or if floating-point conversion is too slow on a very
small microcontroller. Ifthe conversions are not needed by
firmware, they can still be used by an offline application to
generate integers for the application. However, it is much
easier to write code when functions use floating point.

an153fb

LY N

AN153-5

Application Note 153

The LT_I2C Library

The LT_I2C library is different from the 12C class found in
the LT_PMBus library. The version in LT_PMBus is byte
order optimized for PMBus in addition to supporting large
block operations. The 12C class in the LT_PMBus library
is also based on the Wire library, and is more portable to
otherArduino boards. Forexample, it works onan Arduino
Mega 2560.

Allthe non-PSM Sketches use the LT_I2C library. Itis best
notto usethe LT_I2C library for PSM/PMBus devices, and
there is no need to.

WRITING A SIMPLE SKETCH

The best way to learn is to write code from scratch, and
that is what this section is about. The following example
will be most helpful if you perform these steps yourself
one at a time, verifying the results as you go along.

Thisexample Sketch usesaDC1962 and the other hardware
mentioned in the first section. The example will accept 5
simple commands:

1. Print Voltages
2. Margin

3. On/Off

4. Bus Probe

5. Reset

Step 1: Create a Blank Sketch

Create a new Sketch by selecting menu File|New as shown
in Figure 14. New Sketch. You will then see an empty
sketch as shown in Figure 15. Empty Sketch.

sketch_juni6a | Arduino 1.6.4

P8I Edit Sketch Tools Help

Figure 14. New Sketch

Use the File|Save As... menu and select a path for the new
Sketch. Be sure the folder name and Sketch name match as
showninFigure 16. Save As.... The path must be under the
LTSketchbook, the same path thatisinthe File|Preferences
dialog, for it to show up in the Sketchbook Menu.

sketch_juni1éb | Arduino 1.6.4
File Edit Sketch Tools Help

sketch_junléb

1 poid setup() {
2 /¢ put your setup code here, to run once:

4}
void loop() {
/4 put your main code here, to run repeatedly:

9}

Figure 15. Empty Sketch

0 Save sketch Folder as...

Name: [Example\ l

Saveinfolder: | ¢ | LTsketchbook || User Contributed || Example | Create Folder

Places Name ~ Size Modified

Q, search
3 Recently Used

Il arduino-1.6.4
= mike

i Desktop

4 File System
— BigData 68
— Dropbox

Lama

Cancel Save

Figure 16. Save As...
Step 2: Adding Includes

Using the menu Sketch|Include|Include Library, choose
the following libraries one at a time:

e User Interface
e Linduino
e LT PMBUS

Figure 17. Includes, shows how to select the LT_PMBUS
library. All libraries are in the same Include Library menu.

On the top line of the file add this include statement:
#include <Arduino.h>

Now, add static variables for the addresses and SMBus/
PMBus objects. Add Setup code to initialize variables and
serial bus object. Save the code with File|Save. Finally,
press the check button on the toolbar to compile the code.

an153fb

AN153-6

LY N

Applicution Note 153

Example | Arduino 1.6.4

SoftwareSerial
File Edic [SREEERI Tc Help
Spacebrewyun
Verify / Compile Cerl+R <p|

Example Show Sketch Folder Ctrl+K |y

WP ncludeLbrary

‘f /1| AddFile... Bridge

‘51 1 DoxygenExample

I‘ v}f,al‘ ;S?EIJ)(W)JUI{“ main code here, to rur Esplora

g Ethernet

g1 Firmata
G5
Linduino
LiquidCrystal
LT |2C

PMBU

T]

Figure 17. Includes

Your code should look like Figure 18. Initialization Code.

1 #include <Arduino.h=
#include <UserInterface.h=
#include <Linduino.h=
#include <LT Wire.h=>
#include <LT_twi.h>
#include <LT_SMBusPec.h=
#include <LT_PMBusMath.h>
#include <LT_SMBus.h=

o #include <LT I2CBus.h>

10 #include <LT_SMBusGroup.h>
11 #include <LT_PMBus.h=

12 #include <LT_FaultLog.h>
12 #include <LT_SMBusMoPec. h=
14 #include <LT_SMBusBase.h»

[REN]

[B T

16 #define LTC3880 I2C ADDRESS Ox30

17 #define LTC2974 I2C ADDRESS 0x32

18 |#de‘fine LTC2977_I2C ADDRESS 0x332

18

20 static uint8_t 1tc3880 i2c_address;

21 static uint8_t 1tc2974 i2c_address;

