NOW PART OF

L] TECHNOLOGY

ANALOG
DEVICES

Application Note 166

April 2017

In Flight Updute with Linduino

Michuel Jones

INTRODUCTION TO INFLIGHT UPDATE

Inflight Update is a method of modifying the stored set-
tings of LTC Power System Management (PSM) devices,
including application of the new settings, toalive system! .

Inflight Update isatwo-stage process: EEPROM is modified
first, and then EEPROM is copied to RAM. During stage
one, a Board Management Controller sends new settings
directly to the EEPROM via PMBus while the devices are
operating normally, without impacting operation. During
stage two, all devices switch to the new configuration via
a reset or a power cycle? .

Decoupling “programming settings” from “application of
settings” allows the EEPROM programming mechanism
to stage, validate, and recover from programming failure
without interruption of delivered power. This minimizes
system downtime because all rails are power cycled only
once per update.

Inflight Update solves several technical and business
problems. Fast product development increases the prob-
ability of field problems. For example, the supervisors
might require more margin to reduce false positives.
An FPGA image update might require small changes to
a supply voltage. Inflight Update can also reduce inven-
tory of pre-programmed devices by programming during
manufacturing.

Inflight Update is a method unique to LTC Power System
Management devices with a supporting infrastructure:
LTpowerPlay®, Linduino reference code, and application
support.

This application note will explain the Inflight Update process
at a high level, plus present the Linduino reference code
and and how to port it to another platform.

Note 1. All LTC388X devices and all LTC297X devices, except LTG2978,
support Inflight Update. The Inflight Update code will program a LTC2978,
but it will power off rails and use RAM to program the EEPROM. All non-
LTC2978 devices do not have to power off rails because there is a direct
path from PMBus to EEPROM that the LTG2978 does not have.

Note 2. Reset also power-cycles the outputs.

Note 3. The BMC must not be powered by PSM devices that will be
programmed with Inflight Update.

INFLIGHT UPDATE PROCESS

The general dataflow of Infight Update is a simple linear
progression:

1. Modify the settings of an engineering unit using
LTpowerPlay.

2. Export an In System Programming (ISP) file using
LTpowerPlay.

3. Transport ISP file/data to a Board Management
Controller (BMC) (microcontroller) using Ethernet,
disk, or compiling it into its code.

4. BMC programs all PSM devices using ISP data and
PMBus3.

5. BMC resets system to apply new settings or power
is cycled.

The ISP file contains a list of instructions that, when ap-
plied via the PMBus, directly modify register / command
values stored in EEPROM without disturbing operation.
The BMC code that applies the instructions to PMBus is
independent of the LTpowerPlay tool that generates the
instructions.

Asanimplementer of Inflight Update, youare responsible for:
1. Porting the Inflight Update code
2. Implementing data delivery
3. Adding safety/recovery measures
4. Validating and testing the system
Linear Technology is responsible for:
1. Maintaining and updating the generator
2. Adding support for new PSM products
3. Maintaining and updating LTpowerPlay

L7, LT LTC, LTM, Linear Technology, LTpowerPlay and the Linear logo are registered
trademarks of Analog Devices, Inc. All other trademarks are the property of their respective
owners.

an166f

AN166-1

Application Note 166

This application note will focus on applying the instruc-
tions, not the instructions themselves. If you have ques-
tions about the instructions themselves or the instruction
generator, please contact your local LTC Field Applications
Engineer (www.linear.com/contact).

Allexample code can be found in the Linduino Sketchbook
inthelibrary/LTPSM_InFlightUpdate directory (www.linear.
com/linduino).

CREATING DATA WITH LTpowerPlay

LTpowerPlay generates the data that feeds the Inflight
Update code. Selecting File | Export | Programming File |
Exportto In System Programming [.isp] Hex File. .. raises
a dialog box that accepts a path to a file, and generates
the file with .isp extension?.

tion Utiities _ Custom Scripts Help

Cro Iy
< x | BTelemetry | - x

ESNSE uE

W8p Dashboard --U0 (7'h30) -LTC38|_|

rogrammed Parts.

: en. =
ave. . o

AlPaged Addressng/P. -

Figure 1. Export ISP File

Figure 2 shows an example isp FILE from a DC1962. This
data is copied to a sketch, or to your BMC.

Figure 2. ISP File Contents

RUNNING THE SKETCH

The Linduino Sketchbook has an example sketch for
the DC1962° that uses the library mentioned above. A
walkthrough of the example sketch will give you a general
feel for how Inflight Update works, and starter code for
experimenting with other DC boards.

Figure 3 shows how to navigate the Arduino menus to
open the sketch.

sketch_juloga | Arduino 1.6.5

Ctrl+O
OpenRecent 3

-chbook Example Designs

Examples * | Part Number |

Close Cerl+W Audio_Spectrum_Analyzer

Save Ctrl+5 | Utilities h_ faultlog
Save As... Cerl+Shift+5 | wip * | DoxygenExample hello_world
Page Setup Ctrl+Shift+P FAE April_2013 logo

Print Cerl+P Precision_Voltage_Source

Preferences Ctrl+Comma Synth store

Quit CerlQ vrnClock svid

training
ultra_fix

Figure 3. Example Sketch

The data.h file contains the same data found in the *.isp
file, but formatted differently. Figure 4 shows that the data
is pasted into an array, and each line of data ends with a
“\” continuation character.

