UNH-IOL — 121 Technology Drive, Suite 2 — Durham, NH 03824 — (603) 862-0090 Consortium Manager: Gerard Nadeau — grn@iol.unh.edu — (603) 862-0166

Dilian Reyes Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035 August 03, 2006 Report Rev. 1.0

Enclosed are the results from the PSE interoperability testing performed on:

Device Under Test (DUT): DC981A/B, LTC4263 Midspan/Endpoint PSE

Ports Tested: Midspan IN and OUT

Hardware Version: Not Available
Power Chipset: Linear LTC4263

Power Supply Voltage: 48 Volts

Magnetics: Pulse Jack, JK0-0044

The test suite referenced in this report is available at the UNH-IOL website:

ftp://ftp.iol.unh.edu/pub/ethernet/test suites/interop/Interop Test Suite v2.2.pdf

There were no issues uncovered during interoperability testing.

Testing Completed 08/01/2006

Matthew Borowski mfn6@iol.unh.edu

Matthew F Borowski

David Schwarzenberg dws2@iol.unh.edu

Review Completed

08/04/2006

Digital Signature Information

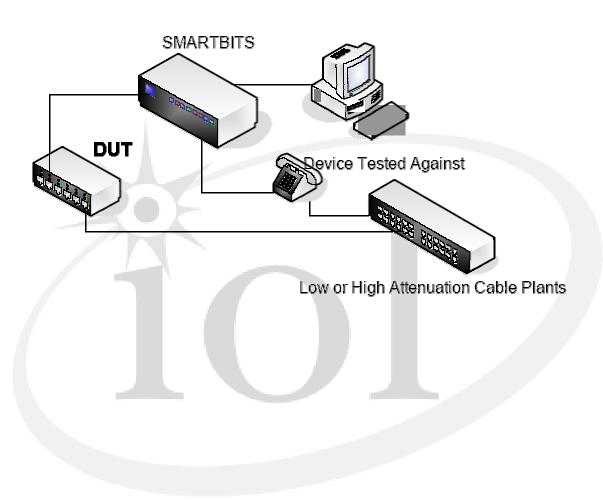
This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify this document's integrity proceed to the following site:

http://www.iol.unh.edu/certifyDoc

If the document status still indicates "Validity of author NOT confirmed", then please contact the UNH-IOL to confirm the document's authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

MD5 Fingerprint: A569 F807 031D B1EC E509 4110 95E3 5362 SHA-1 Fingerprint: F007 7D91 2FAA A22C A3D9 F93F 05AC 09DB E219 84B2

Result Key


The following table contains possible results and their meanings:

Result	Interpretation
PASS	The Device Under Test (DUT) was observed to exhibit conformant behavior.
PASS with	The DUT was observed to exhibit conformant behavior however an additional explanation of the
Comments	situation is included, such as due to time limitations only a portion of the testing was performed.
FAIL	The DUT was observed to exhibit non-conformant behavior.
Warning	The DUT was observed to exhibit behavior that is not recommended.
Informative	Results are for informative purposes only and are not judged on a pass of fail basis.
Refer to	From the observations, a valid pass or fail could not be determined. An additional explanation of
Comments	the situation is included.
Not Applicable	The DUT does not support the technology required to perform these tests.
Not Available	Due to testing station or time limitations, the tests could not be performed.
Borderline	The observed values of the specified parameters are valid at one extreme, and invalid at the other.
Not Tested	Not tested due to the time constraints of the test period.

Test Setup

Testing Equipment	
Spirent Smartbits 2000	Used to Source Packet Traffic

Testing Configuration:

Test #1.1.1 Link Speed Detection

Case 1: This test entails powering the DUT with the link partner disconnected until the DUT has fully booted. The link partner is connected via a high attenuation cable plant. Auto-negotiation, if supported, should result in a connection at common optimal values for both the PD and the PSE. The DUT and link partner should be able to send and receive packets. Please refer to the following pages for the results of this test.

Case 2: This test entails powering the DUT with the link partner connected via a high attenuation cable plant. Auto-negotiation, if supported, should result in a connection at common optimal values for both the PD and the PSE. The DUT and link partner should also be able to send and receive packets. Please refer to the following pages for the results of this test.

