**TÜVRheinland®** Precisely Right. **Report #31363029.002** Rev. 0

Page 1 of 27

# Electromagnetic Compatibility Test Report

Prepared in accordance with

## **EN 55022 Radiated Emissions**

On

# DC DC uModule Regulator LTM4624

Prepared for:

Linear Technology Corporation 1630 McCarthy Blvd. Milpitas, CA 95035 U.S.A.

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane, Ste. A Pleasanton, CA 94566 U.S.A.



Report #31363029.002 Rev. 0

Page 2 of 27

## **Revisions**

| Revision<br>No. | Date             | Reason for Change | Author |
|-----------------|------------------|-------------------|--------|
| 0               | January 21, 2014 | Original Document | N/A    |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |
|                 |                  |                   |        |

Note: Latest revision report will replace all previous reports.



Project #0000115036 Report Date: January 21, 2014

Rev. 0

Page 3 of 27

|                              | АТТ                                                                                                                           | <b>TESTATION OI</b> | F TEST                                  | RESULTS                                                                |                        |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------------------------------------------------------------------|------------------------|--|
| Client:                      | Linear Technology Corporation<br>1630 McCarthy Blvd.<br>Milpitas, CA 95035 U.S.A.                                             |                     |                                         | Richard Ying<br>Tel. (408) 432-1900 Extension 3318<br>Rying@linear.com |                        |  |
| Model Name                   | LTM4624                                                                                                                       |                     | Ser                                     | al Number(s):                                                          | N/A (ENG.1)            |  |
| Model Number(s)              | LTM4624                                                                                                                       |                     |                                         | Date(s) Tested:                                                        | November 4, 2013       |  |
| Test Location(s):            | TUV Rheinland of North America<br>2305 Mission College Blvd., Ste. 105<br>Santa Clara, CA 95054 U.S.A.<br>Tel. (925) 249-9123 |                     |                                         |                                                                        |                        |  |
| Test Specifications:         | Emissions: EN 55022:2010, CISPR 22:2008                                                                                       |                     |                                         |                                                                        |                        |  |
| Test Result:                 | The abov                                                                                                                      | e product was found | d to be Co                              | mpliant to the                                                         | above test standard(s) |  |
| Tested by: Gary Jorg         | genson                                                                                                                        |                     | Reviewed by: Conan Boyle                |                                                                        |                        |  |
| Har                          | y Jorgens                                                                                                                     | ~                   |                                         |                                                                        |                        |  |
| December 18, 2013<br>Date Na | me                                                                                                                            | Signature           | January 21, 2014<br>Date Name Signature |                                                                        |                        |  |
| Other aspects:               |                                                                                                                               | Jignuure            | Duit                                    | Ivane                                                                  | Signature              |  |
|                              |                                                                                                                               | SANTA (             | CLARA                                   |                                                                        |                        |  |
| FC                           |                                                                                                                               |                     |                                         | FRY CANAD                                                              | A                      |  |
| US5251                       | Testin                                                                                                                        | g Cert #3331.02     | 2932D-1                                 |                                                                        | 1097 (A-0032)          |  |