This data represents both the contents of EEPROM and
the programming steps to apply the data to the devices
in the original DC1962 project. Because the data is in the
data.h file, it will be compiled into the sketch.

program data.h

1 #ifndef DATA H_
2 #define DATA H

2
3

4 #include <Arduino.h=
g

G static const unsigned char isp_datal] PROGMEM = "\
7l 1 1EQB0L 15001 10005E001000C002001B09Y
5 : 20002000000000303A08000F005B00033806001 800010009001 0005B001 0804906001 8001LFY
S :20004000110009001008300010089209000100! 1 S00095BY
10 :20005000003000BFO0CCFBEECA40CAROCECACAREC200000000000000CI307080LEODIAZBADN
11 :2000800000CE480CSCECAAROEZ600FA47FOEFGOC3ECBA07FEZ02E3B266EE20B8EAABCDE00TY
12 :2000A000BEEE0CAGFS0C518000023002C0BE02580280F2580E861 234000000001 72997 4289
13 :2000C000C0801 2EE2CO3E393320F3C4000800080801E119A28001 2781 0BSAABGE260143E7 3
14 : 2000EQ007F13500F35070EF67FE202B8E266EB20EEEAABCDE0EEE01 OSF1 004EB200 2800361
15 :20010000COBEFBES3E0280F258C5E400000000000017299742C0801 2EEO3E393330F3C4072

16 :20012000008000280B90900010030001001 30001001 EFOO40FAN
17 :2001400040090001003000EDE1 A A EF 4003000ED 1BON
12 :20016000003000BD0] 2B EF lGGSOGGBDGlD4GJ\OGGAGO3GOGEFE4\
19 2001 4003000EDECDA 1003000EDA1 A EF 400950
20 2001 300080 1003000BDO12E EF 100303EN
21 :2001C BDOLDA0A A EFC04 4002000EDEEDA 100 BEOOZBESY
22 1 2001E EF 3000ED lOGSGGOBDOE2BEAGGOAGGlC\
23 : 200200003000EF004040080001 003000BDOGDAOA ADG3000EF 4003006EDCTY

24 20022000000 500 EF EF BF D7
25 :20@2400Gﬂ.ﬁﬂGGADGSDGGEFGGdDdGGQGGGlGGSGGGBDGGDGGAGDGMJGSGGDEFOGAG&DGQDGG&E4\

26 : 2002600000300CEDA0000S0001 003000BDAG2E 1003000BDCSY
27 :2002800000D40A ADO3000EFO04 4 SDDDBDDDD4DBDDIEDOSDODBFDDDQDDD&E?\
22 1 2002A00000300CED c]e) ES03060000 18000 128001284

Figure 4. Top of data.h

Note 4. ISP means In System Programming file. This is a more general
term than Inflight Update that includes programming devices without
direct PMBus to EEPROM support.

Note 5. A DC1962 has a LTC3880, LTC2974, and LTC2977 on it.

an166f

AN166-2

Application Note 166

Oncethe sketchisrun,amenuis presented with 9 options.

“ l Send

* DC1962C In Flight Update Demonstration Program (MEGA 2560 Only)
*

* This program demonstrates how to program EEPROM from hex data

*

* Set the baud rate to 115200 and select the newline terminator
*

® o® ow ow oE o

1-Program

2-Verify

3-Restore

4-Program and Apply
5-Clear Faults
6-PEC On

7-PEC Off

8-Bus Probe

9-Reset

Enter a command:

Figure 5. Sketch Menu

Option 1 (Program) applies the data to the EEPROM of all
three devices on the DC1962. Option 2 (Verify) compares
the data with the contents of the EEPROM to ensure they
match. Option 3 (Restore) forces the devices to load
EEPROM data into RAM.

The supply rails only power cycle during option 3, which
transfers EEPROM to RAM. When data in the EEPROM
is copied to RAM, all devices automatically power down
their rails before the copy and then power them back on
after the copy. Disconnecting power from the DG1962 will
accomplish the same thing®.

LT SMBusNoPec *smbusNoPec = new LT SMBusNoPec();
LT _SMBusPec *smbusPec = new LT_SMBusPec();

NVM *nvm = new NVM(smbusNoPec, smbusPec);

bool worked = nvm->programWithData(isp data);
pmbus->resetGlobal();

delete(nvm);
delete(smbusPec) ;
delete(smbusNoPec) ;

Figure 6. Sketch Code

Note 6. For general help with PSM Sketches, refer to application note
AN153 - Linduino for Power System Management.

The sketch code is very simple and a condensed version is
shown in Figure 6. Two lines do all the work: program-
WithData, and resetGlobal. Thefirstline does the
actual programming, the second line causes the transfer
from EEPROM to RAM which cycles power.

Notice that the code does not worry about addresses,
device types, polling, etc. The ISP data handles all of these
issues for you. You port the code, and then it just works.

SUMMARY

Inflight Update is a complete end-to-end solution for pro-
gramming Power System Management devicesinaworking
system. A software engineer ports LTC provided code to
their Board Management Controller. This code applies data
generated by LTpowerPlay. LTC maintains the generation
code to ensure programming is robust and future proof,
ensuring that the code ported to the BMC is maintenance
free. This allows a Board Management Controller to be
used across a broad range of products without changes,
even when different products use different Power System
Management devices.