Test #1.1.3 Packet Error Ratio Estimation

High Attenuation Channel: The two devices are connected to each end of the channel with a 5-meter cable. The high attenuation channel is 125 meters long. A number of ICMP echo requests (Refer to the Ethernet Physical Layer Interoperability Test Suite: Appendix A Table A-1) are sent to verify that traffic can successfully be sent between the link partners. The number of packets lost is noted. Refer to the following tables for further information regarding the results of this test.

Low Attenuation Channel: The two devices are connected to each end of the channel with a short 5-meter cable. The low attenuation channel is 10 meters long. A number of ICMP echo requests (Refer to the Ethernet Physical Layer Interoperability Test Suite: Appendix A Table A-1) are sent to verify that traffic can successfully be sent between the link partners. The number of packets lost is noted. Refer to the following tables for further information regarding the test results.

Test #1.1.4 Endurance Stress Test

This test is designed to verify that no obvious buffer management problems occur when directing a large volume of traffic with minimum IPG at the DUT. This test is informative only and is designed to verify that the DUT has no obvious buffer management problems. The DUT is attached to a sourcing station that is capable of sending an appropriate number of 64-byte ICMP echo requests with a minimum IPG of 96BT (Refer to the Ethernet Physical Layer Interoperability Test Suite Table 1-6). The DUT does not have to respond to all of the requests but the test should not cause any system failures. Refer to the following tables for further information regarding the results of this test.

Test #1.1.7 Power Request and Application

These Cases are designed specifically for devices that only support power.

Case 1: This test entails powering on the DUT separately and then connecting the link partner. The Power Sourcing Equipment should be able to provide power to the Powered Device. Refer to the following tables for further information regarding the results from this test.

Case 2: This test entails power cycling the Power Sourcing Equipment while the Powered Device is connected. The Power Sourcing Equipment should provide power to the Powered Device. Refer to the following tables for further information regarding the results from this test.

Channel Plots

Included with this report is a series of plots that provide a characterization of the channels over which the testing was performed. The plots include the following items.

- Attenuation plots taken for each channel.
- Near end cross talk (NEXT) plots taken from both ends of each channel (Both the DUT and the testing station). The DUT end is labeled as "Near End Crosstalk" and the testing station end is labeled as "Near End Crosstalk @ Remote".
- Return Loss plots taken for each channel, at the DUT and at the testing station. The DUT is labeled as "Return Loss" and the testing station end is labeled as "Return Loss @ Remote".

Test Matrix

The matrices are divided into sections according to the type of device being tested against. The first matrix contains four columns:

- The manufacturer and name of the device being tested against.
- Results of link speed detection testing.
- Results of the packet error ratio test over a high attenuation Category-5 compliant channel at 60°.
- Results of the packet error ratio test over a low attenuation Category-5 compliant channel at 60°.

Test Results:

		# 1.1.1 ed Detection		# 1.1.3 ation Channel		# 1.1.3 ation Channel
PD Tested	Case 1	Case 2	64 Byte	1518 Byte	64 Byte	1518 Byte
3COM NJ220	PASS	PASS	0	0	0	0
3COM NJ200 New	PASS	PASS	0	0	0	0
3COM NJ200 Old	PASS	PASS	0	0	0	0
3COM NJ100 New	PASS	PASS	0	0	0	0
3COM NJ100 Old	PASS	PASS	0	0	0	0
3COM NJ105	PASS	PASS	0	0	0	0
3COM 655003403 PD with 3CNJVOIPMOD-NBX	PASS	PASS	NT ^{*1}	\mathbf{NT}^{*1}	\mathbf{NT}^{*1}	NT ^{*1}
3COM 3C10248PE IP Phone	PASS	PASS	0	0	0	0
3COM 3C10226PE IP Phone	PASS	PASS	0	0	0	0
Avaya 4602SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4610SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4620 IP Phone	PASS	PASS	0	0	0	0
Avaya 4620SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4621SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4622SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4625SW IP Phone	PASS	PASS	0	0	0	0
Avaya 4630SW IP Phone	PASS	PASS	0	0	0	0
Avaya 9620D01A IP Phone	PASS	PASS	0	0	0	0
Avaya 9630D01A IP Phone	PASS	PASS	0	0	0	0
Ault LS15	PASS	PASS	0	0	0	0
Cisco CP-7911G IP Phone	PASS	PASS	0	0	0	0
Nortel Networks i2001IP Phone	PASS	PASS	NT ^{*1}	\mathbf{NT}^{*1}	NT ^{*1}	NT ^{*1}
Nortel Networks i2004IP Phone	PASS	PASS	0	0	0	0
Nortel Networks 1110	PASS	PASS	0	0	0	0
Nortel Networks 1150E	PASS	PASS	0	0	0	0
Polycom Soundpoint IP 401	PASS	PASS	0	0	0	0
Polycom Soundpoint 650	PASS	PASS	0	0	0	0

General note: Smartbits SX-7410B cards in a Spirent Smartbits 2000 chassis were used as the sourcing station during test # 1.1.3.