Project #0000115036

Report Date: January 21, 2014

Rev. 0

Page 4 of 27

## TABLE OF CONTENTS

| 1 G         | ENERAL INFORMATION                     | 5  |
|-------------|----------------------------------------|----|
| 1.1         | Scope                                  |    |
| 1.2         | PURPOSE                                |    |
| 1.3         | SUMMARY OF TEST RESULTS                |    |
| 2 L         | ABORATORY INFORMATION                  | 7  |
| 2.1         | ACCREDITATIONS & ENDORSEMENTS          | 7  |
| 2.2         | TEST FACILITIES AND EMC SOFTWARE       |    |
| 2.3         | Measurement Uncertainty                |    |
| 2.4         | CALIBRATION TRACEABILITY               |    |
| 2.5         | MEASUREMENT EQUIPMENT USED             |    |
| 3 PI        | RODUCT INFORMATION                     |    |
| 3.1         | PRODUCT DESCRIPTION                    |    |
| 3.2         | EQUIPMENT MODIFICATIONS                |    |
| 3.3         | TEST PLAN                              |    |
| <b>4</b> EI | MISSIONS                               |    |
| 4.1         | RADIATED EMISSIONS                     |    |
| APPE        | NDIX A                                 |    |
| 5 TI        | EST PLAN                               | 21 |
| 5.1         | GENERAL INFORMATION                    |    |
| 5.2         | EUT DESIGNATION                        |    |
| 5.3         | EUT DESCRIPTION                        |    |
| 5.4         | EQUIPMENT UNDER TEST (EUT) DESCRIPTION |    |
| 5.5         | Product Environment                    |    |
| 5.6         | COUNTRIES                              |    |
| 5.7         | APPLICABLE DOCUMENTS                   |    |
| 5.8         | EUT ELECTRICAL POWER INFORMATION       |    |
| 5.9         | EUT CLOCK/OSCILLATOR FREQUENCIES       |    |
| 5.10        |                                        |    |
| 5.11        | i i i i i i i i i i i i i i i i i i i  |    |
| 5.12        |                                        |    |
| 5.13        |                                        |    |
| 5.14        |                                        |    |
| 5.15        |                                        |    |
| 5.16        |                                        |    |
| 5.17        | ' EMISSIONS                            |    |



Report #31363029.002 Rev. 0

Page 5 of 27

## Report Date: January 21, 2014

Project #0000115036

## **1** General Information

#### 1.1 Scope

This report is intended to document the status of conformance with the requirements of the listed standards based on the results of testing performed on November 4, 2013 on the DC DC uModule Regulator, Model No. LTM4624, manufactured by Linear Technology Corporation. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

## 1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.



Rev. 0

Page 6 of 27

Project #0000115036 Report Date: January 21, 2014

| 1.3 Sur         | nmary of Test Results                     |                         |                               |                |  |
|-----------------|-------------------------------------------|-------------------------|-------------------------------|----------------|--|
| Applicant       | Linear Technology<br>Corporation          | Tel.                    | (408) 432-1900 Extension 3318 |                |  |
| Applicant       | 1630 McCarthy Blvd.<br>Milpitas, CA 95035 | Contact                 | ct Richard Ying               |                |  |
| Description     | DC DC uModule Regulator                   | E-mail Rying@linear.com |                               |                |  |
| Model Name      | LTM4624                                   | Input Power             |                               | 4.0Vdc - 14Vdc |  |
| Model Number(s) | LTM4624                                   | Serial Number(s)        |                               | N/A (ENG.1)    |  |
| Test Date(s)    | November 4, 2013                          | Test Engi               | neer                          | Gary Jorgenson |  |

| Standards                                                               | Description                                                   | Severity Level or Limit              | Criteria     | Test Result |
|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------|-------------|
| EN 55022:2010, CISPR<br>22:2008<br>Product Family Standard<br>Emissions | Information<br>Technology<br>Equipment – Radio<br>Disturbance | See called out basic standards below | See<br>Below | Complies    |
| EN 55022:2010, CISPR<br>22:2008                                         | Radiated Emissions                                            | Class B, 30 - 1000 MHz               | Limit        | Complies    |



Rev. 0

Page 7 of 27

Project #0000115036 Report Date: January 21, 2014

## 2 Laboratory Information

## 2.1 Accreditations & Endorsements

## 2.1.1 US Federal Communications Commission

**FC** TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Pleasanton Registration No. US5254, Santa Clara Registration No. US5251). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

## 2.1.2 A2LA



TUV Rheinland of North America EMC test facilities are accredited by the American Association for Laboratory Accreditation (A2LA). The laboratories have been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Testing Certificate #3331.02). The Scope of Laboratory Accreditation includes emission and immunity testing. The accreditations are

updated annually.