This end-to-end solution enables a flexible model for end
users. The solution can be used for:

* Manufacturing Programming
* Prototype Programming
* Field Upgrades

INTRODUCTION TO INFLIGHT UPDATE CODE

LTC maintains two versions of Inflight Update Code:
* Linduino
* Linux

The Linduino code is downloadable from www.linear.com/
linduino. The Linux code isavailable throughyourlocal FAE.

The remainder of this Application Note will walk through
the Linduino version of the code. The only significant
difference between the two sets of code is how memory
is managed.

If you don’t care about how the code works, you can stop
reading.

an166f

AN166-3

www.linear.com/linduino
www.linear.com/linduino

Application Note 166

OVERVIEW OF DATA FLOW

Before jumping into the details, let’s review a schematic
representation of the whole process.

Figure 7. Data Flow

The process begins by making changes to a LTpowerPlay
projectandthen exporting an ISP file. The ISPfile is copied
to the product, which usually means to a Board Manage-
ment Controller or other micro controller's EEPROM or
Disk Drive. The Inflight Update code reads the ISP data
and sends commands over the PMBus to the EEPROM.
These commands program and verify the EEPROM.

Once the verify succeeds, the system is reset or power
cycled safely. If there is a failure, the system retries the
programming, while the system continues to operate.

Whenthe resetor power cycle completes, the new settings
created with LTpowerPlay will become effective. This is
because the reset or power cycle causes the RAM to be
loaded with the new EEPROM data.

In this App Note, a Linduino is used to demonstrate this
process, so the ISP data is copied into the program code
and compiled in.

ISP FILE FORMAT

An ISP file is a list of instructions encapsulated in an Intel
Hex File. Figure 8 shows an example.

--

: :10010000214601360121470136007EFE09D2190140
1 :100110002146017EB7C20001FF5F16002148011988
1 :10012000194E79234623965778239EDA3F01B2CART
' :100130003F0156702B5E712B722B732146013421C7
i :00000001FF

Figure 8. Example Intel Hex File

A record begins with a header (the Start code) and ends
with a CRC (the Checksum). The record interior contains
a count, address, record type, and hex data. ISP files
contain two record types’:

* Data Record (00)
 End of File Record (01)

The data inside the Intel Hex Data Records contains
another set of LTC defined records. These records are
blocks of binary data that exactly map to C Structures.
Furthermore, the binary data is packed, meaning there are
no empty or unused bytes in the C Structures.

Figure 9 shows the LTC record structure. Like Intel Hex,
it has a length, type, and data. However, there is no need
for a CRC as the Intel Hex already has a CRC mechanism.

Header (4 bytes) Payload bytes (depends on

record type)

Field Record Length Record Type Fields defined by record type

Low High Low High
Byte Byte Byte byte

1 1 1 1 (defined by record type)

Figure 9. LTC Defined Record Structure

Note 7. Other Intel Hex data types are not used.

an166f

AN166-4

Application Note 166

The length is in the first byte so that code can grab all the
bytes for a record without knowing anything about the
record content. This allows the code to “chunk” the data
into record sized blocks. These blocks may occupy any-
where from part of a data record to several data records of
the Hex file. The second byte has the record type, so that
code can map the block of data to the correct C Structure.
Each C structure is an instruction for the BMC to apply to
the PMBus, and the complete list of C structures in the
ISP file represent the reconfiguration of all PSM devices
in the original LTpowerPlay file®,

Doc: For record details see
http://www.linear.com/solutions/5710

PROCESSING ARCHITECTURE

How the records are processed matters because of poten-
tially limited resources in the BMC. In particular, memory
may be as small as 2k of RAM. For limited memory sys-
tems, data must be processed incrementally. For larger
memory systems, the entire intermediate results may be
held in memory, leading to simpler code debugging, but
this App Note will focus on small memory systems.

The Inflight Update reference code uses atwo level parsing
scheme implemented as a "pipe and filter” architecture.

Ina “pipe and filter” design, data can be pushed or pulled
through the pipeline. The Inflight Update reference code
usesapulldesign. The main record processor (C structure
processor) pulls data through the pipeline. At the head of
the pipeline inserts an end-of-data record (C structure) so
that the main record processor knows when to stop. This
is called an “on demand” implementation.

Process
Parse Hex — Parse Record—> Records On
Demand

Read >

Figure 10. LTC Pipe and Filter

Note 8. There is no correlation between the size of Intel Hex Record data
and size of LTC records.

Figure 10 shows the filters used in the reference code.
Each box/filter is a G function. The first function called
is “Process Records On Demand,” which pulls records
from “Parse Record,” which pulls data from “Parse Hex,”
which reads data, etc.

Terminology: Each stage is called a “filter” in the literature. However, a
“filter” is just a processing step that delivers data to a requesting pipe.
Each filter/step is implemented as a C function.

CODING PIPE AND FILTER

Coding filters is simple. When a filter function is called,
it requests data from an input function, processes it, and
returns transformed data to its caller. The input function is
passed to the filter function as a pointer when it is called.
Thefilters are the stable portion of a pipe and filter design.

Connecting the filters with pipes is like gluing the pipeline
together. Pipes are the modifiable portions of the pipeline.
Pipes are functions that wrap around a downstream filter,
and their pointer is passed to the upstream filter. Any time
a new pipeline is configured, filter functions are reused,
and pipe functions are recoded.