Note 1: These tests were not performed, due to device complexity and excessive time requirements. This does not indicate an interoperability issue.

UNH-IOL PoE Consortium	6	Repo	ort Rev. 1.0
------------------------	---	------	--------------

	Test # 1.1.7 Power Re	quest and Application
PD Tested (Without PHY)	Case 1	Case 2
Linear LTC4257IS8 with 4257 Class 0	PASS	PASS
Linear LTC4257IS8 with 4257 Class 1	PASS	PASS
Linear LTC4257IS8 with 4257 Class 2	PASS	PASS
Linear LTC4257IS8 with 4257 Class 3	PASS	PASS
Linear LTC4257IS8 with 4257 Class 4	PASS	PASS
Linear LTC4257CS8-1 Class 0	PASS	PASS
Linear LTC4257CS8-1 Class 1	PASS	PASS
Linear LTC4257CS8-1 Class 2	PASS	PASS
Linear LTC4257CS8-1 Class 3	PASS	PASS
Linear LTC4257CS8-1 Class 4	PASS	PASS
Linear LTC4267CDHC	PASS	PASS
National Semiconductor LM5070	PASS	PASS
TI TPS2375 Class 0	PASS	PASS
TI TPS2375 Class 1	PASS	PASS
TI TPS2375 Class 2	PASS	PASS
TI TPS2375 Class 3	PASS	PASS
TI TPS2375 Class 4	PASS	PASS

DASS	Test # 1.1.4 Endurance Stress Test	Result
1 A55		PASS

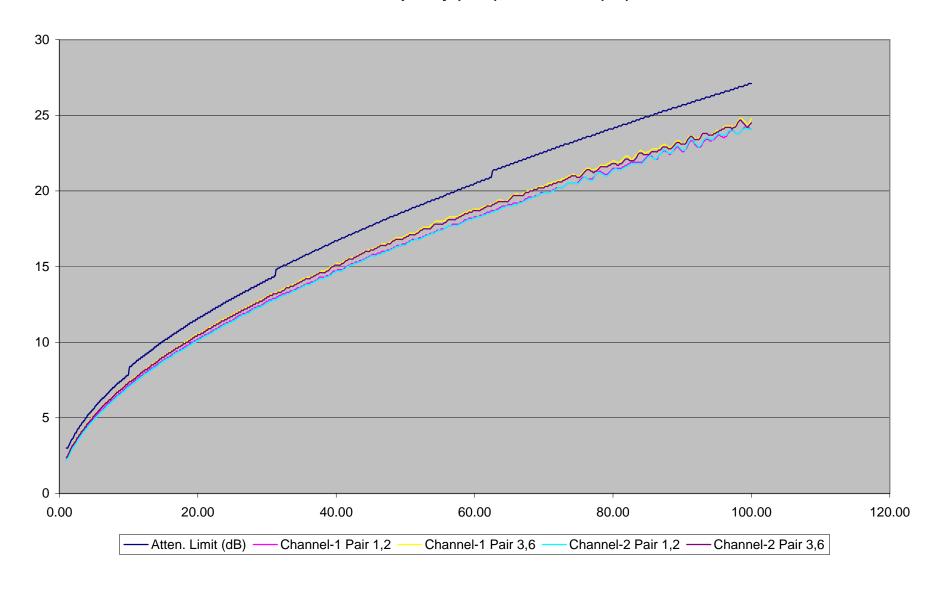
Comments on Test Results

The DUT dropped 0 packets out of 4,680,000 packets that were sent over a high attenuation channel. With the IPG set at 0.96µs the DUT did not experience any system failures. A Spirent SX-7410B NIC in a Spirent Smartbits 2000 chassis was used as the source station.

