

LTM8053 40V, 3.5A Step-Down µModule Regulator

DESCRIPTION

Demonstration circuit 1934A is a 40V, 3.5A step-down µModule® regulator featuring the LTM®8053. The demo board is designed for 5V output from a 5.6V to 40V input. The wide input range allows a variety of input sources, such as automotive batteries and industrial supplies. The user adjustable features of the LTM8053 such as output voltage, switching frequency, soft-start, and power good can be changed on DC1934A simply by modifying the appropriate resistors and/or capacitors. Two or more LTM8053s can be paralleled to share load current equally.

The LTM8053 can be programmed to different operation modes. The SYNC pin on the demo board is grounded (JP1 at BURST position) by default for low ripple Burst Mode® operation. Pulse-skipping mode, spread spectrum mode, or synchronization mode can be selected respectively by moving JP1 shunt to NON-BURST position and adding different signals to SYNC terminal. See Quick Start Procedure section for more details.


Figure 1 shows the efficiency of the circuit under different input voltages in Burst Mode operation. The rated maximum load current is 3.5A, while derating is necessary for certain input voltage and thermal conditions. Figure 2 shows the LTM8053 derating curve on DC1934A demo board. The demo board has an optional EMI filter. To achieve high EMI/EMC performance, the input EMI filter is required and the input voltage should be applied at VIN_EMI terminal.

The LTM8053 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this demo manual for demo circuit 1934A.

Design files for this circuit board are available at http://www.linear.com/demo/DC1934A

Δ7, LT, LTC, LTM, Linear Technology, the Linear logo, μModule and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BOARD PHOTO

PERFORMANCE SUMMARY Specifications are at $T_A = 25$ °C

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN} *	Input Supply Range		5.6		40	V
V _{OUT}	Output Voltage		4.85	5	5.15	V
I _{OUT} **	Maximum Output Current		3.5			А
f _{SW}	Switching Frequency	V _{IN} = 12V, I _{OUT} = 3.5A		1		MHz
EFE	Efficiency at DC	V _{IN} = 12V, I _{OUT} = 2A		93.5		%

^{*}When V_{IN} voltage is low, the LTM8053 may skip switching cycles.

^{**}Derating is necessary for certain V_{IN} and thermal conditions.

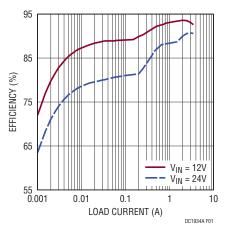


Figure 1. LTM8053 Demo Circuit DC1934A Efficiency vs Load Current (f_{SW} = 1MHz, V_{OUT} = 5V, Burst Mode Operation)

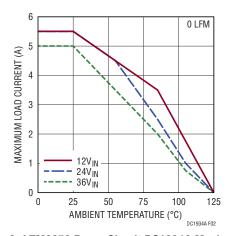


Figure 2. LTM8053 Demo Circuit DC1934A Maximum Load Current Derating

QUICK START PROCEDURE

Demonstration circuit 1934A is easy to set up to evaluate the performance of the LTM8053. Refer to Figure 3 for proper measurement equipment setup and follow the procedure below.

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OUT} and GND terminals. See Figure 4 for the proper scope technique.

- 1. Place JP1 on BURST position.
- 2. With power off, connect the input power supply to V_{IN} and GND. If the input EMI filter is desired, install the filter and connect the input power supply to VIN_EMI and GND.
- 3. With power off, connect the load from V_{OUT} to GND.
- 4. Turn on the power at the input.

NOTE. Make sure that the input voltage does not exceed 40V.

- 5. Check for the proper output voltage $(V_{OUT} = 5V)$.
 - **NOTE**. If there is no output, temporarily disconnect the load to make sure that the load is not set too high or is shorted.
- 6. Once the proper output voltage is established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
- 7. JP1 is placed on BURST position by default, for the low ripple Burst Mode operation. When JP1 is placed on NON-BURST position, LTM8053 can operate in pulse-skipping mode, spread spectrum mode, or synchronization mode respectively, based on the different SYNC terminal inputs. If SYNC terminal is floating, LTM8053 is in pulse-skipping mode. If an external clock is driving the SYNC terminal, LTM8053 is in synchronization mode. Please make sure that RT should be chose to set the LTM8053 switching frequency equal to or below the lowest SYNC frequency. If a 2.9V to 4.2V DC voltage is tied to the SYNC terminal, LTM8053 is in spread spectrum mode. This DC voltage can also be added through a voltage divider (R7 and R8) from the output. The recommended divider bottom resistor (R8) is 200k.

