

isoSPI/Isolated CAN Arduino Shield

DESCRIPTION

Demonstration circuit 2617A implements the isoSPI and isolated CAN interface hardware on a single Arduino shield. It allows Arduino-compatible controller boards to communicate with isoSPI and/or CAN bus networks.

DC2617A is compatible with both 5V or 3.3V logic controller boards. DC2617A derives its power directly from the Arduino controller board via the 3.3V output.

isoSPI is a robust 2-wire isolated interface popularized by Analog Device's family of high voltage battery stack monitors. DC2617A includes the LTC®6820 and associated transformers to translate between the Arduino's SPI port and the RJ45 isoSPI connector.

CAN bus is a robust standards-based communications method used in automotive and industrial settings. DC2617A includes the LTM2889 isolated CAN transceiver to connect to a CAN bus on the standard 9-pin sub-D connector. An onboard controller (MCP2515) provides the logic interface between the Arduino's SPI and CAN. Alternatively, DC2617A can be connected directly to controller boards which include CAN functionality.

Design files for this circuit board are available at http://www.linear.com/demo/DC2617A

All registered trademarks and trademarks are the property of their respective owners.

QUICK START PROCEDURE

(Throughout this document, any controller board with Arduino-Uno compatible sockets will be referred to simply as Arduino. An example of this can be the DC2026C Linduino® One)

- 1. Plug the DC2617A into the Arduino.
- 2. Provide power to the Arduino. This will also power-up the DC2617A through the 3.3V power pin of the sockets. (Do not apply power to the turret labeled V_{CC} 3.3V to 5V)
- 3. Connect J6 isoSPI to the isoSPI network using a RJ45 cable.
 - (Alternatively, isoSPI can be accessed using the test points labeled isoIP and isoIM)
- 4. Connect J1 CAN to the CAN bus using a DB9 cable.

(Alternatively, CAN may be accessed using pins labeled CH and CL. It is also possible to connect a USB CAN dongle directly to J1 by removing the DB9 gender changer that is plugged into J1.)

Table 1 lists the connections that the shield pins establish between the Arduino and the DC2617A.

Table 1

LOGIC SIGNAL	ARDUINO LABEL	DC2617A SCHEMATIC	COMMENTS	
SCK	13	J2 – Pin 6	SPI Serial Clock to MCP2515 and LTC6820	
S0	12	J2 – Pin 5	SPI Serial Data Out from MCP2515 and LTC6820	
SI	11	J2 – Pin 4	SPI Serial Data in to MCP2515 and LTC6820	
CS_6820	10	J2 – Pin 3	SPI Chip Select for LTC6820	
CS_2515	9	J2 – Pin 2	SPI Chip Select for MCP2515	
IOREF	IOREF	J4 – Pin 2	Logic Supply Level for SPI	
3V3	3V3	J4 – Pin 4	3.3V Supply from Arduino to LTM2889	
INT	2	J3 – Pin 3	Connects to INT of MCP2515	
SCL/CAN1_RX	SCL	J2 – Pin 10	Connects to LTM2889 CAN RXD if JP1 set to Nuc	
SDA/CAN1_TX	SDA	J2 – Pin 9	Connects to LTM2889 CAN TXD if JP1 set to Nuc	

Table 1. Connections

JUMPER SETTINGS

Use the following jumper settings to further configure the DC2617A:

JUMPER JP1	FUNCTION
Set JP1 to ARD Establish SPI communication between Arduino and MCP2515. In this setting, MCP2515 handles the logic communication between SPI and CAN. LTM2889 is the physical layer CAN transceiver.	
Set JP1 to NUC	Establish communication directly from pins CAN1_RX/CAN1_TX (J2) to LTM2889. This can be useful in some controller boards such as Nucleo, which have built-in CAN functionality which comes out on these pins. LTM2889 is the physical layer CAN transceiver.

JUMPER JP2	FUNCTION
Set JP2 to ON	Termination to LTM2889 is turned on. See LTM2889 data sheet for details.
Set JP2 to OFF	Termination of LTM2889 is turned off. See LTM2889 data sheet for details.

CAN BUS POWER

LTM®2889 includes a built-in isolated power supply that provides an isolated power output (5V) on the same ground domain as the isolated CAN bus. This output

can be accessed using pins V2/G2 on connector J7. See LTM2889 data sheet for details.