## 2.1.3 Industry Canada

**Industry** Canada Industrio Concentrio Conc

based on the test procedures described in ANSI C63.4-2009. The Santa Clara 10-meter Semi-Anechoic Chamber, Registration No. 2932D-1, has been accepted by Industry Canada to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2009.

## 2.1.4 Japan – VCCI



The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology

Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0031

VCCI Registration No. for Santa Clara: A-0032



Rev. 0

Page 8 of 27

Project #0000115036 Report Date: January 21, 2014

## 2.2 Test Facilities and EMC Software

Test facilities are located at 1279 Quarry Lane, Ste. A, Pleasanton, California 94566, U.S.A. and 2305 Mission College Blvd., Ste. 105, Santa Clara, 95054, U.S.A. (Santa Clara is the Pleasanton Annex).

#### 2.2.1 Emission Test Facility

The Semi-Anechoic Chambers and AC Line Conducted measurement facilities used to collect radiated and conducted emissions data have been constructed in accordance with ANSI C63.7:1992. The Santa Clara 10 meter semi-anechoic chamber has been measured in accordance with and verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04), at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02). The Pleasanton 5 meter semi-anechoic chamber has been verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04) at a test distance of 3 meters. This site has been described in reports dated November 1 st, 2006, and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04) at a test distance of 3 meters. This site has been described in reports dated November 1 st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accepted by letter dated November 28, 2006. The site is listed to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02).

## 2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 3.7 m x 3.175 mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of  $10^9$  Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k $\Omega$  resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k $\Omega$  resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 10m semi-anechoic chamber with absorber added to floor.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9 m x 3.7 m x 3.175 mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

| Manufacturer    | Name     | Version        | Test Type                         |  |  |  |  |
|-----------------|----------|----------------|-----------------------------------|--|--|--|--|
| Hewlett-Packard | HP85876B | A.01.00 970825 | Radiated & Conducted<br>Emissions |  |  |  |  |
| EMISoft         | Vasona   | 5.0            | Radiated & Conducted<br>Emissions |  |  |  |  |
| ETS-Lindgren    | TILE     | 4.2.A          | Radiated Emissions > 1<br>GHz     |  |  |  |  |
| ETS-Lindgren    | TILE     | V.3.4.K.22     | Radiated & Conducted<br>Immunity  |  |  |  |  |

## 2.2.3 EMC Software - Santa Clara



Project #0000115036 Report Date: January 21, 2014

Rev. 0

Page 9 of 27

| Manufacturer                | Name       | Version   | Test Type                             |
|-----------------------------|------------|-----------|---------------------------------------|
| Haefely                     | WinFEAT    | 1.6.3     | Surge                                 |
| Thermo Electron -<br>Keytek | CEWare32   | 3.0       | EFT/Surge/Voltage<br>Dips & Interrupt |
| Voltech                     | IEC61000-3 | 1.15.07RC | Harmonic & Flicker                    |

#### 2.2.4 EMC Software - Pleasanton

| Manufacturer                | Name        | Version            | Test Type                             |
|-----------------------------|-------------|--------------------|---------------------------------------|
| ETS-Lindgren                | TILE        | 3.4.K.14 @ 4.0.A.5 | Radiated & Conducted Emissions        |
| EMISoft                     | Vasona      | 5.0                | Radiated & Conducted<br>Emissions     |
| Agilent                     | Agilent MXE | A.11.02            | Radiated & Conducted<br>Emissions     |
| ETS-Lindgren                | TILE        | 3.4.K.14           | Radiated & Conducted<br>Immunity      |
| Thermo Electron -<br>Keytek | CEWare32    | 4.00               | EFT/Surge/Voltage<br>Dips & Interrupt |
| Voltech                     | IEC61000-3  | 1.21.07RC2         | Harmonic & Flicker                    |



Rev. 0

Page 10 of 27

Project #0000115036 Report Date: January 21, 2014

## 2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1<sup>st</sup> Edition, 1995.

*The Combined Standard Uncertainty* is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