22 static uint8_t 1tc2977 i2c_address;

23 static LT_SMBus *smbus = new LT_SMBusNoPec();
24 static LT_PMBus *pmbus = new LT_PMBus(smbus);

26 void setup() {
27 Serial . begin(115200);

28 1tc3880_i2c_address = LTC3880_I2C_ADDRESS;

20 1tc2974 i2c_address = LTC2974 I2C_ADDRESS:

30 1tc2977_i2c_address = LTC2977_I2C_ADDRESS;

31

32

332 wold leop() {

34 // put your main code here, to run repeatedly:
35

36]'

Figure 18. Initialization Code

Step 3: Setup the Menu

A menu requires printing selections, and responding to
user choices.

Adda print_prompt() functionto printa prompt, and call it
fromthe setup functionto printthe menu prompt whenthe
Sketch runs. The code should look like Figure 19. Prompt.

Save and compile to ensure the code is error free.

vold print_prompt()
{
Serial.print(F("xn 1-Print Voltagesn"));
' Serial.print(F(" 2-Margin Highn"});
0 Serial.print(F{" 2-Margin Low\n"));
31 Serial.print(F{" 4-No Marginin"));
32 Serial.print(F(" 5-Go Offun"));
Serial.print(F(" 6-Go Onwn")):
Serial.print(F(" 7-Probe Bus\n"));
Serial.print(F(" 8-Resetwn")):
Serial.print(F("\nEnter a command:"});

39 void setup() {

Serial . begin(115200);

1tc3880_i2c_address = LTC3880_I2C_ADDRESS;
1tc2974_i2c_address = LTC2974_I2C_ADDRESS;
1tc2977_i2¢c_address = LTC2977 I2C_ADDRESS;
print_prompt():

Figure 19. Prompt
Step 4: Add Menu Responses

When a menu option is typed into the console, the code
must read it and respond.

The loop function will handle user input. First, it must
check that serial bus is available. Then, it must read the
inputasanintegerand pass itto a switch statement. Inside
the switch, it must perform some function and then call
the prompt function. The code for each command will be
written inside each case of the switch statement, and the
prompt will be called afterwards. Your code framework
should look like Figure 20. User Input.

Save and compile it to make sure it has no mistakes.

Step 5: Reading Voltages

Now it is time to write actual PMBus code that does
something useful.

Figure 21. Read Voltages, shows code that reads all the
voltages. The code is shown inside case 1. Two variables
hold voltage and page: a float for the voltage, and a uint8_t
for the page, shown on lines 57-58. Printing uses the
standard Arduino Serial.print... function. The F() around

an153fb

LY N

AN1563-7

Applicution Note 153

47 woid Toop() {

48 uint8_t user_command;
49
50 if (Serial.available())
S1 {
52 user_command = read_int();
54 switch (user_command)
55 {
56 case 1:
57 break;
58 case 2:
59 break;
B0 case 3:
61 break;
62 case 4;
break:;
case 5
break:;
case 6:
break;
case 7:
break;
70 case 8:
71 break;
72
73 print_prompt();|
74
75}
Figure 20. User Input
54 switch (user_command)
55 {
56 case 1:
57 float woltage:;
=g uint8_t page;
60 Serial.println(F(""});
61 for (page = 0; page < 2; page++)
{

pmbus-»setPage (1tc3880_12c_address, page):

voltage = pmbus->readVout (1tc3880_1i2c_address, false);
Serial.print (F("LTC3880 VOUT ")):
Serial.println(voltage, DEC);

for (page = 0; page < 4; page++)

71 pmbus->setPage (1tc2974_12c_address, page);

72 voltage = pmbus-=readvVout(1tc2974_i2c_address, false);
73 Serial.print (F("LTC2974 VOUT "});

74 Serial.printin(voltage, DEC):

- }

for (page = 0; page < 8; paget+)

pmbus-=setPage (1tc2977_12c_address, page);

voltage = pmbus-=readVout(1tc2977 i2c_address, false);
Serial.print (F("LTC2977 VOUT "});
Serial.println(voltage, DEC);

83 I3
84 break;
85 case 2:

86 break;

Figure 21. Read Voltages

the strings puts them in flash so they do not use up pre-
cious RAM. For each device, a for loop indexes through
the pages calling pmbus->setPage(...) followed by reading
voltage with pmbus->readVout(...). Then the code prints
the voltages in decimal using the DEC type.

You can find all the API function declarations you used
in the LT_PMBus library in the PMBus.h file, or in the
Doxigen documentation.