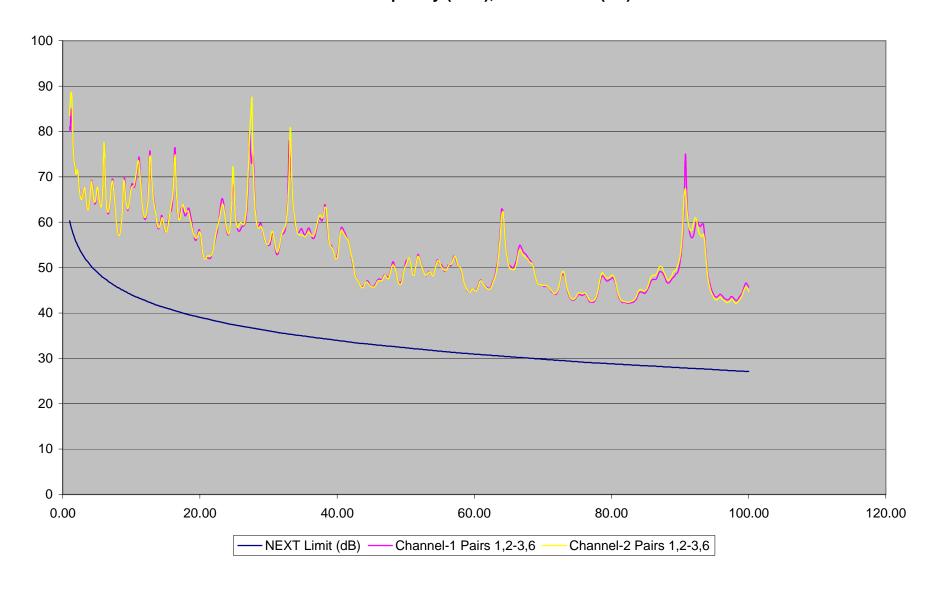
CAT 5 - TSB95 Spec - Maximum Attenuation

Parameter	Pair	Channel-1	Channel-2
	(1, 2)	579.00	579.00
Propagation	(3, 6)	587.00	583.00
Delay (ns)	(4, 5)	597.00	597.00
	(7, 8)	591.00	591.00
	(1, 2)	0.00	0.00
Propagation	(3, 6)	8.00	4.00
Delay Skew (ns)	(4, 5)	18.00	18.00
	(7, 8)	12.00	12.00

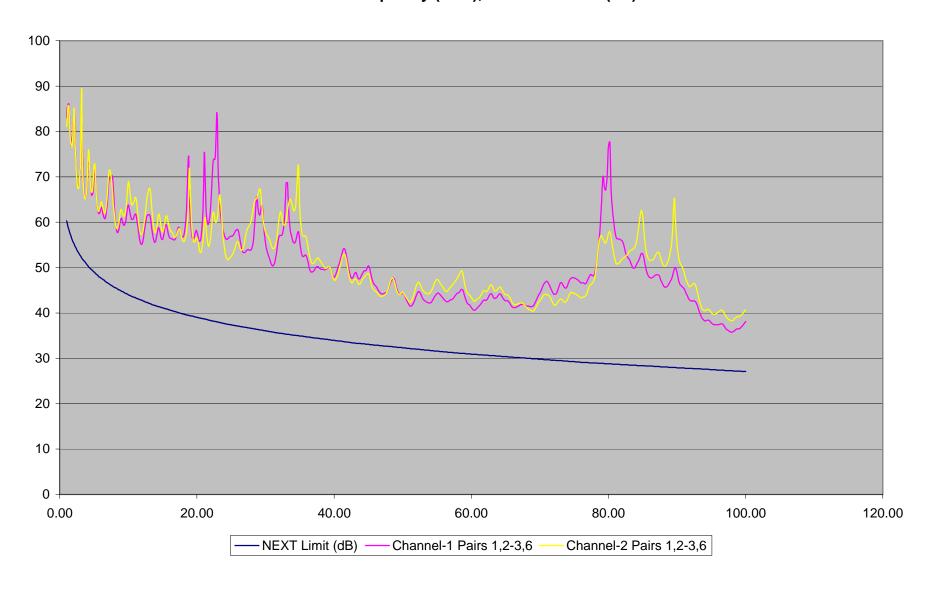
Parameter	Pair	Channel-1	Channel-2
	(1, 2)	0.50	0.60
Insertion Loss	(3, 6)	0.40	0.40
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)	6.10	7.00
Return Loss	(3, 6)	6.30	5.90
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)	8.12	8.85
Return Loss @ Remote	(3, 6)	6.40	5.40
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSNEXT	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSNEXT @ Remote	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSELFEXT	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSELFEXT @ Remote	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		