Looking at an example will clarify how this is done.

Figure 11 shows a pipeline that reads data from afile. The
filters are the functions:

* processRecordsOnDemand
* parse_record
* parse hex
e filter terminations
* read
And the pipes are the functions:
* get record
* get_record data
* get filtered data
* get hex data

an166f

AN166-5

Applicution Note 166

1: uint8 t get hex data (void) 1: uint8 t filter terminations(

2: { 2: uint8 t (*get data)(void))

3: uint8 t ¢ = ‘\0’; 3: {

4 4 uint8_t ¢ = ‘\0’;

5: c = pgm read byte near (icpFile + 58

6: flashLocation++); 6 c = get_data();

7 if (*\0’ == c) 7 if (¢ == ‘:7)

8 return c; 8

9: else 9 Serial.print(“.”);

10: return 0; 10: }

11: } 11: while (¢ == ‘\n’ || c == ‘\r’)
12: c = get_data();

12: uint8 t filter terminations(13: return c;

13: uint8 t (*get data)(void)) 14: }

14: {

15: uint8 t ¢ = ‘\0’; 15: uint8 t detect colons(uint8 t

16: 16: (*get_data) (void))

17: c = get data(); 17: {

18: while (¢ == ‘\n’ || ¢ == ‘\r’) 18: uint8 t c;

19: c = get data(); 19:

20: return c; 20: c = get_data();

21: } 21: if (¢ == ‘:")
22:

22: uint8 t get filtered hex data(void) 22‘) Serial.print(“.”);

23: { 2

24: return filter terminations(get hex data); 22‘) return c;

25: } B

26: uint8 t get record data(void) g;‘ ?intS_t get_hex_data_debug(void)

27: { 2 . N,

28: return parse hex(get filtered hex data); 29: uint8_t ¢ = ‘\0’; : .

29: } - - - = 30: c = pgm read byte near(icpFile +
31: flashLocation++);
32:

30: pRecordHeaderLengthAndType get record(void) 33: if (‘\0’ != c)

31: { 34: return c;

32: return parse record(get_record data); 35: else

33: } 36: return 0;
37: }

34: processRecordsOnDemand(get record);

38: uint8_t get hex data debug_(void)
39: {
Figure 11. Gluing a Pipeline Together jg: . return detect_colons(get_hex data debug);

. . 42: uint8 t t filt d h data deb id
One way to tell them apart when looking at code is by~ [a3: (o = oo oonex aata debug(void)
i i i 44: return
the funphon names and S|gnatures. The filters all accept 45, filter terminations(get hex data debug);
a function pointer (for a pipe) and return data, plus they 46: }
have names that are actions. Pipes all accept a void and 475 uints t cot 4 data deb »
. . ¢ uln et recor ata depbug(volil

return data, and they have names that begin with get. The 48: { g _data_debug()

T] ” : H H i 49 return
prefix “get reflepts .that the pipeline is pulling (jatqfrom S0. T N
the end of the pipeline from the front of the pipeline. A 51: } - - - T T

push pipeline would prefix the functions with “put.” Note
52: pRecordHeaderLengthAndType

that filters designed for pulling will not work for pushing. 53: st roeEEel Gk (TeRE)
54: { - B
55: return
56: parse_record(get record data_debug);
57: }

Figure 12. Debug Hex Filter

an166f

AN166-6

Application Note 166

A library of filters creates a toolkit by function composi-
tion. An application designer glues a pipeline together by
writing pipe functions. Furthermore, if filters are added
to the library with standardized inputs and outputs, the
pipeline can be reconfigured at runtime.

For example, if there are multiple ways to read the hex
data, there may be multiple read filters, one for each data
source, and the code may compose themat runtime based
on the source of data. Filters might also be specialized for
space/time trade-offs, or provide tracing and debugging
support.

Figure 12 shows how to insert a filter called detect
colons online 40. Thisfilter prints a dot on the Linduino
display every time a colon passes through it.

Now let’s look at the record processing, which is the last
filterinthe pipeline. Going back to Figure 11 looking at line
32, notice that the pipe function get _record_datais
passedto parse record. Thefilter function parse
record is the filter that will generate the C Structure/
Record.

pRecordHeaderLengthAndType parse record(
uint8 t (*get data)(void))

Figure 13. Parse Record Signature

Take alook at the signature of parse recordinFigure
13. This is the standard way of passing a function pointer
in C. Inside the parse record code, get_data is
called to get data from its pipe. Because get data is
passed as a function pointer, it can accept any function
withthe proper signature, which mustreturnauint8_t.
This is the same signature used by the print record
filter, which prints the record information and just passes
along the record to the caller.

Looking back once more at Figure 11 line 34. Notice the
call to processRecordsOnDemand®. This function
applies the G structure Records to the PMBus, thus
eventually writing the data to the EEPROM of each device
on the bus.

If you need to debug the actual record processing, there
are some #defines at the top of the file'0.

#define DEBUG_SILENT 0
#define DEBUG_PROCESSING 0
#define DEBUG_PRINT 0

Figure 14. Processing Debug #defines

DEBUG SILENT just turns the processor
(processRecordsOnDemand) 0ff S0 you can debug
the pipeline. Forexample, youcoulduse print record
to observe records, but they would not do anything to
the PMBus.

