Four-Channel Multiplexed Transimpedance Amplifier with Output Multiplexing

Die Size: 36 mils $(914.4 \mu \mathrm{~m}) \times 55$ mils $(1397 \mu \mathrm{~m})$ Bond Pad Size: 4 mils $(102 \mu \mathrm{~m}) \times 4$ mils $(102 \mu \mathrm{~m})$ Bond Pad Opening: 3.2 mils $(82 \mu \mathrm{~m}) \times 3.2$ mils $(82 \mu \mathrm{~m})$

Bond Pad Metal Thickness: $0.29 \mathrm{mils}(7.4 \mu \mathrm{~m})$
Wafer Saw Street Width: 2.4 mils ($61 \mu \mathrm{~m}$) Wafer/Die Thickness: 8mils ($200 \mu \mathrm{~m}$) Backside Metal: None Backside Potential: V^{-}

PAD \#	PAD NAME	X COORDINATE ($\mu \mathrm{m}$)	Y COORDINATE ($\mu \mathrm{m}$)
1	CHSEL1	417.9	303.24
2	$V_{\text {cco }}$	302.9	303.24
3	CHSELO	187.9	303.24
4	$\mathrm{V}_{\mathrm{cc} 1}$	72.9	303.24
5	$V_{\text {REF1 }}$	-72.9	303.24
6	GND	-187.9	303.24
7	IN1	-302.9	303.24
8	GND	-417.9	303.24
9	IN2	-546.21	172.5
10	$\mathrm{V}_{\text {REF2 }}$	-546.21	57.5
11	$\mathrm{V}_{\text {REF3 }}$	-546.21	-57.5
12	IN3	-546.21	-172.5
13	GND	-417.9	-303.24
14	IN4	-302.9	-303.24
15	GND	-187.9	-303.24
16	$V_{\text {REF4 }}$	-72.9	-303.24
17	$\mathrm{V}_{\mathrm{CC} 2}$	72.9	-303.24
18	O_MUX	187.9	-303.24
19	$V_{\text {cco }}$	302.9	-303.24
20	DNC	417.9	-303.24
21	OUTTERM	546.21	-172.5
22	GND	546.21	-57.5
23	GND	546.21	57.5
24	OUT	546.21	172.5

*Die center coordinate (0,0)
All registered trademarks and trademarks are the property of their respective owners.

feATURES

- 220MHz -3dB Bandwidth with 2pF Input Capacitance
- Single-Ended Output
- 74k Transimpedance Gain
- $4.8 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Input Current Noise Density at $200 \mathrm{MHz}(2 \mathrm{pF})$
- $64 n A_{\text {RMS }}$ Integrated Input Current Noise Over $200 \mathrm{MHz}(2 \mathrm{pF})$
- Linear Input Range $0 \mu \mathrm{~A}$ to $30 \mu \mathrm{~A}$
- Overload Current $> \pm 400 \mathrm{~mA}$ Peak
- Fast Overload Recovery 12ns, 1mA
- Fast Channel Switchover < 50ns
- Single 5V Supply
- 200mW Power Dissipation for 4 Channels
- $2 V_{\text {P-p }}$ Output Swing on 100Ω Load
- Output MUX Combines Multiple 4-Channel Devices to Create 4, 8,12,16, 24, 32 Channel Solutions

APPLICATIONS

- LIDAR Receiver
- Industrial Imaging

LTC6561 DICE/DWF

DESCRIPTIOn

The LTC ${ }^{6} 6561$ is a low-noise, four-channel, transimpedance amplifier (TIA) with 220MHz bandwidth. The LTC6561 multi-channel transimpedance amplifier's low noise, high transimpedance, and low power dissipation are ideal for LIDAR receivers using Avalanche Photodiodes (APDs). The amplifier features $74 \mathrm{k} \Omega$ transimpedance gain and $30 \mu \mathrm{~A}$ linear input current range. Using an APD input circuit with a total capacitance of 2pF, the input current noise density is $4.8 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at 200 MHz . With lower capacitance, noise and bandwidth improve further. Only a 5 V single supply
is needed and the device consumes only 200 mW . Utilizing the internal 4 -to-1 MUX along with the LTC6561's output MUX; multiple 4-channel LTC6561 devices can be combined to directly interface with 12-, 16- and 32-channel APD arrays. The LTC6561's fast overload recovery and fast channel switchover make it well suited for LIDAR receivers with multiple APDs. Its single-ended output can swing $2 V_{\text {p.p on }}$ on 100Ω load while its low impedance op amp style output can drive back-terminated 50Ω cables.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V $\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{~V}_{\text {cco }}$ to GND)...... 5.5 V Input Voltage (CHSELO, CHSEL1, 0_MUX).....-0.3V to 5.5 V	Amplifier Output Current (OUT, OUTTERM)..........+80mA Operating Temperature Range
Amplifier Reference Current ($\mathrm{V}_{\text {REF1 }}, \mathrm{V}_{\text {REF2 }}$,	LTC6561................................... $-.40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	Storage Temperature Range................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Amplifier Input Current (IN1, IN2,	Junction Temperature $150^{\circ} \mathrm{C}$