Parameter	Generator-Receptor	Channel-1	Channel-2
	(1, 2)-(3, 6)	11.50	11.50
	(1, 2)-(4, 5)		
NEXT	(1, 2)-(7, 8)		
Margin (dB)	(3, 6)-(4, 5)		
	(3, 6)-(7, 8)		
	(4, 5)-(7, 8)		
	(1, 2)-(3, 6)	8.50	10.20
	(1, 2)-(4, 5)		
NEXT @ Remote	(1, 2)-(7, 8)		
Margin (dB)	(3, 6)-(4, 5)		
	(3, 6)-(7, 8)		
	(4, 5)-(7, 8)		

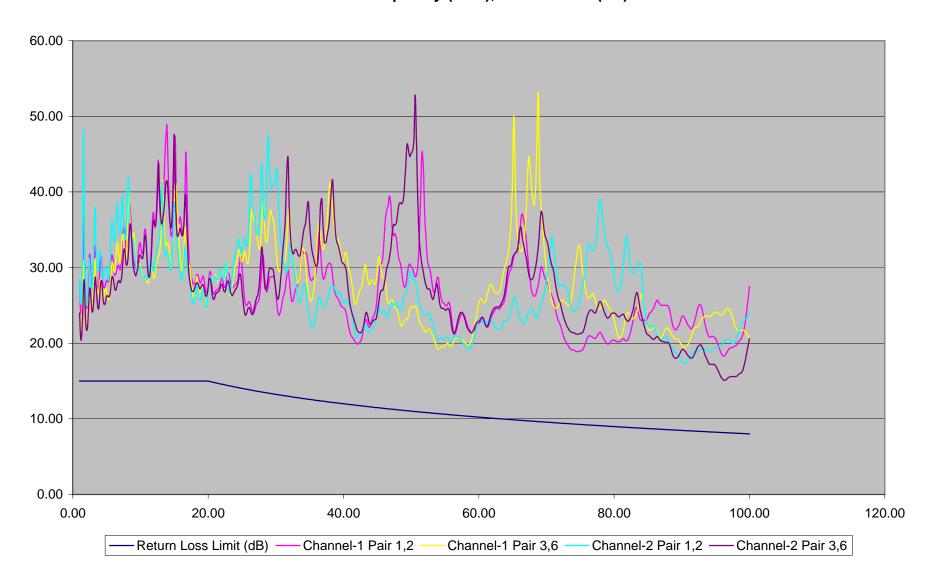
Parameter	Generator-Receptor	Channel-1	Channel-2
ELFEXT Margin (dB)	(1, 2)-(3, 6) (1, 2)-(4, 5) (1, 2)-(7, 8) (3, 6)-(1, 2) (3, 6)-(4, 5) (3, 6)-(7, 8) (4, 5)-(1, 2) (4, 5)-(3, 6) (4, 5)-(7, 8) (7, 8)-(1, 2) (7, 8)-(3, 6) (7, 8)-(4, 5)		
ELFEXT @ Remote Margin (dB)	(1, 2)-(3, 6) (1, 2)-(4, 5) (1, 2)-(7, 8) (3, 6)-(1, 2) (3, 6)-(4, 5) (3, 6)-(7, 8) (4, 5)-(1, 2) (4, 5)-(3, 6) (4, 5)-(7, 8) (7, 8)-(1, 2) (7, 8)-(3, 6) (7, 8)-(4, 5)		


Channel 1 Description: Pass Through

Channel 2 Description: Crossover


CAT 5 - TSB95 Spec @ Maximum Attenuation - Attenuation Plot X-Axis Frequency (MHz), Y-Axis Attn (dB)


CAT 5 - TSB95 Spec @ Maximum Attenuation - Near End Cross Talk X-Axis Frequency (MHz), Y-Axis NEXT (dB)


CAT 5 - TSB95 Spec @ Maximum Attenuation - Near End Cross Talk @ Remote X-Axis Frequency (MHz), Y-Axis NEXT-R (dB)

