

1.0 <u>SCOPE</u>

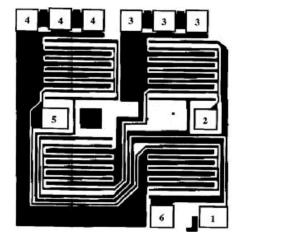
This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure a<u>http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf</u> is to be considered a part of this specification.

C1
B1
E1
E2
B2
C2

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/MAT02

2.0 <u>Part Number.</u> The complete part number(s) of this specification follow:


Part Number	Description
MAT02-000C	Low-Noise Matched Dual Monolithic Transistor

3.0 Die Information

3.1 <u>Die Dimensions</u>

Die Size	Die Thickness	Bond Pad Metalization
56 mil x 60 mil	19 mil ± 2 mil	Al/Cu

3.2 <u>Die Picture</u>

Substrate can be connected to V- or floated.

ASD0012815

Rev.H

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

3.3 Absolute Maximum Ratings

Collector to Base Voltage (BV _{CBO})	40V
Collector to Emitter Voltage (BV _{CEO})	
Emitter to Emitter Voltage (BV _{EE})	40V
Collector Current (I _C)	20mA
Emitter Current (I _E)	20mA
Storage Temperature Range	65°C to +150°C
Junction Temperature (T _J)	+150°C
Operating Ambient Temperature Range	55°C to +125°C

Absolute Maximum Ratings Notes:

<u>1/</u> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

(a) Qual Sample Size and Qual Acceptance Criteria - 25/2

(b) Qual Sample Package – 6 Lead TO Package

(c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics								
Parameter	Symbol		Conditions <u>1/</u>	Limit Min	Limit Max	Units		
			$I_{C} = 1mA$	500				
Current Gain	hfe	$V_{CB} = 0V, 40V$	I _C =100μA	500				
			$I_C = 10 \mu A$	400				
Current Gain Match <u>2/</u>	Δh_{FE}	lc		2	%			
Offset Voltage	Vos			50	μV			
Offset Voltage vs. V _{CB}	ΔV _{OS} /ΔV _{CB}	$V_{CB} = 0V, 40V$			25	μV		
Offset Voltage vs. Collector Current	ΔVos/Δ Ic	V _{CB} =0V; l _C =10µА, 1mА			25	μV		
Input Offset Current	los	$V_{CB} = 0V, 40V$			0.6	nA		
Offset Current vs. V _{CB}	Δlos /ΔVcb			70	pA/V			
Bulk Emitter Resistance	r _{BE}				0.5	Ω		

Table I - Dice Electrical Characteristics (Continued)								
Parameter Symbol Conditions Limit Min Limit Max Units								
Bias Current	Ι _Β	$V_{CB}=0V,40V$		25	nA			
Collector Saturation Voltage	$V_{CE}SAT$	$I_{c} = 1 m A$, $I_{B} = 100 \mu A$		0.1	V			
Breakdown Voltage	BV _{CEO}	I _C =100μA		40	V			

Table I Notes:

 $\label{eq:loss} \begin{array}{l} \underline{1}/\, \mathsf{V}_{\mathsf{CB}} = 15\mathsf{V}, \, \mathsf{I}_{\mathsf{C}} = \pm 10\mu\mathsf{A}, \, \text{and} \, \mathsf{T}_{\mathsf{A}} = 25^\circ\mathsf{C}, \, \text{unless otherwise specified.} \\ \\ \underline{2}/\, \mathsf{Current} \, \text{gain match} \, (\Delta \mathsf{h}_{\mathsf{FE}}) \, \text{is defined as} \, \Delta \mathsf{h}_{\mathsf{FE}} = \frac{100(\Delta I_B\,)h_{FE}min}{I_C} \, . \end{array}$