Step 6: Margining and On/Off

The margining code is simpler than the voltage code be-
cause the operations are global, meaning all devices can
respond to one command, and the page register is not
required. Furthermore, there is nothing to print.

Figure 22. Margin and On/Off, shows the code. Case 4 is
the No Margin menu selection. It may seem odd to use
sequenceOnGlobal() to end margining. Under the hood
the PMBus command used for these is the OPERATION
(0x01) command.

case 2:
pmbus->marginHighGlobal();
break;

case 3:
pmbus-=marginLowGlobal();
break;

case 4:
pmbus-=sequenceOnGlobal();
break;

case 5
pmbus->sequence0ffGlobal();
break;

case 6
pmbus-=sequenceOnGlobal();
break:

Figure 22. Margin and On/Off

Figure 23. OPERATION Command, from the LTC3880 data
sheet, shows that there is no specific command to stop
margining. Margining is turned off with value 0x80, which
means turn on. This is why pmbus->sequenceOnGlobal()
is used to turn margining off.

Table 4. OPERATION Gommand Detail Register OPERATION Data Contents
When On_0ff_Config_Use_PMBus Enables Operation_Control

SYmeoL Action Value
BITS

Turn off immediately 0x00

Turn on 0x80

FUNCTION | Margin Low 0x98

Margin High 0xA8

Seqguence off 0x40

Figure 23. OPERATION Command

Step 7: Bus Probing and Resetting

Probing the bus is part of the SMBus AP, after all, not all
devices are PMBus. Figure 24. Probe and Reset, shows

an153fb

AN153-8

LY N

Applicution Note 153

that probing is a call to smbus->probe(0). The zero is the
command it probes with, which is the PAGE (0x00) com-
mand. The probe will test all valid addresses and return
a list of devices that are found. It will find all devices that
can ACK a read command 0x00.

The reset command is less obvious. The LTC388X and
LTC297X families don’t reset the same way. The LTC388X
devices support a MFR_RESET (0xFD) command but the
LTC297X devices do not. On a LTC2977 for example,
command OxFD is MFR_TEMPERATURE_MIN, not
MFR_RESET. The proper way to reset a manager is by
restoring the RAM from NVM, because after the transfer,
the device resets.

However, to get all devices to reset at the same time, the
Group Command Protocol is used. This groups all the
operations into a single transaction where all commands
are actuated by the PSM devices at the STOP

Figure 24. Probe and Reset, case 8, shows how to setup
a Group Protocol transaction. The transaction is bounded
by calls pmbus->startGroupprotocol() and pmbus-
>executeGroupProtocol().

case 7:
1 uint8_t *addresses;
02 addresses = smbus-=probe (0);
3 while (*addresses != 0)
4

Serial.print (F("ADDR Ox"});
Serial.println(*addresses++, HEX);
07 }

3 break:

109 case 8:

110 pmbus->startGroupProtocol();

111 pmbus->reset (1tc3B80_12c_address);

112 pmbus-=>restoreFromivm (11c2974 12c_address);
113 pmbus->restoreFromhvm (1tc2977_i2c_address);
114 pmbus -=executeGroupProtocol ();

115 break;

Figure 24. Probe and Reset

Step 8: Testing

It is a good time to compile and run the application and
make sure it all works.

If the application runs, but does not print sensible data,
you might have made a mistake. You can use the debug-
ging techniques below to debug it. Or if you are impatient,
you can just double check:

e Addresses
* Pages
¢ Break Statements

DEBUGGING

There are a few of ways to debug a Linduino PSM applica-
tion, or any firmware application for that matter:

* Printing
e Spy Tools
* Debugger

This Application Note will not pursue the third option. Itis
typically not necessary for simple Sketches. Ifyou want to
learn more about debuggers, head to the Arduino website
forums to see what tools other people use.

You have seen printing used in the examples above. You
can debug by adding more print statements. However,
always put strings inside the F() macro so that RAM is
not used up. When printing text and numbers, separate
it into two calls so the text portion is in Flash.

The PSM libraries use this technique. Errors, such as
NACK and PEC Errors are printed inthe command window.
Therefore, adding debug printing is typically limited to the
application code.

You have already seen printing with DEC. You can also use
HEX and other formats. Consult the Arduino documenta-
tion for more formatting help.

The ultimate debugger for PMBus is a spy tool. A spy tool
is nice because you can see the traffic on the bus, and you
can send a trace to LTC Field Application Engineers along
with your code when you need help.