*The Expanded Uncertainty* defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

#### 2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength  $(dB\mu V/m) = RAW - AMP + CBL + ACF$ 

Where: RAW = Measured level before correction ( $dB\mu V$ )

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m



Project #0000115036 Report Date: January 21, 2014

Rev. 0

Page 11 of 27

#### 2.3.2 Measurement Uncertainty Emissions

| Per CISPR 16-4-2                | $\mathbf{U}_{\mathbf{lab}}$ | Ucispr |  |  |  |
|---------------------------------|-----------------------------|--------|--|--|--|
| Radiated Disturbance @ 10 r     | neters                      |        |  |  |  |
| 30 – 1,000 MHz                  | 2.25 dB 4.51 dB             |        |  |  |  |
| Radiated Disturbance @ 3 meters |                             |        |  |  |  |
| 30 – 1,000 MHz                  | 2.26 dB 4.52 dB             |        |  |  |  |

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

#### 2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

| 2.5 | Measurement Equipment Used |
|-----|----------------------------|
|-----|----------------------------|

| Equipment                       | Manufacturer   | Model # | Serial/Inst # | Last Cal<br>mm/dd/yy | Next Cal<br>mm/dd/yy | Test |
|---------------------------------|----------------|---------|---------------|----------------------|----------------------|------|
| EMI Receiver                    | Agilent        | MXE     | MY51210195    | 1/19/2013            | 1/19/2014            | RE   |
| 100 kHz – 1 GHz<br>Preamplifier | HP             | 8447D   | 2944A07486    | 1/17/2013            | 1/17/2014            | RE   |
| Bilog Antenna<br>Emissions      | Sunol Sciences | JB3     | A020502       | 04/12/2013           | 04/12/2015           | RE   |

Note: CE=Conducted Emissions, CI=Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD=Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, NCR=No Calibration Required, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions



Report #31363029.002

Rev. 0

Page 12 of 27

## **3 Product Information**

#### **3.1 Product Description**

See Section 5.4.

## 3.2 Equipment Modifications

Added 47uF capacitor to input.

## 3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in Appendix A of this report.



## Project #0000115036

Report Date: January 21, 2014

Report #31363029.002

Rev. 0

Page 13 of 27



Figure 1 - External Photo of EUT





Figure 2 - Photo of EUT Demo Board



## Project #0000115036

Report Date: January 21, 2014

Report #31363029.002

Rev. 0

Page 15 of 27




Figure 3 - Photo of EUT Load



Rev. 0

Page 16 of 27

Project #0000115036 Report Date: January 21, 2014

## 4 Emissions

## 4.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

| Results                     | <b>Complies</b> (as tested per this report)     |                                                                                  |            | Test       | Test Date(s) |         | November 4      | , 2013 |
|-----------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|------------|------------|--------------|---------|-----------------|--------|
| Standard                    | EN 55022:2010, CI                               | SPR 22:2                                                                         | 008        |            |              |         |                 |        |
| Model Number                | LTM4624                                         |                                                                                  |            | Seria      | 1#           | N/A     | (ENG.1)         |        |
| Configuration               | See test plan for det                           | ails.                                                                            |            |            |              |         |                 |        |
| Test Setup                  | Tested in the 10-me                             | ter chamb                                                                        | ber, place | d on turnt | ble:         | see tes | t plan for deta | uls.   |
| EUT Powered By              | DC Power supply                                 |                                                                                  |            |            |              |         |                 |        |
| Environmental<br>Conditions | November 4, 2013                                | November 4, 2013 <b>Temp</b> 21° C <b>Humidity</b> 42% <b>Pressure</b> 1017 mbar |            |            |              |         | 1017 mbar       |        |
| <b>Frequency Range</b>      | 30 - 1000 MHz                                   |                                                                                  |            |            |              |         |                 |        |
| Perf. Criteria              | Class B Perf. Verification Readings Under Limit |                                                                                  |            |            |              |         |                 |        |
| Mod. to EUT                 | Added 47uf cap to in                            | nput                                                                             | Test Pe    | rformed ]  | By           | Gary    | Jorgenson       |        |

## 4.1.1 Overview of Test

## 4.1.2 Test Procedure

Radiated emissions tests were performed using the procedures of ANSI C63.4:2009 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

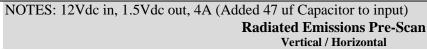
The frequency range from 30 - 1000 MHz was investigated for radiated emissions.