DEBUG_PROCESSING prints the record information,
but also blocks the use of PMBus.

DEBUG_PRINT prints the record information and lets
the PMBus transactions through so that devices are
programmed.

ISP FILE COVERAGE

ISP files (hex data) can cover one or more devices on the
PMBus. The number of devices per file is controlled by
LTpowerPlay, which creates an ISPfile froman LTpowerPlay
project file. If you want one ISP file per device, you create
one LTpowerPlay project per device. However, generally
it is better to make one file for the whole bus'" because
it reduces bookkeeping errors.

Inflight Update is designed to process one file of data at
a time. It does not care how many devices the file cov-
ers. However, if there is more than one file for a bus and
if it matters whether they are all applied before the next
reset or power cycle, you must code your implementa-
tion to run Inflight Update for each device before reset or
power cycling, and you must ensure that if power is lost
between files, the software prevents power on until the
job is complete.

Note 9. LTSketchbook/libraries/LTPSM_InFlightUpdate/main_record_
processor.cpp

Note 10. Change 0 to 1 to activate.
Note 11. Or a segment if the bus is segmented with 12C multiplexers.

an166f

AN166-7

Applicution Note 166

BROKEN CONFIGURATIONS

All PSM devices store one or more CRC values in their
EEPROM. During reset, the device calculates the CRC of
the data in EEPROM and compares it to the CRC value in
EEPROM. If they do not match, the device does not power
up any rails and it issues a CML fault.

LTC388X devices with CRC errors default to address
0x7C. LTC297X devices with CRC errors default their
base address to the data sheet default'2. The BMC can't
even talk to the PSM devices in this state, because they
are not at their correct address, and there may be more
than one device at an address. They might even be on top
of a non-PSM device.

The probability of losing power while updating EEPROM
is very low, and the failure behavior is safe for the loads,
but for Inflight Update systems where the system is not
in the factory, we can’t ignore the problem. There must
be a way to recover and repair the system without human
interaction.

RECOVERY METHODOLOGY

Becausethe CRCfailure is caused by apower loss,the BMC
will reboot on next power up. Therefore, the proper place
to detect a CRC error is during start up. This assumes the
BMC has power even when the PSM devices can’t power
up. Hopefully your design has a safe supply to the BMC
or you can still influence the design before it is too late.

Warning: The BMC must not be powered by PSM devices that will
be programmed with Inflight Update!

When the BMC starts up, it must check for CRC errors,
and if any device has errors, it must apply Inflight Update.
Inflight Update will work even when there are CRC errors
and the devices have defaulted to address 0x7C or the
default base address.

Note 12. In rare cases the base address will be random if the EEPROM
partially loads data during CRC checking.

Note: Inflight Update and recovery depend on certain
design practices. All devices on the bus must have ASEL
resistors that guarantee that when all devices on the bus
are programmed to acommon base address, every device
has a unique address. The hex data in the ISP file contains
a common base address that will be used to program the
system, and the addresses set by the ASEL pins must
match the addresses in the hex data. See App Note AN152
for details on proper address configuration.

Robustness: Inflight Update even works when there are CRC errors
and the BMC can’t control PSM devices in the normal way.

1: uint8 t* LT PMBus::bricks(uint8 t* addresses,
2: uint8 t no_addresses) {
3: uint8 t i,j;
4: bool found;
5 uint8 t len;

6 uint8 t* addresses on bus =

7: smbus_.probe(0x00);
8: for(len=0;

9: addresses_on bus[len]!='\0’; ++len);

10: for (i = 0; i < no_addresses; i++) {
11:

12: found = false;

13: for (j = 0; j < len; j++) {

14: if (addresses[i] ==

15: addresses on bus[j]) {
16: found = true;

17: break;

18: }

19: }

20: if (found && (1 << 4) !=

21: (smbus_.readByte(addresses[i],
22: STATUS CML) &

23: (1 << 4)))

24: addresses[i] = 0x00;

25: }

26: i=0;

27: while (i < no addresses) {

28: if (addresses[i] == 0x00) {

29: j=1+1;

30: while (addresses[i] == 0x00 &&
31: j < no_addresses) {

32: addresses[i] = addresses[]];
33: addresses[j] = 0x00;

34: j++;

35: }

36: }

37: i++;

38: }

39:

40:

41: return addresses;

42:}

Figure 15. Detector for Devices with CRC Mismatch

an166f

AN166-8

Application Note 166

Recovery starts by probing the busto determineifthereare
any devices with CRC mismatches. The reference code in
Figure 15 applies three tests. The first test probes the bus
with a simple command looking for an ACK. This results
in a list of responders stored in addresses_on_bus
at line 6. Responding is not enough to prove the CRC is
ok, but it’s enough to know a device exists at an address.
The second test compares the addresses from the probe
with the expected addresses to remove addresses we
don’t care about at lines 10-19. The final test reads the
STATUS_CML register and checks if there is a memory
error, designated by a 1 in bit position 4 at lines 20-25.
Any address that does not pass all three tests is returned
from the bricks () function.

Note: The reason this code returns a list of bad addresses
is so that the caller can choose whether to program all
devices using Inflight Update, or a subset. This choice
depends on whether the final implementation uses one
ISP file (hex) for the whole bus, subsets of the bus, or
individual devices.