This Application Note will focus on data generated fromthe
Total Phase Data Centerapplication talking to a Total Phase
Beagle. Thereisinformation on the Total Phase site to help
install the Data Center Application (www.totalphase.com).

The simplest way to get started is to trace the bus using
the Sketch you just created. Menu choice 3, read voltages,
will be used.

Figure 25. Beagle Trace, shows the data. Let’s just jumpin
and decipher some transactions, using the index to keep
track of where we are.

Atindex #1 (I1) and index #6 (16), there are two write byte
transactions. In SMBus, this is Write Byte Protocol. The
address is 0x30, which is the LTC3880, as can be seenin
the code. The first byte is the command, which is 0x00,
which is the PAGE command.

an153fb

LY N

AN153-9

www.totalphase.com

Applicution Note 153

Addr Record Data
« Capture start... [Tue 16 jun

Index mM:s.ms.us Dur Len Err S/P
0_0:00.000.000

1 0:08.432.357 305 us 2B SP 30 . Write Transac... 60 06
2 0:08.432.702 209 us 1B 5 30 y Write Transac... 8B
3 0:08.432.912 302 us 2B SP 30 ® Read Transac... 9A @D*
4 0:08.433.249 209 us 1B = 30 . Write Transac... 26
5 0:08.433.459 207 us 1B SP 30 ® Read Transac... 14*
6 0:08.435.261 305 us 2B SP 30 , Write Transac... 06 61
7 0:08.435.616 209 us 1B = 30 . Write Transac... 8B
8 0:08.435.825 309 us 2B SP 30 ® Read Transac... 9A 11*
9 0:08.436.170 209 us 1B s 30 . Write Transac... 26
10 0:08.436.380 207 us 1B SP 30 ® Read Transac... 14*
11 0:08.438.191 305 us 2B SP 32 . Write Transac... 60 00
12 0:08.438.541 210 us 1B s 32 . Write Transac... 8B
13 0:08.438.752 310us 2B SP 32 ® Read Transac... FC 2F*
14 0:08.439.096 209 us 1B 5 32 . Write Transac... 26
15 0:08.439.306 207 us 1B SP 32 ® Read Transac... 13*
16 0:08.441.132 305 us 2B SP 32 » Write Transac... €0 81
17 0:08.441.478 215 us 1B = 32 . Write Transac... 8B
18 0:08.441.693 302 us 2B SP 32 ® Read Transac... 9B 39*
19 0:08.442.031 209 us 1B 5 32 y Write Transac... 20
20 0:08.442.240 207 us 1B SP 32 ® Read Transac... 13*
21 0:08.444.047 305 Us 2B SP 32 . Write Transac... 06 62
22 0:08.444.397 209 us 1B 5 32 y Write Transac... 8B
23 0:08.444.606 310us 2B SP 32 ® Read Transac... 02 46+
24 0:08.444.951 209 us 1B = 32 . Write Transac... 26
25 0:08.445.161 207 us 1B SP 32 ® Read Transac... 13*
26 0:08.446.967 305 us 2B SP 32 . Write Transac... 86 03
27 0:08.447.322 209 us 1B 5 32 s Write Transac... 8B
28 0:08.447.532 310us 2B SP 32 ® Read Transac... 65 46*
29 0:08.447.877 209 us 1B s 32 . Write Transac... 26
30 0:08.448.086 207 us 1B SP 32 ® Read Transac... 13*
31 0:08.449.903 305 us 2B SP 33 . Write Transac... €0 00
32 0:08.450.258 214 us 1B 5] 33 \ Write Transac... 8B
33 0:08.450.473 302 us 2B SP 33 ® Read Transac... CD 1C*
34 0:08.450.810 209 us 1B = 33 . Write Transac... 26
35 0:08.451.020 212 us 1B SP 33 ® Read Transac... 13*
36 0:08.452.816 305 us 2B SP 33 » Write Transac... €0 01
37 0:08.453.171 209 us 1B = 33 . Write Transac... 8B
38 0:08.453.381 302 us 2B SP 33 ® Read Transac... 01 20*
39 0:08.453.718 209 us 1B 5 33 y Write Transac... 20
40 0:08.453.928 207 us 1B SP 33 ® Read Transac... 13*
41 0:08.455.725 305 us 2B SP 33 . Write Transac... 06 02
42 0:08.456.075 209 us 1B 5 33 y Write Transac... 8B

Figure 25. Beagle Trace

The LTC3880 data sheet, in Table 2, shows the PAGE
command. This table is a quick way to decode the Beagle
data. Notice the Type column says R/W Byte. This means
the register is Read/Write Byte Protocol, so both direc-
tions are supported.