QUICK START PROCEDURE

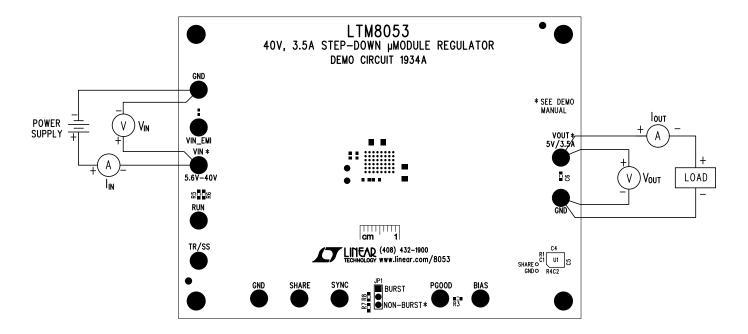


Figure 3. Proper Measurement Equipment Setup

QUICK START PROCEDURE

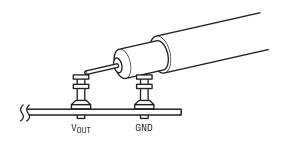


Figure 4. Measuring Output Ripple

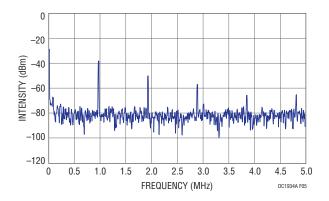
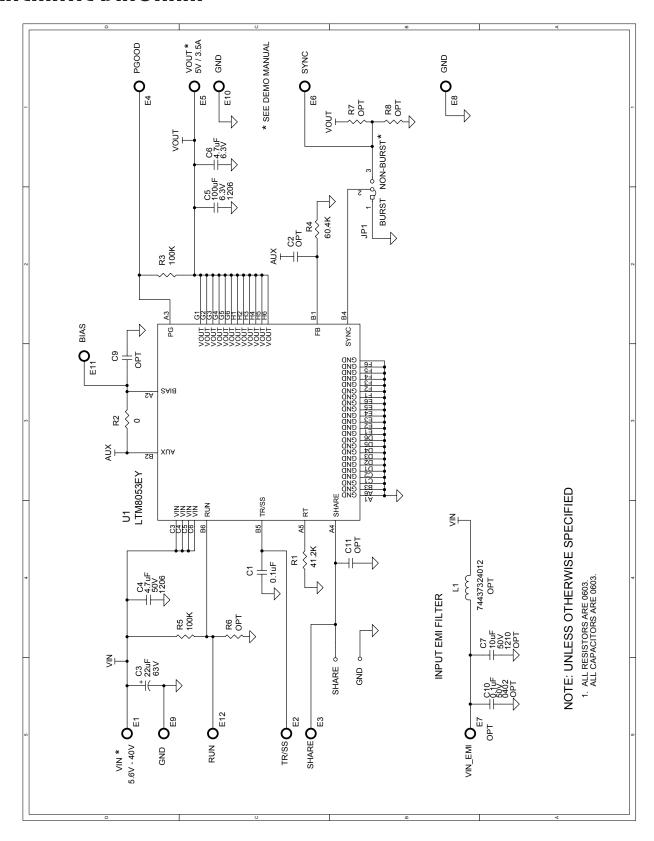


Figure 5. DC1934A Output Noise Spectrum, V_{IN} = 12V, V_{OUT} = 5V, I_0 = 3.5A



DEMO MANUAL DC1934A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required (Circuit Com	ponents	·	
1	1	C1	CAP., X7R, 0.1µF, 25V, 10% 0603	MURATA, GRM188R71E104KA01D
2	1	C4	CAP., X7R, 4.7µF, 50V, 10% 1206	MURATA, GRM31CR71H475KA12L
3	1	C5	CAP., X5R, 100µF, 6.3V, 20% 1206	MURATA, GRM31CR60J107ME39L
4	1	C6	CAP., X5R, 4.7µF, 6.3V, 10% 0603	MURATA, GRM188R60J475KE19D
5	1	R1	RES., CHIP, 41.2k, 1/10W,1% 0603	VISHAY, CRCW060341K2FKEA
6	2	R3, R5	RES., CHIP, 100k, 1/10W, 1% 0603	VISHAY, CRCW0603100KFKEA
7	1	R4	RES., CHIP, 60.4k, 1/10W, 1% 0603	VISHAY, CRCW060360K4FKEA
8	1	U1	IC., BGA, 48L, 9X6.25X3.23MM	LINEAR TECH., LTM8053EY#PBF
Additional	Demo Boa	rd Circuit Components		
1	0	C2, C9, C11 (OPT)	CAP., 0603	
2	1	C3	CAP., ALUM 22μF, 63V	SUN ELECT., 63CE22BS
3	0	C7 (OPT)	CAP., X7R, 10µF, 50V, 10% 1210	MURATA, GRM32ER71H106KA12L
4	0	C10 (OPT)	CAP., X7R, 0.1µF, 50V, 10% 0402	TDK, C1005X7R1H104K050BB
5	0	L1 (0PT)	INDUCTOR, 1.2μH	WURTH ELEKTRONIK, 74437324012
6	1	R2	RES., CHIP, 0Ω, 1/10W, 0603	VISHAY, CRCW06030000Z0EA
7	0	R6, R7, R8 (OPT)	RES., 0603	
Hardware/	Componen	ts (for Demo Board Only)	·	
1	10	E1-E6, E8-E11	TESTPOINT, TURRET, 0.094" PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
2	0	E7	OPT	
3	1	JP1	HEADER 3-PIN 0.079" SINGLE ROW	WURTH ELEKTRONIK, 62000311121
4	1	XJP1	SHUNT, 0.079" CENTER	WURTH ELEKTRONIK, 60800213421
5	4	MH1-MH4	STAND-OFF, NYLON 19.1mm	WURTH ELEKTRONIK, 702937000

SCHEMATIC DIAGRAM

DEMO MANUAL DC 1934A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following **AS IS** conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