## 4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

## 4.1.4 Final Test

All final radiated emissions measurements were below the specification limits.





Rev. 0

Page 17 of 27

Project #0000115036 Report Date: January 21, 2014

## 4.1.5 Plots







Rev. 0

Page 18 of 27

Project #0000115036 Report Date: January 21, 2014

## 4.1.6 Final Peak Data – 30 - 1000 MHz

| Frequency<br>MHz | Raw<br>dBuV | Cable<br>Loss | AF<br>dB | Level<br>dBuV | Measurement<br>Type | Pol | Hgt<br>cm | Azt<br>Deg | QP<br>Limit<br>dBuV | Margin<br>dB |
|------------------|-------------|---------------|----------|---------------|---------------------|-----|-----------|------------|---------------------|--------------|
| 532.5813         | 44.36       | 3.39          | -10.09   | 37.65         | Peak [Scan]         | V   | 100       | 74         | 37                  | 0.65         |
| 220.3625         | 44.06       | 2.45          | -16.16   | 30.35         | Peak [Scan]         | V   | 100       | 190        | 30                  | 0.35         |
| 989.0875         | 30.68       | 4.35          | -3.92    | 31.11         | Peak [Scan]         | V   | 100       | 218        | 37                  | -5.89        |
| 387.6875         | 39.98       | 3             | -12.28   | 30.7          | Peak [Scan]         | Н   | 200       | 236        | 37                  | -6.3         |
| 456.8            | 38.22       | 3.19          | -10.92   | 30.49         | Peak [Scan]         | Н   | 200       | 291        | 37                  | -6.51        |
| 557.4375         | 36.8        | 3.45          | -9.84    | 30.42         | Peak [Scan]         | Н   | 200       | 320        | 37                  | -6.58        |
| 30.60625         | 28.84       | 1.47          | -7.11    | 23.21         | Peak [Scan]         | V   | 100       | 93         | 30                  | -6.79        |
| 304.6313         | 37.99       | 2.76          | -13.27   | 27.47         | Peak [Scan]         | Н   | 400       | 264        | 37                  | -9.53        |
| 79.10625         | 35.9        | 1.81          | -19.96   | 17.75         | Peak [Scan]         | V   | 400       | 68         | 30                  | -12.25       |

#### 4.1.7 Final Quasi Peak Data – 30 - 1000 MHz

| Frequency<br>MHz | Raw<br>dBuV | Cable<br>Loss | AF<br>dB | Level<br>dBuV | Measurement<br>Type | Pol | Hgt<br>cm | Azt<br>Deg | QP<br>Limit<br>dBuV | Margin<br>dB |
|------------------|-------------|---------------|----------|---------------|---------------------|-----|-----------|------------|---------------------|--------------|
| 532.7156         | 40.13       | 3.39          | -10.09   | 33.43         | Quasi Peak          | V   | 101       | 74         | 37                  | -3.57        |
| 219.1806         | 40.17       | 2.45          | -16.19   | 26.43         | Quasi Peak          | V   | 104       | 213        | 30                  | -3.57        |
| 989.8775         | 20.57       | 4.35          | -3.9     | 21.02         | Quasi Peak          | V   | 116       | 212        | 37                  | -15.98       |
| 386.2331         | 36.61       | 2.99          | -12.3    | 27.3          | Quasi Peak          | н   | 230       | 248        | 37                  | -9.7         |
| 457.0106         | 34.26       | 3.19          | -10.91   | 26.53         | Quasi Peak          | н   | 188       | 290        | 37                  | -10.47       |
| 545.4984         | 39.81       | 3.41          | -9.95    | 33.27         | Quasi Peak          | н   | 176       | 315        | 37                  | -3.74        |
| 306.3956         | 33.43       | 2.76          | -13.21   | 22.98         | Quasi Peak          | н   | 323       | 259        | 37                  | -14.02       |

