
Application Note 155

AN155-1

an155f

January 2017

This application note is most useful if the hardware is
obtained from LTC and the results duplicated using the
LTSketchbook downloaded from www.linear.com/linduino.
However, there is still enough material in the application
note to explore and understand how fault logs work.

Fault Log Basics

LTC PSM devices constantly store telemetry data in RAM
prior to a fault. When a fault occurs, the device transfers
RAM data to EEPROM. The fault log data includes telem-
etry before and after the fault.

The PSM device uses a telemetry loop, which stores data
in a circular RAM buffer. When the state machine reaches
the end of the buffer, it wraps around and keeps writing.
When a fault occurs, the device stores a little more data
to finish the current telemetry loop and then writes the
circular buffer to EEPROM. The device attempts to write
the entire buffer into EEPROM until power is lost.

The fault log data contains several types of information:

1.	Cause of the fault log

2.	Position of telemetry MUX at time of fault

3.	Clock tick value

4.	Peak values of voltage, current and temperature

5.	Multiple loops of telemetry

When the fault log data is read from the device by a board
management controller (BMC), the device returns a block
of data. Each PSM device data sheet contains a descrip-
tion of the data.

Introduction

LTC power system management devices are PMBus con-
trolled point-of-load converters (LTC®388X) and power
system managers (LTC297X). All LTC power system man-
agement (PSM) devices have a fault log that is written
to EEPROM when there is a fault. Once the fault log is
written, fault logs are no longer generated until they are
re-enabled, typically after the data has been read back.

LTpowerPlay® helps debug a system by reading the fault
log, decoding it into human-readable format, displaying it
and saving it to a file. A system with a board management
controller (BMC), can also read the fault log from EEPROM
and re-enable it. Firmware can store, transfer over a
network and decode fault data read from a PSM device.

The Linduino® Sketchbook contains an example sketch
that reads fault logs, along with the supporting libraries
for PMBus and fault log decoding.

This application note describes the basics of reading and
decoding fault logs using Linduino.

Hardware

The hardware used for this application note is:

1.	DC2026 (Linduino)

2.	DC2294 (Shield)

3.	DC1962 (Power Stick)

Software

The software used for this application note is:

1.	Arduino 1.6.6

2.	LTSketchbook

Fault Log Decoding with Linduino PSM
Michael Jones

L, LT, LTC, LTM, Linduino, LTpowerPlay, µModule, Linear Technology and the Linear logo
are registered trademarks of Linear Technology Corporation. All other trademarks are the
property of their respective owners.

http://www.linear.com/products/Digital_Power_System_Management

http://www.linear.com/linduino
http://www.linear.com/LTC3880
http://www.linear.com/products/Digital_Power_System_Management

Application Note 155

AN155-2

an155f

Reading The Data

There are several PSM PMBus commands related to a
PSM fault logs:

•	 MFR_FAULT_LOG_STORE (0xEA)

•	 MFR_FAULT_LOG_CLEAR (0xEC)

•	 MFR_FAULT_LOG (0xEE)

LTC297x devices also implement the following commands:

•	 MFR_FAULT_LOG_RESTORE (0xEB)

•	 MFR_FAULT_LOG_STATUS (0xED)

The PSM controllers (LTC388X and fully integrated
µModules®) support reading directly from EEPROM and
PSM managers (LTC297X) transfer the fault log to RAM
via MFR_FAULT_LOG_RESTORE, which is then read us-
ing MFR_FAULT_LOG. The fault log memory in Figure 1,
shows the topology of the LTC2977 memory.

The MFR_FAULT_LOG_STORE command forces a fault
log for both families, which is useful for testing with
Linduino. The MFR_FAULT_LOG command uses Block
Read Protocol to return the contents of the fault log. The
MFR_FAULT_LOG_STORE command uses a Send Byte
Protocol, which is a command without a data byte.

LTpowerPlay and Linduino use the same commands and
PMBus protocols for fault log management.

Figure 1. Fault Log Memory

2978 F13

ADC READINGS
CONTINUOUSLY

FILL BUFFER

TIME OF FAULT
TRANSFER TO
EEPROM AND

LOCK

AFTER FAULT
READ FROM
EEPROM AND
LOCK BUFFER

RAM 255 BYTES EEPROM 255 BYTES

8

... ...