If there are any bricked or missing devices, the BMC runs
Inflight Update.

There is always the chance that power fails each time
Inflight Update is applied. The chance is remote in a well
tested system, but if you are paranoid, use scratch pad
memory inthe BMCto count number of retriesand prevent
EEPROM wear out. Each data sheet has a max number
of times it can be programmed (see data sheets), and if
the system really can get in a loop, it can exceed the max
very quickly.

EEPROM should not be programmed on devices that are
too hot. In general, a system should not reprogram when
above 85°C. If your system is going to run that hot, the
BMC should power down rails and let them cool off. Or,
anticipate that a retention problem will cause a CRC mis-
matchand lead toanautomatic run of Inflight Update onthe
following power cycle, which will allow some cooling time.

Checking for CRC mismatches on a power cycle does
double duty in protecting against downtime. If at power
up, the BMC holds off Inflight Update until the temperature
is less than 85°C, it will be very robust.

Tip: For Inflight Update to be robust in a deployed design it must take
into account the possibility of power loss during programming and
recover on the next power up event. This means the board controller
must have a persistent store for the ISP (hex) data, and detect devices
that fail their CRC check.

LT SMBusNoPec *smbusNoPec = new LT_SMBusNoPec();
LT SMBusPec *smbusPec = new LT SMBusPec();

NVM *nvm = new NVM(smbusNoPec, smbusPec);

bool worked = nvm->programWithData(isp data);
wait_for_nvm();
pmbus->resetGlobal();

delete(nvm);
delete(smbusPec) ;
delete(smbusNoPec) ;

Figure 16. Calling Processing Code

Data Processing

Thetop-level data processing code is simple. Create SMBus
objects and pass them to a NVM class. Call program-
withData onthe NVM object passing the data. Wait for
the operation to complete with wait for nwvm, then
reset all devices on the bus. Finally, clean up by deleting
the objects.

Your application code that implements Inflight Update
will be this simple after porting the code. If you want to
understand the code internals, continue on, otherwise
skip ahead to the section Porting Guide.

Hex Parsing

Processing always begins by calling reset parse
hex (). This resets the static variables. The parse
data_position variable keeps track of which byte in
the data is returned next. The parse_data_ length
variable keeps track of the size of a LTC C structure.

an166f

AN166-9

Applicution Note 166

: void reset parse hex()
2 {
parse _data length = 0;

parse data position = 0;

e wN =
o oo

:)

Figure 17. Resetting the Parse

When the first call is made to parse_hex, lines 8-52
in Figure 18, it will parse a full Intel Hex Record and place
the contents in the parse data variable. Thereafter, it
will skip this step and return the data byte by byte, one
byte per call. When the data runs out, it parses another
record. It does this as long as the record_type ==

online 28. A0 is a data record. When the record type is 1,
it creates an LTC C structure for end of data, which is
code 0x22. This end of data record is not in the ISP data.

The front of the record is parsed in lines 13-27. First it
runs to the colon and stops, passing over any linefeed
or carriage returns. Then it parses the byte count,
address, and record_type by chunking the data and
converting it. These are fields shown in Figure 8.

If it finds a data record (0), it puts the data into memory
at lines 28-34. There are two hex characters per byte in
the original hex data, so they are assembled into a little
array and converted to a value by calling “hex to integer”:
httoi(data) atline 34.

When an end of data record (1) appears, lines 42-49
create an LTC C Structure end-of-data record, the record
processor will stop requesting data and flow stops. Be-
fore the next run of Inflight Update, the BMC must call
reset parse hex.

For both record types, the parse data position
and parse data length variables are updated to
manage the processing.

~NoU s W=
e o0 oo oo oo

O oo
o oo

: uint8 t parse hex(uint8 t (*get data)(void))
: {

uint8 t start code;
uintlé_t byte count;
uintl6 t record type;
uintlé6_t i;

char data[5];

if (parse data position ==
parse data length) {

start code = 0x00;
while (start code != ‘:')
start code = get data();

data[0] = get data();
data[l] = get data();
data[2] = ‘\0’;

byte count = httoi(data);

data[0] = get data();
data[l] = get data();
data[2] = get data();
data[3] = get data();
data[4] = ‘\0’;

address = httoi(data);
data[0] = get data();
data[l] = get data();
data[2] = ‘\0’;

record type = httoi(data);

if (record type == 0) {
for(i = 0; i < byte count; i++) {

data[0] = get data();
data[l] = get data();
data[2] = ‘\0’;

parse data[i] = httoi(data);
}

data[0] = get data();
data[l] = get data();
data[2] = ‘\0’;

int crc = httoi(data);

parse_data_position = 0;
parse data length = byte count;

}
else if (record type == 1) {
parse_data[0]

.
’

parse data[l] = 0;
parse _data[2] = 0x22;
parse data[3] = 0;

parse_data position =
parse data length = 4;
}
}

0;

: return parse data[parse data position++];

2}

Figure 18. Parse Hex

an166f

AN166-10

Application Note 166

Warning: If parse_hex is called too many times, it will process
beyond the end of the array feeding the call to get_data function that
was passed in on line 1. This means the caller must watch for the LTC C
structure end of data record and stop processing.