DIE CROSS REFERENCE

FINISHED PART NUMBER	ORDER PART NUMBER
LTC6561	LTC6561 DICE/DWF

Please refer to ADI standard LTC6561 product data sheet for other applicable product information and typical performance information.

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\text {cc1,2 }}=\mathrm{V}_{C C 0}=5 \mathrm{~V}, 0 _\mathrm{MUX}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Z}_{\text {LoAD }}=100 \Omega$.
 Output taken from OUT pin.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BW	-3dB Bandwidth	$200 \mathrm{mV} \mathrm{P}_{\text {P-P,OUT }}$ and $\mathrm{C}_{\text {IN,TOT }}=2 \mathrm{FF}$		220		MHz
$\mathrm{R}_{\text {T }}$	Small Signal Transimpedance	$\mathrm{I}_{\text {IN }}<2 \mu \mathrm{APP}^{\text {P }}$	63	74	85	k Ω
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{f}=100 \mathrm{kHz}$		236		Ω
R OUT	Output Resistance	$\mathrm{f}=100 \mathrm{kHz}$		3		Ω
In_{n}	Input Current Noise Density	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{C}_{\text {IN,TOT }}=2 \mathrm{pF}$		4.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=200 \mathrm{MHz}, \mathrm{C}_{\text {IN,TOT }}=2 \mathrm{pF}$		4.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Integrated Input Current Noise	$\mathrm{f}=0.1 \mathrm{MHz}$ to $100 \mathrm{MHz}, \mathrm{C}_{\text {IN, }}$ TOT $=2 \mathrm{pF}$		43		$n \mathrm{~A}_{\mathrm{RMS}}$
		$\mathrm{f}=0.1 \mathrm{MHz}$ to $200 \mathrm{MHz}, \mathrm{C}_{\text {IN, }}$ TOT $=2 \mathrm{pF}$		64		$n A_{\text {RMS }}$
	Adjacent Channel to Channel Isolation	$f=100 \mathrm{MHz}$		-45		dB
	Non Adjacent Channel Isolation	$f=100 \mathrm{MHz}$		-65		dB
$\mathrm{t}_{\text {RECOVER }}$	Overload Recovery Time	Input Pulse <1mA		12		ns
$\underline{t_{\text {SWITCH }}}$	Channel Switchover Time			50		ns

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ}, v_{C C 1,2}=V_{C C O}=5 V, 0 _M U X=0 V, G N D=0 V, Z_{\text {LOAD }}=100 \Omega$. Output taken from OUT pin.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN1,2,3,4 Pins and $\mathrm{V}_{\text {REF1,2,3,4 }}$ Pins						
$\mathrm{V}_{\text {IN }}$	Input Bias Voltage	Active Channel Inactive Channel	$\begin{aligned} & 1.43 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1.64 \\ & 1.38 \end{aligned}$	V
$\mathrm{V}_{\text {REF }}$	Input Reference Voltage	Active Channel Inactive Channel	$\begin{aligned} & 1.43 \\ & 1.34 \end{aligned}$	$\begin{aligned} & \hline 1.55 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.63 \\ & 1.67 \end{aligned}$	V
Offset	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {REF }}$	Active Channel Inactive Channel	$\begin{gathered} -12 \\ -741 \end{gathered}$		$\begin{gathered} 12 \\ -116 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

OUT Pin

$V_{\text {OUT }}$	Output Default Voltage	O_MUX = OV (Output Enabled)	0.83	1.10	1.47	V	
		O_MUX $_{2}=3.3 \mathrm{~V}$, Standalone Device		0.32	0.60	0.88	V
OVR	Output Voltage Range	$I_{\text {IN }}$ Current Range $=0$ to $-50 \mu \mathrm{~A}$		1.22	1.90	2.58	$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
OUTTERM	Internal Series Resistor for Optional Output			44	56	70.8	Ω

CHSELO, CHSEL1, 0_MUX Pins with Internal Pull-Down Resistors

VIL				0.7	V
V_{IH}		1.5			V
ILI	Pin Voltage $=0.7 \mathrm{~V}$	16.9	20.7	26.0	$\mu \mathrm{A}$
${ }^{\text {IH }}$	Pin Voltage $=1.5 \mathrm{~V}$	37	47	57	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$			1.5		pF
$\mathrm{R}_{\text {IN }}$		22	29	35	$\mathrm{k} \Omega$