Decoding The Data

The LTC3880 fault log data is structured into two entities:

1.	Header information

2.	Cyclical data

The header contains:

1.	The cause of the fault

2.	Internal time value at the time of fault

3.	Peak telemetry values

The cyclical data contains:

1.	VOUT

2.	IOUT

3.	VIN

4.	IIN

5.	STATUS VOUT

6.	STATUS WORD

7.	 STATUS MFR SPECIFIC

There are five blocks of cyclical data, starting with the
newest data and going backwards in time.
Table 1. LTC3880 Fault Log Header
HEADER INFORMATION
Position_Fault BYTE 0
MFR_REAL_TIME [7:0} BYTE 1

[15:8} BYTE 2
[23:16] BYTE 3
[31:24] BYTE 4
[39:32] BYTE 5
[47:40] BYTE 6

MFR_VOUT_PEAK (PAGE 0) [15:8] LIN 16 7
[7:0] LIN 16 8

MFR_VOUT_PEAK (PAGE 1) [15:8] LIN 16 9
[7:0] LIN 16 10

The LTC3880 data sheet gives a detailed description of
the fault log header data, as shown in Table 1, and also
specifies the data format. For example, MFR_VOUT_PEAK
is LINEAR 16 (L16) format. The data values are the same
values that are returned by reading the command of the
same name and are formatted identically. The right most
column gives the index within the block of bytes.

http://www.linear.com/LTC2977
http://www.linear.com/LTC3880

Application Note 155

AN155-3

an155f

The LTC3880 position fault values are shown in Table 2.
This is the first fault to occur and is the most important in-
formation. It is written to EEPROM before any other value.
Table 2. LTC3880 Position Fault
Explanation of Position_Fault Values

POSITION_FAULT VALUE SOURCE OF FAULT LOG

0xFF MFR_FAULT_LOG_STORE

0x00 TON_MAX_FAULT Channel 0

0x01 VOUT_OV_FAULT Channel 0

0x02 VOUT_UV_FAULT Channel 0

0x03 IOUT_OC_FAULT Channel 0

0x05 OT_FAULT Channel 0

0x06 UT_FAULT Channel 0

0x07 VIN_OV_FAULT Channel 0

0x0A MFR_OT_FAULT Channel 0

0x10 TON_MAX_FAULT Channel 1

0x11 VOUT_OV_FAULT Channel 1

0x12 VOUT_UV_FAULT Channel 1

0x13 IOUT_OC_FAULT Channel 1

0x15 OT_FAULT Channel 1

0x16 UT_FAULT Channel 1

0x17 VIN_OV_FAULT Channel 1

0x1A MFR_OT_FAULT Channel 1

The LTC297X family has a similar fault log structure, with
fault cause, header and looped data. Consult a LTC297X
data sheet for more information1.

Code Strategy

The Linduino code can read the raw data and decode it
into a nested C structure. In most cases, the mapping
is one-to-one, but in a few cases, some data must be
copied. Once the data is structured, the code can process
the elements of the log or generate human readable text.

In some applications, the BMC will not process the data
at all. In these cases, the block of data may be sent over a
network and processed on another computer. That com-
puter can use the same strategy to process the data. Be-
cause the Linduino code is generic, it can run on the BMC
or a server, laptop, etc.

Dumping Logs with a Sketch

Before reviewing the library code, let’s review a sketch
from the LTSketchbook that prints the fault logs of a
DC1962 as shown in Figure 2. The DC1962 contains an
LTC3880, LTC2974 and LTC2977.

Figure 2. Loading Fault Log Sketch

The sketch is found in the User Contributed section under
DC1962C. After loading it, compile, upload and open the
console window (shown in Figure 3).

Figure 3. Fault Log Sketch Menu

 1-Dump Fault Logs
 2-Clear Fault Logs
 3-Clear Faults
 4-Bus Probe
 5-Reset
 6-Store Fault Log

Enter a command:

The menu has three main commands: Dump, Clear and
Store. The Store menu item will generate a fault log, or
you can cause a fault by pressing the CREATE FAULT
button on the DC1962.

For example, short the CH0 output on the DC1962C to
GND and then select Dump Fault Log from the menu. The
resultant LTC3880 fault log is shown in Figure 4.

Notice the top of the data: the fault position is IOUT_OC_
FAULT on channel 0. The Over Current Comparator faulted
before the Under Voltage Comparator. Depending on the
device’s overcurrent and undervoltage settings, the un-
dervoltage fault may occur first in this condition. A time is
given, which tells how long the system has been running
since reset. The time is useful for correlation between
fault logs of other devices.

Next, the data shows all peak values since reset or clear
command. This is often helpful if the temperature or
output current is higher than normal, giving clues to the
cause.

Note 1. The Linduino code will take care of things, so there is no need to
be an expert in the structure of the data.