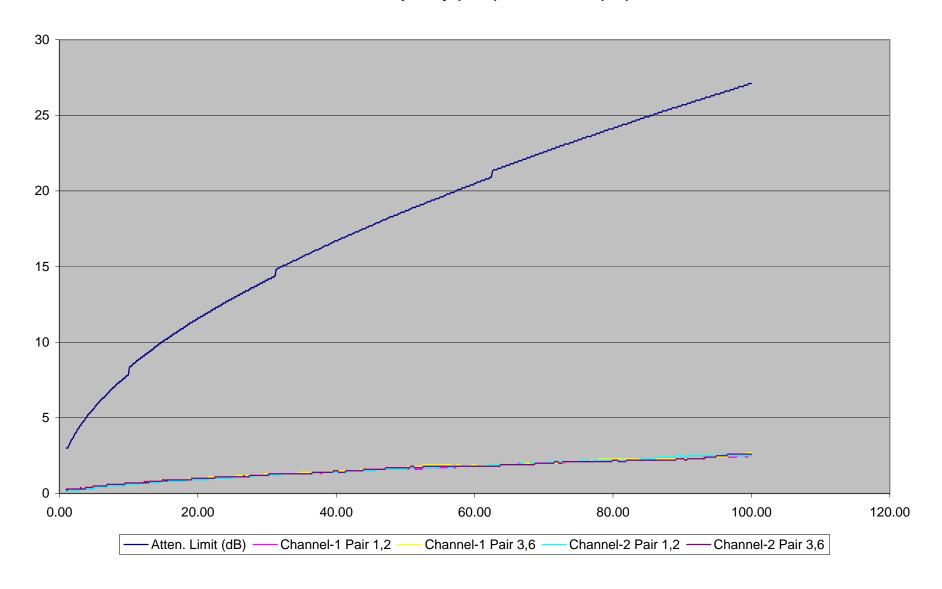
CAT 5 - TSB95 Spec @ Maximum Attenuation - Return Loss X-Axis Frequency (MHz), Y-Axis RL (dB)

CAT 5 - TSB95 Spec @ Maximum Attenuation - Return Loss @ Remote X-Axis Frequency (MHz), Y-Axis RL-R (dB)

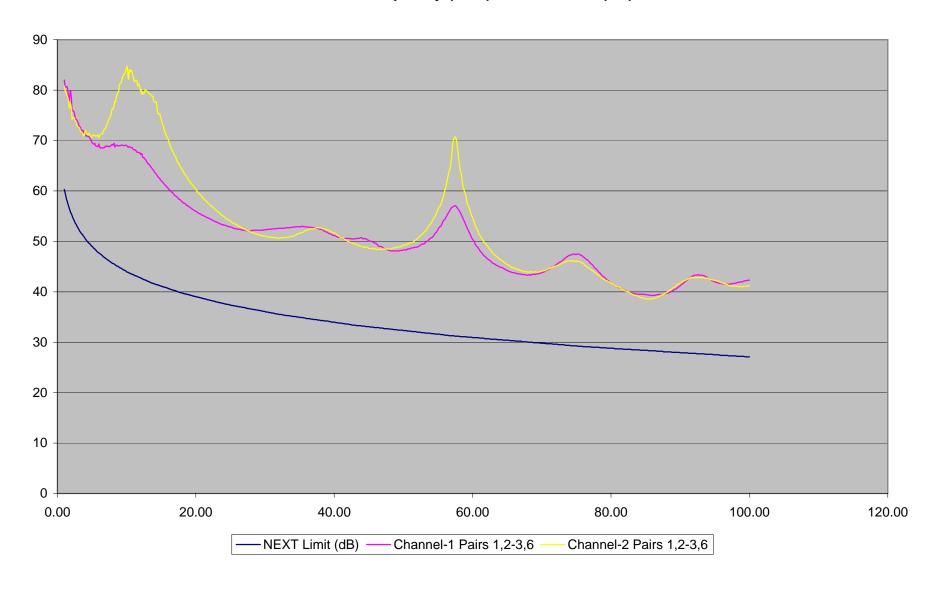
CAT 5 - TSB95 Spec - Low Attenuation

Parameter	Pair	Channel-1	Channel-2
	(1, 2)	57.00	57.00
Propagation	(3, 6)	58.00	57.00
Delay (ns)	(4, 5)	58.00	57.00
	(7, 8)	57.00	57.00
	(1, 2)	0.00	0.00
Propagation	(3, 6)	1.00	0.00
Delay Skew (ns)	(4, 5)	1.00	0.00
	(7, 8)	0.00	0.00

