FEATURES

Ultra-High Speed: 20MHz Word Rate

8- and 10-Bit Versions Available

TTL Compatible

Smallest Size Available: $3^{\prime \prime} \times 4^{\prime \prime} \times 0.5^{\prime \prime}$
Completely Self-Contained with Input Register, D/A, Deglitcher, Timing, Internal References, and Output Buffering

APPLICATIONS

Color-Tetevision Video Reconstruction, Time-Base Corrector and Frame Synchronization

GENERAL DESCRIPTION

The MDD Series is a subsystem module whicteontans an input digital register, ultra-high speed currentureut DA converter, deglitcher, output buffer amplifier, precision references, and timing circuitry within a $3^{\prime \prime} \times 4^{\prime \prime} \times 0.5^{\prime \prime}$ case. The output of the device is an ultra-linear analog representation of the digital input. Requiring only external gain and offset potentiometers for final calibration, the MDD D/A solves the glitch problem associated with high-speed D/A converters. The incorporation of an internal register virtually eliminates the need for input bit time deskewing. While not totally eliminating the glitch per se, the remnant glitch is very small, and more importantly, constant (and therefore filterable) over the output range.

The MDD Series is available with 8 - or 10 -bit resolution and in two versions. The basic versions contain a unity gain output buffer and can deliver 2 V p-p open circuit (or 1 V p-p into a load) when the MDD output is both source and load terminate. The " A " versions contain a very high speed output gain amplifier to allow the MDD to deliver 4 V p-p open circuit (or 2 V p-p into a load) when the device is source and load terminated. Higher output voltages may be obtained-up to $\pm 10 \mathrm{~V}$ by external feedback resistor selection. However, settling time degradation must be expected.

TV APPLICATION

The "A" version of the MDD Series deglitched D/A is ideally suited for color television video reconstruction. Its output can directly drive the low impedances normally associated with video baseband transmission. Since the output impedance of

the int fra operation I amplifier is less than 1Ω, the transmisresistor is almost per et Other applications include waveform each module is burned in for 96 hours at $+25^{\circ} \mathrm{C}$ before final test and shipment.

NOTES:

1. INPU
2.
3. INPUTS SHOWN FOR 10 BIT VERSIONS. FOR 8 -BIT VERSIONS PINS 11 AND 12 ARE UNUSED,
4. THESE PARTS (${ }^{\circ}$) ARE OMITTED IN BASIC VERSIONS, BUT PRESENT IN "A" VERSIONS.

NOTES ON "DEGLITCHING"

An MDD Series D/A converter operating with a full-scale p-p analog output of 1 V will typically have a glitch, or transient, in its output which is 15 mV in amplitude and is 25 ns wide, at the 50% points. These typical values are independent of whether the D/A converter is an 8 -bit unit or a 10 -bit unit.

This glitch remains constant, regardless of the transition points. In other words, it is the same for the transition from 0000000001 to 1000000000 as it is for the transition from 1000000000 to 1000000001 or any other two input words. A constant glitch is the purpose of the deglitcher circuits. They are intended to hold the area under the curve at a constant value; they are not intended to get rid of all glitches per se.
When the rea under the transient curve is held constant, the regyenoy spoctrum of the glitch is a fine line; i.e., a singlelin e spectrym ot the samplete frequency, and harmonics of the sample frequep acy
If the glitch is a fanction sighal
case of D/ co pivernuty

Figure 1. Pedestal/Glitch Relationship

Figure 2. MDD Series Timing Diagram

Figure 3. D/A Current Equivalent Circuit
these IM products appear in the video pass-band as spurious signals and increased noise level. The deglitcher circuits effectively eliminate these products. When they do, the S / N ratio approaches that of an ideally-quantized signal, where the rms noise is $Q / \sqrt{12}$, when frequencies above Nyquist are filtered out.