Application Note 155

AN155-4

an155f

Finally, the data displays loops of telemetry. Notice that
Chan0 is 0.0V in Loop 0. Loop 0 is the most recent telem-
etry, where the fault occurred, and Loop 1 occurred just
before the fault, etc. At Loop 1, the voltage was 0.849V
and, at Loop 0, it is 0.0V. The telemetry loop takes ap-
proximately 100ms and, when there is a fault, the last loop
completes. Therefore, it is possible to have output voltage
data before the fault occurred, even in Loop 0.

Note: The output currents are small because there are very
small loads on the DC1962.

Figure 4. LTC3880 Fault Log

LTC3880 Log Data
Fault Position IOUT_OC_FAULT Channel 0
Fault Time 0x00000002dcc5
187589 Ticks (200us each)

Header Information:

VOUT Peak 0 0.852295
VOUT Peak 1 1.100830
IOUT Peak 0 0.002304
IOUT Peak 1 0.002975
VIN Peak 4.984375
Temp External Last Event Page 0 30.156250
Temp External Last Event Page 1 30.218750
Temp External Last Event 36.875000
Temp External Peak Page 0 30.468750
Temp External Peak Page 1 30.625000

Fault Log Loops Follow:
(most recent data first)

Loop: 0

Input: 4.929687 V, 0.099976 A
Chan0: 0.000000 V, -0.000168 A
 STATUS_VOUT: 0x00
 STATUS_MFR_SPECIFIC: 0x00
 STATUS_WORD: 0x4851
Chan1: 0.094971 V, 0.000092 A
 STATUS_VOUT: 0x00
 STATUS_MFR_SPECIFIC: 0x01
 STATUS_WORD: 0x1841

Loop: 1

Figure 5. LTC2974 Fault Log

LTC2974 Log Data
Fault Time 0x00000002a218
172568 Ticks (200us each)

Peak Values and Fast Status

Vout0: Min: 1.499512, Peak: 1.500732
Temp0: Min: 32.437500, Peak: 32.687500
Iout0: Min: 0.000122, Peak: 0.002777
Fast Status0
 STATUS_VOUT0: 0x00
 STATUS_IOUT0: 0x00
 STATUS_MFR0: 0x60

Vin: Min 4.937500, Peak: 4.992187

Vout1: Min: 1.799194, Peak: 1.802978
Temp1: Min: 32.312500, Peak: 32.437500
Iout1: Min: 0.000229, Peak: 0.003357
Fast Status1
 STATUS_VOUT1: 0x00
 STATUS_IOUT1: 0x00
 STATUS_MFR1: 0x60

Vout2: Min: 1.999512, Peak: 2.000854
Temp2: Min: 32.00000, Peak: 32.312500
Iout2: Min: 0.000565, Peak: 0.004166
Fast Status2
 STATUS_VOUT2: 0x00
 STATUS_IOUT2: 0x00
 STATUS_MFR2: 0x68

Vout3: Min: 2.199219, Peak: 2.200928
Temp3: Min: 31.312500, Peak: 31.468750
Iout3: Min: 0.000076, Peak: 0.004303
Fast Status3
 STATUS_VOUT3: 0x00
 STATUS_IOUT3: 0x00
 STATUS_MFR3: 0x68

Fault Log Loops Follow:
(most recent data first)

Loop: 0

CHAN3
 READ POUT: 0.009109 W
 READ IOUT: 0.004135 A
 STATUS IOUT: 0x00
 STATUS TEMP: 0x00
 READ TEMP: 31.312500 C
 STATUS_MFR: 0x18
 STATUS_VOUT: 0x00
 READ_VOUT: 2.199463 V
CHAN2:

Application Note 155

AN155-5

an155f

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

On the DC1962, the LTC3880 GPIOB lines are connected
to LTC2974 FAULTB lines and the LTC2974 is configured
to fault off when they are pulled to ground, which caused
the fault log. All channels report a fault0/1_status event,
indicating that these channels have responded to a shared
fault pin. Channels 0 and 1 also report a disconnected
DAC after disabling their outputs. The other channels lost
their DAC connection shortly thereafter.

The fault log of the LTC2977 has faults similar to the
LTC2974.

Following the LTC3880 fault log is the fault data for the
LTC2974 as shown in Figure 5. Why is there a fault log
for a device that was not shorted?2 Look at the STATUS_
MFRn in the Peak Values and Fast Status and in Loop
0. There are the following values: 0x60, 0x60, 0x68 and
0x68. In Loop 0 it is 0x18.