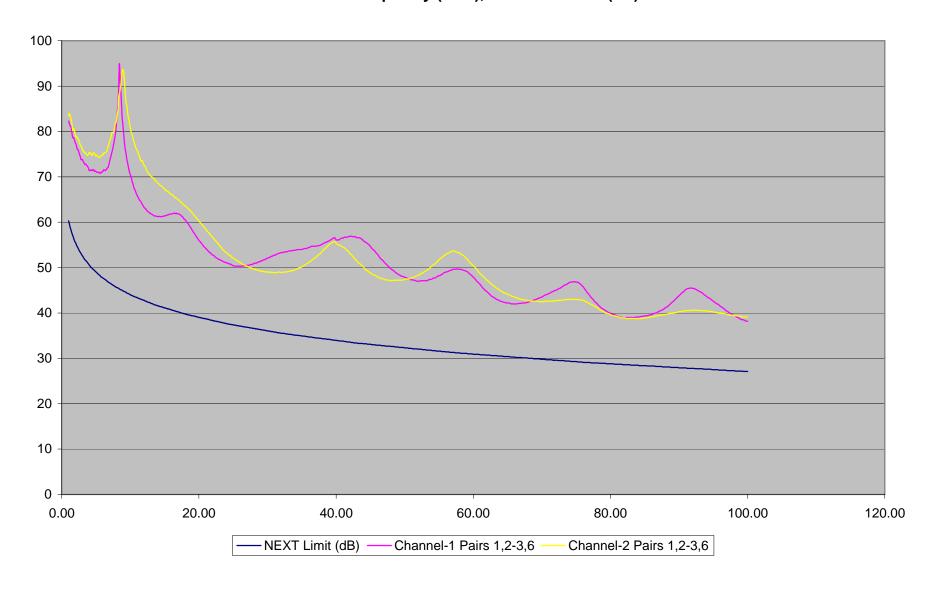
Parameter	Pair	Channel-1	Channel-2
	(1, 2)	2.80	2.80
Insertion Loss	(3, 6)	2.80	2.70
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)	7.40	8.20
Return Loss	(3, 6)	6.97	6.50
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)	8.68	7.15
Return Loss @ Remote	(3, 6)	7.43	8.00
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSNEXT	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSNEXT @ Remote	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSELFEXT	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		
	(1, 2)		
PSELFEXT @ Remote	(3, 6)		
Margin (dB)	(4, 5)		
	(7, 8)		

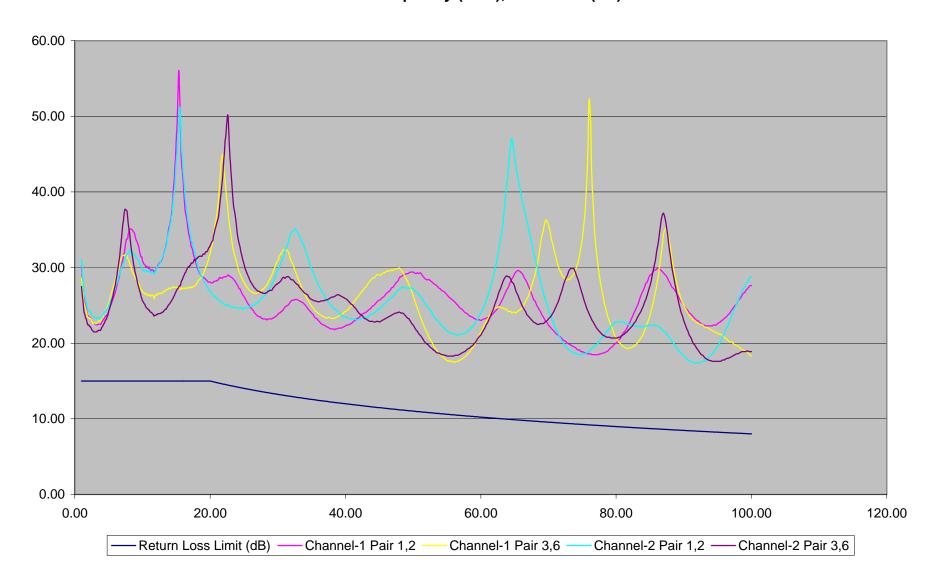

Parameter	Generator-Receptor	Channel-1	Channel-2
	(1, 2)-(3, 6)	11.00	10.20
	(1, 2)-(4, 5)		
NEXT	(1, 2)-(7, 8)		
Margin (dB)	(3, 6)-(4, 5)		
	(3, 6)-(7, 8)		
	(4, 5)-(7, 8)		
	(1, 2)-(3, 6)	10.30	10.20
	(1, 2)-(4, 5)		
NEXT @ Remote	(1, 2)-(7, 8)		
Margin (dB)	(3, 6)-(4, 5)		
	(3, 6)-(7, 8)		
	(4, 5)-(7, 8)		