Power Supply

$\mathrm{V}_{\text {S }}$	Operating Supply Range		4.75	5	5.25	V
$\mathrm{ICC1,2}$	Input Supply Current	$\mathrm{V}_{\text {CC1 }}$ \& $\mathrm{V}_{\text {CC2 }}$ are Internally Tied Together	29	36.3	44	mA
$I_{\text {CCO }}$	Output Supply Current	Both $\mathrm{V}_{\text {CCO }}$ Pins are Internally Tied Together	1.8	2.3	2.8	mA
IS	Total Supply Current ($\left.\mathrm{I}_{\mathrm{S}(\mathrm{VCCL1,2)}}+\mathrm{I}_{\mathrm{S}(\mathrm{VCCO}}\right)$		30.8	38.6	46.8	mA
PSRR($\mathrm{V}_{\text {CC1,2 }}$)	Input Power Supply Rejection Ratio	$\mathrm{V}_{C C 1,2}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=5 \mathrm{~V}$	21	25		dB
PSRR(V $\mathrm{V}_{\text {coo }}$)	Output Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{CCO}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\text {CC1, } 2}=5 \mathrm{~V}$	34	40		dB

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All measurement were conducted in the dark.

PAD FUNCTIONS

CHSEL1: MSB for Channel Selection. CMOS input. The CHSEL1 pad has a $29 \mathrm{k} \Omega$ internal pull-down resistor. Default value is OV .
$\mathrm{V}_{\text {cco }}$: Positive PowerSupply fortheOutputStage. Typically5V. $V_{C C O}$ can be tied to $V_{C C 1}$ or $V_{C C 2}$ for single supply operation. Between the positive supply and ground, bypass capacitors of 1000 pF and $0.1 \mu \mathrm{~F}$ should be placed as close to the part as possible. $\mathrm{V}_{\text {COO }}$ pads are internally tied together.
CHSELO: LSB for Channel Selection. CMOS input. The CHSELO pad has a $29 \mathrm{k} \Omega$ internal pull-down resistor. Default value is OV .
$\mathbf{V C C 1}^{\text {, }}$ VCC2: Positive Power Supply. Typically 5V. Between the positive supply and ground, bypass capacitors of 1000 pF and $0.1 \mu \mathrm{~F}$ should be placed as close to the part as possible. $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ are internally tied together.
$\mathbf{V}_{\text {REF1 }}, \mathbf{V}_{\text {REF2 }}, \mathbf{V}_{\text {REF3 }}, \mathbf{V}_{\text {REF4: }}$: Reference Voltage Pad for Transimpedance Amplifier in Channel 1, 2, 3, and 4 Respectively. This pad sets the input DC voltage for each transimpedance amplifier. The $\mathrm{V}_{\text {REF }}$ pad has a Thevenin equivalent resistance of approximately 1.4 k and can be overdriven by an external voltage. If no voltage is applied
to $V_{\text {REF, }}$, it will float to a default voltage of approximately 1.55 V on a 5 V supply. Each $\mathrm{V}_{\text {REF }}$ pad should be bypassed with a high quality ceramic bypass capacitor of at least $0.1 \mu \mathrm{~F}$. The bypass cap should be located close to its $\mathrm{V}_{\text {REF }}$ pad.
GND: Negative Power Supply. Normally tied to ground.
IN1, IN2, IN3, IN4: Input Pad for Transimpedance Amplifier for Channels 1, 2, 3, and 4 Respectively. This pad is internally biased to 1.55 V .
O_MUX: Output MUX. CMOS Input. This pad is functional when multiple LTC6561s are combined at the output. When $0 _M U X$ is low, the output is enabled. When 0_MUX is high, all 4 inputs are decoupled from the output. Default value is OV. This MUX pad is ineffective unless a 2nd LTC6561 is DCcoupled at the output. See Applications section on how to use 0_MUXto expand the channel count with multiple LTC6561's. The 0_MUX pad has a $29 \mathrm{k} \Omega$ internal pull-down resistor.

DNC: Do not connect.
OUTTERM: TIA Output with an Internal Series 50Ω Resistor.
OUT: TIA Output without an internal series 50Ω Resistor.

BLOCK DIAGRAM

[^0]
[^0]: Wafer level testing is performed per indicated specifications for dice. Considerable differences in performance can often be observed for dice versus packaged units due to the influences of packaging and assembly on certain devices and/or parameters. Please consult factory for more information on dice performance and lot qualifications via lot sampling test procedures.
 Dice data sheet subject to change. Please consult factory for current revision in production.