LTC C Structure Parsing

Parsing the LTC C Structures follows the following steps:

1. Get the record size
2. Build a block of data to match
3. Create the structure by manipulating a pointer

1: pRecordHeaderLengthAndType parse record(

2: uint8 t (*get data)(void)) {
38 uint32 t header;

4: uint8 t *data;

5: uintlé t size;

6 uintlé _t pos;

7 pRecordHeaderLengthAndType record;

8: header =

9: (uint32 t)get data() << 0
10: (uint32_t)get data() << 8
11: (uint32_t)get data() << 16 |
12: (uint32_t)get data() << 24;

13: record = (pRecordHeaderLengthAndType)
14: &header;

1158 size = record->Length;

16: uint8 t *record data = getRecordData();

17: record data[0]
18: record data[l]
19: record data[2]
20: record data[3]

(header >> 0) & OXFF;
(header >> 8) & OxFF;
(header >> 16) & OxFF;
(header >> 24) & O0xFF;

21: if (size <= getMaxRecordSize())

22: {

23: for (pos = 0; pos < size - 4; pos+t+)
24: record data[pos + 4] = get data();
25: }

26: record = (pRecordHeaderLengthAndType)
record data;

27: return record;

28: }

Figure 19. Parse Record

The header of a record is 4 bytes, S0 get data, the
passed in function (pipe) that calls parse hex (filter),
is called 4 times on lines 8-12 of Figure 19 and shifted
into place. This is then typecast to a pRecordHead-
erLengthAndType S0 that it can be accessed asaC
Structure. Line 15 then pulls out the size of the record and
line 16 allocates enough memory to hold it and the type.

On lines 17-20, the header is packed into the allocated
memory, and lines 21-25 fill in the remaining data, all
packed without spaces. Nowthe dataisinavariable oftype
uint8 t+*andincludesthe headerandallthe remaining
bytes of the C Structure, but it is not yet a C Structure.

Finally, the data is typecast t0 pRecordHeader-
LengthAndType and returned. What is returned is a
record pointer to the header, but the data behind it holds
the entire record. This means the caller can typecast this
to the final record pointer type and the data will be in the
right place.

Be Careful: Things can go wrong with typecasts so be on the lookout for
trouble. C is a powerful but dangerous language.

LTC C Structure Processing

We are now at the final phase, the processing of the C
Structures, and close to the stuff you may need to add to
the processor.

1: uint8 t processRecordsOnDemand (
2: pRecordHeaderLengthAndType (
38 *getRecord) (void)) {

4: pRecordHeaderLengthAndType record to process;
5: uintlé_t recordType of record to process;
6: uint8 t successful parse of record type =
7

SUCCESS;
8: while (
9: (record to process = getRecord()) != NULL &&

10: successful parse of record type == SUCCESS)

12: recordType of record to process =
13: record to process->RecordType;

14: switch(recordType of record to process)
15: {

Figure 20. LTC C Structure Processing

an166f

AN166-11

Applicution Note 166

The C Structures (Records) are processed in a while loop
with a switch to process each record type. The while loop
online 8 calls getRecord (), which returns a pointerto
ad pRecordHeaderLengthAndType. This structure
has just enough information to pull out the RecordType,
which is a number. The switch then uses the RecordType
to pick the correct processing function.

uint8 t

recordProcessor _ 0x01
processerteByteOptlonalPEc(

t RECORD PMBUS WRITE BYTE* pRecord);

Figure 21. Example Processing Function

Eachfunctionthat processes a RecordType takes a pointer
to the matching C Structure. This means the act of calling
the function typecasts the pRecordHeaderLength-
AndType pointerto the proper record. In this example, it
istypecastingtot RECORD PMBUS WRITE BYTE*.
Each function will interpret the record and issue PMBus
commands or other special transactions that support
Inflight Update.

Special Transactions

There are two kinds of special transactions:
1. Memory handling
2. Events

Memory handling transactions allow the record generator
to ask the record processor to store a block of data for
later use. This economizes the algorithm by passing a
block of data for the EEPROM that is used both to program
and verify programming. The reference code already does
this for you.

Events are hooks the firmware engineer uses for adding
special code. For example, if some logic controlled a
PSM device’s WP pin, it could change its state to allow
programming.

The events are handled in one function:
uint8 t recordProcessor 0x18
processEvent (t RECORD EVENT* pRecord)
found in file main record processor.cpp. This
function has a switch statement that can be modified. The
event IDs (cases) are:

* BEFORE BEGIN

¢ BEFORE_INSYSTEM PROGRAMMING BEGIN
* SYSTEM BEFORE PROGRAM

¢ INSYSTEM CHIP BEFORE PROGRAM

¢ SYSTEM BEFORE_VERIFY

¢ INSYSTEM CHIP BEFORE_ VERIFY

¢ INSYSTEM CHIP AFTER VERIFY

* SYSTEM AFTER_VERFY

* AFTER DONE

META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT
META DATA EVENT

(BEFORE_BEGIN) :
(BEFORE_INSYSTEM PROGRAMMING BEGIN):
(SYSTEM BEFORE_PROGRAM)
(INSYSTEM CHIP BEFORE PROGRAM) :
(SYSTEM BEFORE_VERIFY):
(INSYSTEM CHIP BEFORE VERIFY):
(INSYSTEM CHIP AFTER VERIFY):
(INSYSTEM CHIP BEFORE PROGRAM) :
(INSYSTEM CHIP BEFORE_VERIFY):
(INSYSTEM CHIP AFTER VERIFY):
(INSYSTEM CHIP BEFORE PROGRAM) :
(INSYSTEM CHIP BEFORE VERIFY):

META DATA EVENT (AFTER DONE) :

Figure 22. Example Event Order (DG1962)

By adding some print statements, and running Inflight
Update on a DC1962'® using the Linduino “program”
Sketch, we see the above events printed on the display.
It may seem a little unusual, so some explanation is re-
quired. BEFORE_BEGINandAFTER DONEaretheover
all bracketing. Each device has an INSYSTEM CHIP
BEFORE/AFTER PROGRAM VERIFY pair. But there
are two extra events: SYSTEM BEFORE_PROGRAM/
VERIFY. These events come before any programming
or verify, but only one time.