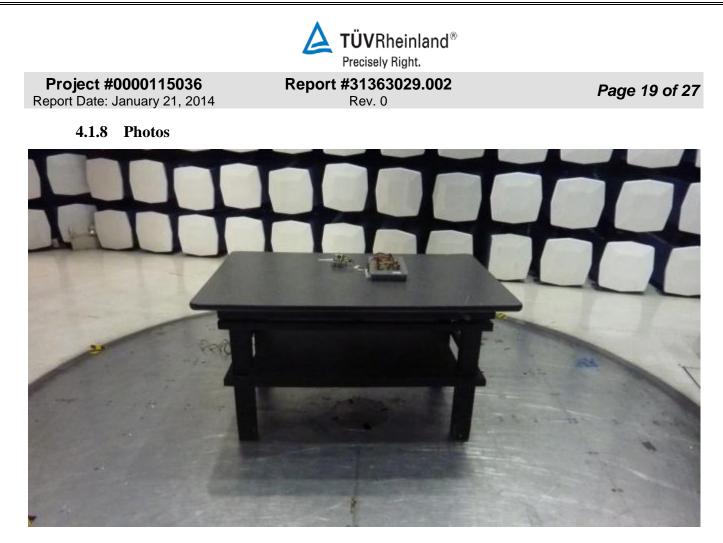



Figure 4 - Radiated Emissions Test Setup 30 - 1000 MHz - Front



## Project #0000115036

Report Date: January 21, 2014

Report #31363029.002

Rev. 0

Page 20 of 27

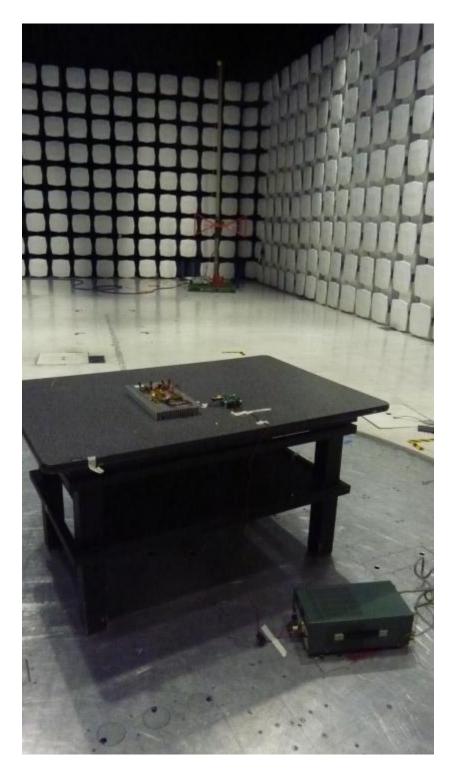



Figure 5 - Radiated Emissions Test Setup 30 - 1000 MHz - Back



Rev. 0

Page 21 of 27

## Appendix A

## 5 Test Plan

Project #0000115036

Report Date: January 21, 2014

This test report is intended to follow this test plan outlined here in unless otherwise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

## 5.1 General Information

| Client                | Linear Technology Corporation |  |  |  |
|-----------------------|-------------------------------|--|--|--|
|                       | 1630 McCarthy Blvd.           |  |  |  |
| Address 1             | Milpitas, CA 95035            |  |  |  |
| <b>Contact Person</b> | Richard Ying                  |  |  |  |
| Telephone             | (408) 432-1900 Extension 3318 |  |  |  |
| e-mail                | Rying@linear.com              |  |  |  |