In summary then:

- The residual glitch for an MDD Series D/A converter is typically 15 mV for a full-scale 1 V p-p output; this is 1.5% of F.S.
- The glitch width is typically 25 ns at the 50% points.
- The amplitude and width of the glitch are constant, and independent of:
-the magnitude of change in successive transitions
-number of bits of digital output
-input (update) data rates
D/A converters without deglitching circuits have smaller, shorter glitches, on the average; but this type of converter has larger glitches at the major crossings, especially at the mid-

Figure 4. Spectrum of 10 -bit D/A Operating at 11 MHz Update Rate Without Deglitching - Unfiltered

Figure 5. Spectrum of 10 -bit D/A Operating at 11 MHz Update Rate With Deglitching - Unfiltered

Figure 6. Unipolar Output Configuration Basic Versions

NOTES:

1. SELECT RGAIN TO GIVE DESIRED OPEN CIRCUIT OUTPUT VOLTAGE. THE INPUT
VOLTAGE TO THE OP AMP IS APPROXIMATELY O TO + 2V. THE OUTPUT OF THE VOLTAGE TO THE OP AMP IS APPROXNMATELY O TO +2 V . THE OUTPUT OF THE OP AMP IS THEREFORE ($\left.\left(2 \times R_{G A I N}\right) / 500 \Omega\right)$ VOLTS p-p.
2. THE LOGIC IS INVERTED INTERNALLY FOR THE "A" VERSIONS SUCH THAT ALL OP AMP OUTPUT.
3. FOR POSITIVE UNIPOLAR OPERATION, THE NOMINAL OFFSET POTENTIOMETER RESISTANCE SHOULD BE SET FOR A VALUE OF APPROXIMATELY 800Ω, MAKING A 2000Ω POTENTIOMETER IDEAL.
4. FOR BIPOLAR OPERATION. THE NOMINAL OFFSET POTENTIOMETER RESISTANCE SHOULD BE SET FOR A VALUE OF APPROXIMATELY 2300Ω, MAKING A 5OOOS
POTENTIOMETER IDEAL. THE OUTPUT VOLTAGE SHOULD BE ADJUSTED FOR ZERO WITH AN INPUT CODE OF $10 \ldots \ldots .$.
5. MAKE CFB NOMINALLY 10 PF . SELECT FOR OPTIMUM SETTLING TIME IF DESIRED.
6. IF ADJUSTABLE GAIN IS DESIRED, ADD A LOW.VALUE, LOW-INDUCTANCE CERMET TRIMMING POTENTIOMETER IN SERIES WITH RGAIN. BY PUTTING THE GAIN ADJUSTMENT
HERE, THE GAIN AND OFFSET ADJUSTMENTS ARE INDEPENDENT OF EACH OTHER. HERE, THE GAIN AND OFFSET ADJUSTMENTS ARE INDEPENDENT OF EACH OTHER

Figure 8. Output Configuration - " A " Versions

Figure 9. Typical A/D-D/A Back-to-Back Connections for Video Applications or Testing

The typical video differential phase and gain errors (disregarding quantization effects) for the configuration shown are 3° and 3%, respectively, using an encode command frequency of three times the NTSC color subcarrier (10.74 MHz). For applications requiring digitization at frequencies of four times NTSC (14.32 MHz) or three times PAL (13.29 MHz) the MATV-0816 A/D Converter should be substituted. For applications requiring digitization at four times PAL $(17.74 \mathrm{MHz})$, the MATV-0820 A/D Converter should be substituted. Results are applicable for either NTSC or PAL test signals using the 20 IRE modulated ramp.
Due to the inherently stable characteristics of the output operational amplifier, the " A " versions are recommended for driving properly terminated video terminated lines.

ORDERING INFORMATION

For 8-Bit Models, MDD-0820 without output amplifier Order: MDD-0820A with output amplifier

For 10-Bit Models, MDD-1020 without output amplifier Order: MDD-1020A with output amplifier

Mating pin socket connectors for the MDD Series is model MSB-2. Prototyping socket is MSD-1.

The MDD Series D/A's are normally burned-in at $+25^{\circ} \mathrm{C}$ for a minimum of 96 hours. For extended burn-in, consult the factory. All of Analog Devices' data acquisition products are covered by a one-year warranty.