Note 13. A DC1962 has a LTC3880, LTC2974, and LTC2977 on it.

an166f

AN166-12

Application Note 166

If you need events before and after PROGRAM/VERIFY
use the CHIP versions. If you just need to know when
PROGRAM/VERIFY hegins and ends in overall, use the
non-CHIP Versions.

Forexample, if the code will enable the WP pin, you would
enable it with INSYSTEM CHIP BEFORE PROGRAM
and disable it with INSYSTEM CHIP_ BEFORE_
VERIFY. Butif you wanted to enable multiple devices at
the sametime, enableat SYSTEM BEFORE_PROGRAM,
and disable at AFTER DONE.

EEPROM Protection: You do not need to add code to disable the write
protect in the device’s register. Inflight Update will do that automatically.
Only the WP pin requires special handling. If the BMC can’t control the
WP pin, and it is high, the BMC has it hands tied behind its back and
Inflight Update can’t operate.

Porting Guide

Porting the Linduino PSM Inflight Update code is not
complicated, but there are a few decisions that have to be
made, and a few places things can go wrong.

Where to Slice the Code

The Inflight Update record-processing loop depends on
the Lindino LT_SMBus library. This library has two layers:

e SMBus

. 12C
The LT_SMBus library is layered as C** classes, and
either one of these classes can be re-implemented as a
layer around a pre-existing library. The classes are also
simple enough that they can be converted to C, but most

programmers use a G** compiler to compile C, and the
classes have very little overhead.

The record processor only makes calls to the SMBus
layer. Therefore, you can slice between the SMBus layer
and the record processor, or between the 12C layer and
the SMBus layer.

Structure Packing

All the C Structures that hold the LTC records are packed.
Most compilers have a pack pragma. This pragmais used
with the structure definitions to ensure the compile does
not leave any space between items in the structure. If the

structures were not packed, it would not be possible to
take a block of data and just cast its pointer to a C struc-
ture pointer.

Endianess

The data from the hex file has high and low bytes. When
these are passed to a SMBus API they must go over the
PMBus in the proper order. Anything that causes the bytes
to become reversed will cause problems.

Pointers

The Inflight Update code casts pointers to structures. If
casting causes a misalignment of the data at the base of
the structure, because of some address alignment issue,
it will cause problems. In some cases you may have to
realign the block of data. In general, copying bytes to a
static data array will work fine.

Callbacks

Implement events for special requirements. These events
will always be generated when LTpowerPlay creates an
ISP file. Do not depend on the order of any other records
because they can change as a result of LTpowerPlay main-
tenance. Do not ignore records or otherwise get creative
by inserting behaviors in them. Just allow Inflight Update
to process records per the reference code and stick to
events for special code.

Debugging

The record processor has some #defines that enable
printing. Ifyour processor can printto RS232 oracommand
line you can enable these to observe the behavior of the
record processing. One trick is to enable printing only and
run Inflight Update ona Linduino, and on your platform, and
then compare the two outputs. This is a good way to prove
that the hex and record processing is working properly.

If this processing looks good attach a Beagle'* to a Lin-
duino and allow Inflight Update to program your board,
run your ported code, then compare the traces. If there
is a mistake in your SMBus library, it will be easy to spot.

If the data feeding the record processor is sending in
junk, put debugging filters in the pipeline to see what is
happening.

Note 14. Beagle is a 12C Spy tool from Total Phase. www.totalphase.com

an166f

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

AN166-13

Applicution Note 166

SUMMARY

LTpowerPlay can exportan In System Programming (ISP)
file that contains all settings for a complete system. The
ISP file can be transported to the target system’s Board
Management Controller via Ethernet or other means, where
the system can apply the data to the PSM devices using
Inflight Update. Inflight Update programs the EEPROM
of all PSM devices without disturbing operation of the
system, which can be reset or power cycled at a later time.

If power loss occurs during programming, the Board
Management Controller can detectimproperly programmed

devices, and repair them with Inflight Update without any
risk to the load, because the PSM devices will not power
up if they are not properly programmed. Detection of
incompletely programmed PSM devices and their repair
by the Board Management Controller occurs without any
human intervention.

Implementation of Inflight Update also enables program-
ming PSM devices in production and performing remote
field updates. Remote field updates are rare, but returning
boards to the factory for reprogramming is expensive and
time consuming.

an166f

AN166-14

L] TECHNOLOGY

NOW PART OF

ANALOG
DEVICES

LT 0417 - PRINTED IN USA

© LINEAR TECHNOLOGY CORPORATION 2017