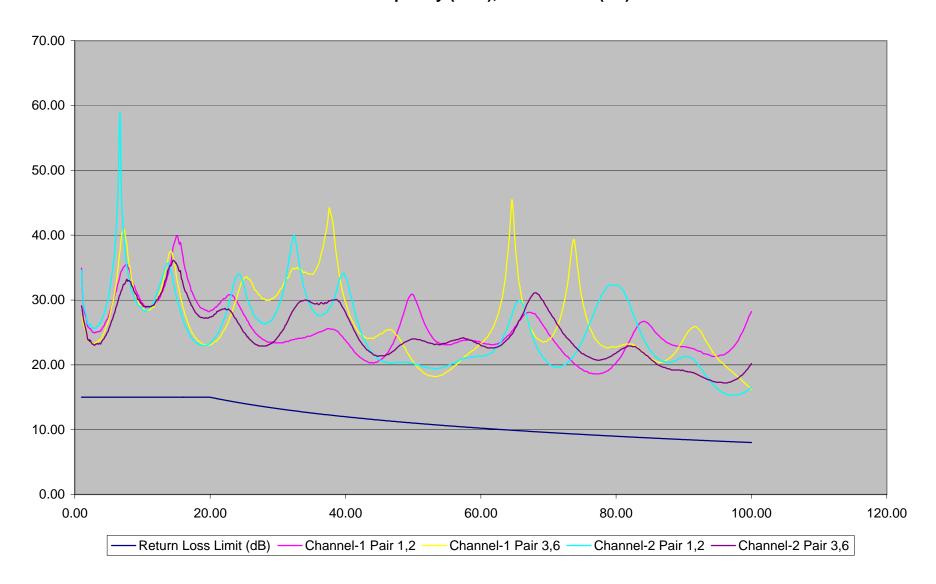
Parameter	Generator-Receptor	Channel-1	Channel-2
	(1, 2)-(3, 6)		
	(1, 2)-(4, 5)		
	(1, 2)-(7, 8)		
	(3, 6)-(1, 2)		
	(3, 6)-(4, 5)		
ELFEXT	(3, 6)-(7, 8)		
Margin (dB)	(4, 5)-(1, 2)		
	(4, 5)-(3, 6)		
	(4, 5)-(7, 8)		
	(7, 8)-(1, 2)		
	(7, 8)-(3, 6)		
	(7, 8)-(4, 5)		
	(1, 2)-(3, 6)		
	(1, 2)-(4, 5)		
	(1, 2)-(7, 8)		
	(3, 6)-(1, 2)		
	(3, 6)-(4, 5)		
ELFEXT @ Remote	(3, 6)-(7, 8)		
Margin (dB)	(4, 5)-(1, 2)		
	(4, 5)-(3, 6)		
	(4, 5)-(7, 8)		
	(7, 8)-(1, 2)		
	(7, 8)-(3, 6)		
	(7, 8)-(4, 5)		


Channel 1 Description: Pass Through

Channel 2 Description: Crossover


CAT 5 - TSB95 Spec @ Low Attenuation - Attenuation Plot X-Axis Frequency (MHz), Y-Axis Attn (dB)


CAT 5 - TSB95 Spec @ Low Attenuation - Near End Cross Talk X-Axis Frequency (MHz), Y-Axis NEXT (dB)


CAT 5 - TSB95 Spec @ Low Attenuation - Near End Cross Talk @ Remote X-Axis Frequency (MHz), Y-Axis NEXT-R (dB)

CAT 5 - TSB95 Spec @ Low Attenuation - Return Loss X-Axis Frequency (MHz), Y-Axis RL (dB)

CAT 5 - TSB95 Spec @ Low Attenuation - Return Loss @ Remote X-Axis Frequency (MHz), Y-Axis RL-R (dB)