DEMO MANUAL DC2617A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER			
Required	Required Circuit Components						
1	2	C1, C4	Capacitor, Tantalum, 10µF 'A' 10V	AVX, TAJA106M010RNJ			
2	1	C2	Capacitor, 1µF 20% 0508 10V X7R	Murata, LLL219R71A105MA01L			
3	1	C3	Capacitor Feedthru 4.7µF 20% 10V 0805	Murata, NFM21PC475B1A3D			
4	0	C5	Optional, Capacitor, X1Y1, 150pF 10% 760VAC	Vishay/VY1151K31Y5SQ63V0			
5	2	C6, C7	Capacitor, 0.1µF, X7R, 25V, 10%, 0603, Automotive	Murata, GCM188R71E104KA57D			
6	2	C8, C9	Capacitor, 0.01µF, X7R, 25V, 10%, 0603	Murata, GRM188R71E103KA01D			
7	3	E1, E3, E5	Testpoint, Turret, 0.063"	Mill-Max, 2308-2-00-80-00-00-07-0			
8	1	J1	9 Position D-Sub Receptacle, Female Sockets Connector	Assmann, A-DF 09 A/KG-T4S			
9	1	J2	Conn. Header. 10POS 0.100"	Adam Tech., RS1-10-G561-A11596			
10	2	J3, J4	Conn. Header. 8POS 0.100"	Adam Tech., RS1-08-G561-A11596			
11	1	J5	Conn. Header. 6POS 0.100"	Adam Tech., RS1-06-G561-A11596			
12	1	J6	Connector RJ45, CACE Code 00779	Tyco, 5406298-1			
13	1	J7	Conn Header 4POS, 0.1"	Samtec, TSW-104-07-L-S			
14	1	J8	Gender Changer, D-Sub9, Metal Housing, M/M, with Hex Screws	Assmann, AK-610505-000-I			
15	2	JP1, JP2	Header, 0.1", 2x3 Pin	Wurth Elektronik 61300621121			
16	2	JP1, JP2	Connector Shunt, 0.1", 4POS (2x2)	Samtec, MNT-102-BK-G			
17	1	R1	Resistor, 10k 1% 0603 1/10W	Vishay, CRCW060310K0FKEA			
18	2	R10, R11	Resistor, 60.4Ω, 1/10W, 1% 0603	Vishay, CRCW060360R4FKEA			
19	2	R12, R13	Resistor, 294Ω, 1/10W, 1% 0603	Vishay, CRCW0603294RFKEA			
20	5	R14, R15, R16, R18, R20	Resistor, 0Ω 1% 0603	Vishay, CRCW06030000Z0EA			
21	0	R17	Resistor, 0603, DNP				
22	0	R19	Resistor, DNP				
23	1	R2	Resistor, 56.2k 1% 0603 1/10W	Vishay, CRCW060356K2FKEA			
24	1	R3	Resistor, 13k 1% 0603 1/10W	Vishay, CRCW060313K0FKEA			
25	2	R4, R5	Resistor, 60.4Ω 1% 0805 1/8W	Vishay, CRCW080560R4FKEA			
26	2	R6, R7	Resistor, 2k, 1/10W, 1% 0603	Vishay, CRCW06032K00FKEA			
27	2	R8, R9	Resistor, 1k, 1/10W, 1% 0603	Vishay, CRCW06031K00FKEA			
28	1	T1	CHOKE, Common Mode Choke Coil for Automotive, 100μH, –30%/+50% (at 1MHz)	Murata, DLW43SH101XK2L			
29	0	T2	CHOKE, Trans, DNP				
30	1	T3	Transformer, Pulse, Hi Isolation	Sumida, CEEH96B			
31	1	U1	CAN controller	Microchip, MCP2515-E/ST			
32	1	U2	Isolated CAN Transceiver w/Isolated Power, 3.3V	Linear Tech., LTM2889HY-3#PBF			
33	1	U3	isoSPI Isolated Communications Interface	Linear Tech., LTC6820HMS#PBF			
34	1	Y1	Resonator 16.0MHz Ceramic	Murata, CSTCE16M0V53-R0			

SCHEMATIC DIAGRAM

DEMO MANUAL DC2617A

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

dc2617afa