Table 2. Summary (Note: The Data Format lions are detailed at the end of his table.)

CNMD DATA DEFAULT
COMMAND NAME CODE | DESCRIPTION TYPE | PAGED | FORMAT | UNITS | NVM | VALUE |PAGE
PAGE 0x00 | Channel or page currently selected for any RWByte | N | Reg w00 | 68

command that supports paging.

Figure 26. PAGE Command

Looking back at |1 and 16, the second byte is a 0x00 and
0x01. The code is setting the PAGE register to 0 and 1.
Referring back to Figure 21. Read Voltages, line 63, this
is where the page is being set. We should see the voltage
being read right after this at 12 to 15.

We see:
Write 0x8B, Read 0x9A 0x0D
Write 0x20, Read 0x14

0x8Bisa READ_VOUT command. Table 2 in the data sheet
shows it is an R Word protocol, and is in L16 format.

0x20isaVOUT_MODE command. Table 2 inthe data sheet
shows it is an R Byte command.

The Linduino call that caused these to happen is shown
in Figure 21. Read Voltages line 64.

Why does a single function call issue two transactions? To
see why, we must look at the code behind the API, shown
in Figure 27. Read VOUT Code.

vout L16 = smbus_.readWord(address, READ VOUT);
exp = (int8 t)

(smbus_.readByte (address, VOUT MODE) & Ox1F);
return math .l1inl6 to float (vout Ll6, exp);

Figure 27. Read VOUT Code

This code shows a smbus_.readWord(address, READ_
VOUT) followed by smbus_.readByte(address, VOUT_
MODE), and 5 bits are extracted from the mode and put
into variable exp. The math conversion then converts from
L16 to floating point using exponent exp.

Basically, the code for reading voltage is generic code that
reads the exponent used to convert L16 to floating point.
LTC388X and LTC297X devices use a different exponent.
This is why there are two transactions.

Note: Code can be written with a prior knowledge of the
exponent and it will run a little faster. However, generic
code will have fewer bugs and is easier on the application
writer. This is a trade-off you have make when writing
your own code.

Before concluding, let's look at one more interesting
transaction: the reset.

Look at Figure 28. Reset Trace, and notice there are three
write transactions. In the S/P column, there are two S’s
and one SP This means |1 is a Start, 12 is a Repeated Start,
and I3 is a Repeated Start followed by a Stop. In addition,
theaddresses are different for each: 0x30, 0x32, and 0x33.

Index m:s.ms.us Dur Len Err s/p Addr Record Data
0 0:00.000.000 w Capture start... [Tue 1f
1 0:04.867.488 209 us 1B 5 30 . Write Transac... FD
2 0:04.867.698 244 us 1B 5 32 » Write Transac... 16
3 0:04.867.942 250 us 1B SP 33 » Write Transac... 16

4 0:08.899.681 @ Capture stop... [Tue 1f

Figure 28. Reset Trace

an153fb

AN153-10

LY N

Applicution Note 153

This is Group Command Protocol. All commands will be
processed at the end of I3, the STOP This correlates to
code shown in Figure 24. Probe and Reset lines 110-114.

If you spend some time on your own decoding a Beagle
trace, you will gain a fuller understanding of the PMBus
commands of PSM devices. On the other hand, if your
goal is to make code work, the PSM libraries are perfectly
happy to do the heavy lifting for you.

ADVANCED DEBUGGING WITH LTpowerPlay

Back in the introduction, it said that most systems are set
and forget, and some systems have a BMC. The truth is
systems with a BMC are a combination of set and forget
and firmware. Why burden a BMC with complete setup
responsibilities? Itis far easierto programabase setup into
PSM devices, and then use the BMC firmware for added
value functions only. This also results in a more reliable
system, because most firmware reads telemetry, margins,
and makes slight voltage changes and there is no need to
have it control critical functions such as sequencing or
PWM frequencies which are always static.

Because LTpowerPlay is the universal tool for designing,
debugging, and bringing up PSM systems, debugging
firmware must contend with another PMBus master on
the physical clock and data lines.

Before getting into the practical implications of two mas-
ters, it is best to review what happens when a PMBus has
two masters. PMBus is based on SMBus, which includes
multi-mastering.

The clock and data lines are open drain. This means any
device, master or slave, can pull down a line, but cannot
pullit up. There is a rule that says when a master does not
pull down the data line, and it detects the data line is low,
it assumes there is another master pulling the data line
low, and aborts its transaction, allowing the other master
to continue its transaction.