## 5.2 EUT Designation

| Model Name      | LTM4624 |
|-----------------|---------|
| Model Number(s) | LTM4624 |

## 5.3 EUT Description

DC DC uModule Regulator



Project #0000115036 Report Date: January 21, 2014

## Rev. 0

Page 22 of 27

#### 5.4 Equipment Under Test (EUT) Description

The LTM®4624 is a complete 4A step-down switching mode uModule® regulator in a tiny 6.25mm×6.25mm×5.01mm BGA package. The LTM4624 operates from a 4V to 14V input supply, delivering a regulated output adjustable between 0.6V to 5.5V, ideal for applications in communications, storage, industrial and medical systems.

#### 5.5 **Product Environment**

| $\boxtimes$ | Residential      | Hospital        |
|-------------|------------------|-----------------|
| $\boxtimes$ | Light Industrial | Small Clinic    |
| $\boxtimes$ | Industrial       | Doctor's office |
|             | Other            |                 |

\*Check all that apply

#### 5.6 Countries

| $\boxtimes$ | USA    |
|-------------|--------|
| $\boxtimes$ | Europe |

\*Check all that apply



Report #31363029.002

Rev. 0

Page 23 of 27

## 5.7 Applicable Documents

| Standards                                             | Description                                             |
|-------------------------------------------------------|---------------------------------------------------------|
| EN 55022:2010, CISPR 22:2008<br>Standard<br>Emissions | Information Technology Equipment – Radio<br>Disturbance |
| EN 55022:2010, CISPR 22:2008                          | Radiated Emissions                                      |



Project #0000115036

Rev. 0

Page 24 of 27

Report Date: January 21, 2014

## 5.8 EUT Electrical Power Information

| Nomo      | # of                                                                                | Trino                                 | Output | Voltage | AC<br>Valtaga        | Current           |  |
|-----------|-------------------------------------------------------------------------------------|---------------------------------------|--------|---------|----------------------|-------------------|--|
| Name      | Phases                                                                              | Phases Type                           |        | Max     | Voltage<br>Frequency | Max.              |  |
| DC Input  | $\begin{array}{c}1 \ \square \\3 \ \square \\\text{None} \ \blacksquare\end{array}$ | AC □<br>DC ⊠<br>Host □<br>Batteries □ | 4.0 V  | 14 V    | 1 MHz                | Load<br>Dependent |  |
| DC Output | $\begin{array}{c}1 \ \square \\3 \ \square \\\text{None} \ \blacksquare\end{array}$ | AC □<br>DC ⊠<br>Host □<br>Batteries □ | 0.6 V  | 5.5 V   | 1 MHz                | 4 A Max           |  |

Notes

## 5.9 EUT Clock/Oscillator Frequencies

| Reference Designation | Speed (MHz) | Туре                          |
|-----------------------|-------------|-------------------------------|
|                       |             | □ Oscillator □ Microprocessor |

#### 5.9.1 Radiated Emissions, Upper Frequency

| $\boxtimes$ | Less than 108 MHz     | Scan to 1 GHz                                                   |  |  |  |  |
|-------------|-----------------------|-----------------------------------------------------------------|--|--|--|--|
|             | Less than 500 MHz     | Scan to 2 GHz                                                   |  |  |  |  |
|             | Less than 1000 MHz    | Scan to 5 GHz                                                   |  |  |  |  |
|             | Greater than 1000 MHz | Scan to 5 <sup>th</sup> Harmonic or 40 GHz (whichever is lower) |  |  |  |  |



Project #0000115036

Report #31363029.002 Rev. 0

Page 25 of 27

## Report Date: January 21, 2014

## 5.10 Electrical Support Equipment

| Reference<br>Designation | Manufacturer | Model      | Serial Number | BSMI # |
|--------------------------|--------------|------------|---------------|--------|
| Power<br>Supply          | Kikusui      | PAD 16-30L |               | N/A    |
| Load<br>Resistors        | N/A          | N/A        |               | N/A    |