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1/</u>	Sub- groups	Limit Min	Limit Max	Units	
			1	450			
		$I_{C} = 1 m A; V_{CB} = 0V, 40V$	2, 3	225			
		$I_{C} = 100 \mu A$, $V_{CB} = 0V$, 40V	1	450			
Current Gain	hfe	$I_{C} = 100 \mu A$, $V_{CB} = 15 V$	2, 3	175			
		$I_{C} = 10 \mu A; V_{CB} = 0V, 40V$	1	350			
		$I_{C} = 10 \mu A; V_{CB} = 15 V$	2, 3	125			
Current Gain Match <u>2/</u>	Δh_{FE}	I _C = 10μΑ, 100μΑ, 1mΑ; V _{CB} = 0V	1		3	%	
Offect Violtage	М		1		60		
Offset Voltage	Vos	$V_{CB} = 0V$	2, 3		90	μV	
Offset Voltage vs. Temperature <u>4/</u>	TCVos	$V_{CB} = 0V$			0.4	μV/°C	
Offset Voltage vs. V _{CB}	$\Delta V_{OS} / \Delta V_{CB}$	$V_{CB} = 0V, 40V$	1		40	μV	
Offset Voltage vs. Collector Current	ΔVos/Δlc	V _{CB} =0V; I _C =10μA, 1mA	1		40	μV	
land Offerst Coursest	los	$V_{CB} = 0V, 40V$	1		1	nA	
Input Offset Current			2, 3		10		
Offset Current vs. V _{CB}	Δl _{os} /ΔV _{CB}	$V_{CB} = 0V, 40V$	1		100	pA/V	
Bulk Emitter Resistance	r BE		1		0.75	Ω	
Collector Base Leakage Current	l _{сво}	$V_{CB} = 40V$	1		200	рА	
Collector Emitter Leakage Current <u>3/</u>	I _{CES}	$V_{CE} = 40V, V_{BE} = 0V$	1		200	pА	
Collector-Collector Leakage Current <u>3/</u>	lcc	$V_{CC} = 40V$	1		200	pА	
Bias Current	I _B	$V_{CB} = 0V, 40V$	1		30	۳Å	
		$\mathbf{v}_{CB} = 0\mathbf{v}, 40\mathbf{v}$	2, 3		70	nA	
Collector Saturation Voltage	VCESAT	$I_{C} = 1 m A$, $I_{B} = 100 \mu A$	1		0.1	v	
Breakdown Voltage	BV _{CEO}	$I_C = 100 \mu A$	1	40]	

Table II Notes:

 $\underline{1/}~V_{CB}$ = 15V, I_C = ±10µA, and T_A = 25°C, unless otherwise specified.

<u>2</u>/ Current gain match (Δh_{FE}) is defined as: $\Delta h_{FE} = -\frac{1}{2}$

$$\frac{100(\Delta I_{\rm B})h_{\rm FE}min}{I_{\rm C}}$$

 $\underline{3\prime}~$ I_{CC} and I_{CES} are verified by measurement of I_{CBO}.

 $\underline{4'}$ Guaranteed by V_{OS} test (TCV_{OS} \cong \underline{V}_{OS} for V_OS<<V_BE) T=298°K for TA=+25°C.

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)								
D		Sub-	Post Burn In Limit		Post Life Test Limit		Life Test	
Parameter	Symbol	groups	Min	Max	Min	Max	Delta	Units
		1	370		290		±80	
Current Gain @ 1mA	hfe	2, 3			145			
		1	360		270		±90	
Current Gain @ 100µA	hfe	2, 3			135			
Current Coin 0 10.1		1	250		150		±100	
Current Gain @ 10µA	hfe	2, 3			75			
Input Offset Current	los	1		1.5		2	±0.5	
		2, 3				11.5		nA

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition A, B, or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
А	Initiate	Feb. 28, 2002
В	Update web address	Aug. 5, 2003
С	Change Pin 4 from C2 to E2 and Pin 6 from E2 to C2	Oct. 15, 2004
D	Update 1.0 Scope description.	Aug. 2, 2007
E	Update header/footer & add to 1.0 Scope description	Feb. 19, 2008
F	Add Junction Temperature(T _J)150°C to 3.3 Absolute Max Ratings	March 31, 2008
G	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	6-JUN-2009
Н	Updated fonts and sizes to ADI standards	7-Oct-2011

© 2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 10/11

www.analog.com

ASD0012815 Rev. H | Page 6 of 6