The LTC2974 STATUS_MFR_SPECIFIC, as shown in Ta-
ble 3, shows the meaning of the STATUS_MFRn values.
From Fast Status the following bits are high:

•	 Status_mfr_fault1_in

•	 Status_mfr_fault0_in

•	 Status_mfr_dac_connected

Table 3. LTC2974 STATUS_MFR_SPECIFIC Data Contents
BIT(S) SYMBOL OPERATION CHANNEL FAULT

b[7] Status_mfr_discharge 1 = A VOUT discharge fault occurred while attempting to enter the ON state.
0 = No VOUT discharge fault has occurred.

Current Page Yes

b[6] Status_mfr_fault1_in This channel attempted to turn on while the FAULTB1 pin was asserted low, or
this channel has shut down at least once in response to a FAULTB1 pin asserting
low since the last CONTROL pin toggle, OPERATION command ON/OFF cycle or
CLEAR_FAULTS command.

Current Page Yes

b[5] Status_mfr_fault0_in This channel attempted to turn on while the FAULTB0 pin was asserted low, or
this channel has shut down at least once in response to a FAULTB0 pin asserting
low since the last CONTROL pin toggle, OPERATION command ON/OFF cycle or
CLEAR_FAULTS command.

Current Page Yes

b[4] Status_mfr_servo_target_reached Servo target has been reached. Current Page No

b[3] Status_mfr_dac_connected DAC is connected and driving VDAC pin. Current Page No

b[2] Status_mfr_dac_saturated A previous servo operation terminated with maximum or minimum DAC value. Current Page Yes

b[1] Status_mfr_auxfaultb_faulted_off AUXFAULTB has been de-asserted due to a VOUT or IOUT fault. All No

b[0] Status_mfr_watchdog_fault 1 = A watchdog fault has occurred.
0 = No watchdog fault has occurred.

All Yes

Note 2. All three devices faulted at the same time and the sketch read
fault logs from all three devices.

Application Note 155

AN155-6

an155f

Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com  LINEAR TECHNOLOGY CORPORATION 2017

LT 0117 • PRINTED IN USA

Sketch Code

The sketch code uses an API found in the library file LT_
PMBus/LT_FaultLog.h, shown in Figure 6.

Figure 6. Fault Log API

bool hasFaultLog (uint8_t address);
void enableFaultLog(uint8_t address);
void disableFaultLog(uint8_t address);
void clearFaultLog(uint8_t address);
virtual void print(Print* printer = 0) = 0;

The code behind the API detects the type of device and
does “the right thing.” Using this API, the code to print
the fault log is simple, as shown in the Figure 7 fault log
sketch code. The FaultLog class is a general or base class
that is specialized by subclasses for each device type.

Figure 7. Fault Log Sketch Code

static LT_3880FaultLog *faultLog3880 =
 new LT_3880FaultLog(smbus);

if (
 faultLog3880->hasFaultLog(ltc3880_i2c_address))
{
 faultLog3880->read(ltc3880_i2c_address);
 faultLog3880->print(&Serial);
 faultLog3880->release();
}
else
 Serial.println(F("No LTC3880 Fault Log"));

The code only needs to check if there is a log using a
device-specific object and, if so, read it, print it and re-
lease it. The “read” function will allocate internal memory
for the data, “print” will print it and “release” will release
the memory. If you need direct access to the structure,
there is a “get” function on each subclass, which returns
a structure for that device type. With the structure, you
can write code that directly processes the raw data.

One way to think of this design is the FaultLog class de-
fines a common API and the subclasses implement the
device-specific behavior. Because the devices have slight-
ly different PMBus commands and the data formats are
different, the subclasses are implementing the specialized
behavior but using the same common API.

Porting

The library code is generic other than the print function.
To port the code to a non-Arduino platform, remove or
replace the print function. Also, make sure the structures
are packed and that the pointer cast does not have any
memory alignment problems.

If you wish to use your own PMBus library, then you also
must change the SMBus/PMBus calls for your library.

Summary

Fault logs are a very powerful feature of power system
management devices and offer a non-volatile historical
account of a fault. Reading and interpreting the raw data
of the LTC388X and LTC297X families is easy with the
provided library.

The Linduino PSM fault log library and example sketch
make the job straightforward, with a common API. Port-
ing the code is simple because the only Arduino-specific
code is for printing, which is easy to replace compared to
the decoding of the bytes and learning the PMBus com-
mands for each device type.

If you have any questions about the Linduino PSM
Fault Log Library or Linduino PSM, contact your
local LTC field application engineer or sales office
(www.linear.com/contact).

http://www.linear.com/contact