## 5.11 Non - Electrical Support Equipment

| Reference<br>Designation | Manufacturer | Model | Serial Number or Description (e.g., Type<br>of Gas or Liquid) |
|--------------------------|--------------|-------|---------------------------------------------------------------|
| None                     |              |       |                                                               |

## 5.12 EUT Equipment/Cabling Information

|          | Connected To   | Cable Type         |  |             |                  |             |  |
|----------|----------------|--------------------|--|-------------|------------------|-------------|--|
| EUT Port |                | Length<br>(Meters) |  |             | Bead<br>Yes / No |             |  |
| VIN      | Power Supply   | 1 meter            |  | $\boxtimes$ |                  | $\boxtimes$ |  |
| VOUT     | Resistive Load | 0.2 meters         |  | $\boxtimes$ |                  | $\boxtimes$ |  |

## 5.13 EUT Test Program

None

## 5.14 EUT Modes of Operation

• 12 V Input, 1.5 V Output @ 4 A

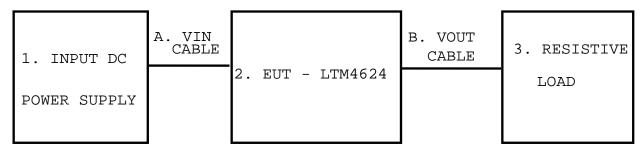
## 5.15 Monitoring of EUT during Testing

For Emissions testing the EUT output voltage is checked during the test.



Report #31363029.002

Rev. 0


Page 26 of 27

## 5.16 EUT Configuration

#### 5.16.1 Description

| Configuration |                                                       | Description                             |  |  |  |  |
|---------------|-------------------------------------------------------|-----------------------------------------|--|--|--|--|
| One Only      |                                                       | LTM4624 installed on demo board DC1889A |  |  |  |  |
| Notes         | Notes All configurations tested with a resistive load |                                         |  |  |  |  |

#### 5.16.2 Block Diagram





Report #31363029.002

Rev. 0

Page 27 of 27

#### 5.17 Emissions

#### 5.17.1 Radiated Emissions

#### 5.17.1.1 Preliminary Radiated Emissions Test Setup

| Standard        | EN 55022:2010, CISPR 22:2008 |                     | TUV Te      | st Procedure | MS-0005192            |  |  |  |
|-----------------|------------------------------|---------------------|-------------|--------------|-----------------------|--|--|--|
| Limit           | Class B                      | Emissions Ve        | erification | Emissions    | Emissions Under Limit |  |  |  |
| Frequency Range | 30 - 1000 MHz                |                     |             |              |                       |  |  |  |
| Scan #1         | Pre-scan<br>30 – 1000 MHz    | Antenna<br>Distance | 10m         | Detector     | Peak                  |  |  |  |
| Configuration   | See Section 5.16             |                     |             |              |                       |  |  |  |
| Notes           | None                         |                     |             |              |                       |  |  |  |

## 5.17.1.2 Final Radiated Emissions Test Setup

| Standard        | EN 55022:2010, CISPR 22:2008                                  |                               | <b>TUV Test Procedure</b> |     |                       | MS-0005192 |            |
|-----------------|---------------------------------------------------------------|-------------------------------|---------------------------|-----|-----------------------|------------|------------|
| Limit           | Class B                                                       | <b>Emissions Verification</b> |                           | Emi | Emissions Under Limit |            |            |
| Frequency Range | 30 - 1000 MHz                                                 |                               |                           |     |                       |            |            |
| Scan #1         | Final Scan 30 – 1000 MHz<br>12 V Input, 1.5 V Output<br>@ 4 A |                               | ntenna<br>istance         | 10m | Om Detector           |            | Quasi Peak |
| Configuration   | ation See Section: 5.16                                       |                               |                           |     |                       |            |            |
| Notes           | None                                                          |                               |                           |     |                       |            |            |

## **END OF REPORT**