This technique is sometimes called bit dominance arbitra-
tion, which is a fancy way of saying the master asserting
a zero in the data always wins.

The Linduino and LTpowerPlay (DC1613) support multi-
master, and you might believe all is well with the world.
However, there is one more critical consideration.

PMBus defines a PAGE command (0x00), which is like an
address into data. Pages are like channels. For example, a
LTC2977 can manage 8 power supplies: it has 8 channels,
each addressed by the PAGE register/command.

Practically, this means to read some value like voltage,
it requires two transactions: one for PAGE and one for
READ_VOUT. If two masters are trying to read telemetry
from the same slave a the same time, and if one master
inserts a page command in between the page command
and telemetry command of another master, it will read
the wrong page.

When LTpowerPlay is up and running, the primary thing it
does is read telemetry, which keeps its status display up
to date so you can see plots of outputs, faults, and other
important information. Guess what firmware typically
does? It reads telemetry!

Even worse, suppose firmware performed a VID (Voltage
|dentification) function at boot time. What if the firmware
wrote a voltage value to the wrong page because LTpower-
Play modified the PAGE register? The system might fault
off, or even worse damage something. (Fortunately, the
VOUT_MAX register typically prevents system damage)

The basic problem of the PAGE command is inherent in
the PMBus specification. It is not unique to LTC’s Power
System Management devices, and one must deal with it.

There are two basic ways to allow LTpowerPlay and firm-
ware to cohabitate and avoid the PAGE problem. The first
is simply, not to let the two masters talk at the same time.
The second is to use the PAGE PLUS protocol and other
tricks on one or the other master.

Let’s get PAGE PLUS out of the way, since it is not often
used. PAGE PLUS allows an atomic transaction that in-
cludes the PAGE and the COMMAND in one transaction.
Because not all devices support it, it is typically only used
in special cases, so this note will not focus on PAGE PLUS
and other esoteric tricks. If you have no other way to solve
the problem either read the LTC PSM data sheets, or call
your local Field Application Engineer for help.

More common is to prevent LTpowerPlay and firmware
from talking to slaves at the same time. LTpowerPlay
has a very simple way to control its behavior. Figure 29.
LTpowerPlay Start/Stop shows the Telemetry Plot, which
has a red square button on its toolbar.

an153fb

LY N

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

AN1563-11

Applicution Note 153

elernetry Plot
% W Plot.. - 24Hz

READ VOUT

Figure 29. LTpowerPlay Start/Stop

When this button is pressed, it stops all telemetry and
all LTpowerPlay activity on the bus. It then changes to a
greenarrow as shownin Figure 30. LTpowerPlay Stopped.

= Telemetry
T r' Plot... -

Figure 30. LTpowerPlay Stopped

Unfortunately, firmware does not always have a built-in
mechanism to silence the bus. LTC simply recommends

designing new firmware with a built-in silencing mecha-
nism, or providing a hardware bus switch/MUX or jumpers.

Once there is a way to silence either bus master, LT-
powerPlay or firmware, debugging is simply a matter of
alternating between tools as necessary.

In summary, there are two choices:
1. Only allowing one master at a time to talk on the bus

2. Work through the details of PAGE PLUS and other
advanced techniques with the help of LTC Field Applica-
tions Engineers

For a new design, option one is always the best choice.

SUMMARY

Writing code for PSM devices is made simple with the
Linduino PSM Sketchbook, and a Linduino board plus
optional DC2294 Shield. The library has a simple API for
SMBus as wellas PMBus. LTpowerPlay can be still be used
for debug, and a Total Phase Beagle or other Spy Tool can
be attached to observe traffic on the bus.

Whether you want code to port or just want to learn how
PMBus works, Linduino is a great way to get started. Once
you have accelerated your learning curve, and understand
the basics of PSM programming, you can up your game
and use other tools with confidence.

Now that you have completed this Application Note, you
may want to look at some other Sketches that come with
the LTSketchbook. Try out some more advance Sketches
like Fault Log Decoding or In System/Flight Update.

an153fb

LT 1216 REV B - PRINTED IN USA

Linear Technology Corporation
AN153-12 1630 McCarthy Bivd., Milpitas, CA 95035-7417
(408) 432-1900 ® FAX: (408) 434-0507 ® www.linear.com

LY LINEAR

© LINEAR TECHNOLOGY CORPORATION 2016

www.linear.com

