CIISHIDSFMISH/ADI SEines

FEATURES
Current Settling Times to 15 ns
$\pm 1.5 \mathrm{~V}$ Compliance
Voltage Settling Times to $\mathbf{1 0 0 n s}$ (DH)
Monotonicity Guaranteed Over Temperature
High Output Currents - 15 mA
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Range
Industry Standard Pin Outs
20V, pp Out (MDH)
TTL or ECL Logic

APPLICATIONS
CRT Vector Displays
Digitigl have orr Generation

Automatic Test Equipment TV picture Reconstruction

This broad family of digit -to-analog conyertersfrep resents the "state of the art" in modular, high speed, voltage and current output devices. The family consists of a total of 11 devices in 4 series (MDS, MDSE, MDSL and MDH) that alloy the user to make engineering trade-offs between resolution, speed, output and logic type. The first 3 are high compliance current output units which make possible linear output swings greater than $\pm 1.5 \mathrm{~V}$. The voltage output MDH series contain a fast settling hybrid operational amplifier which provides $\pm 10 \mathrm{~V}$ output at $\pm 50 \mathrm{~mA}$. To simplify selection these major specifications are summarized in Table 1.

achieve ultra-high speed operation. In fact, it is the fastest 12 by D/A available, setting to 0.025% in 40 ns. Hybrid construet on liminates the thermal Iagproblem inherent in 12 -bit plays construct eld wa th discrete components. This in turn means that the curacy is maintained over the to pal frequency range of operation. yielding superior results for frequency do
sain appligatipns. The MDS-124Q is particularly well quit dd for CRT display inplications because of Itsundurpassod speed and dripe cape-
bilities. The high output current (580 A) allows the use of low bilities. The high output current ($45 \mathrm{~m} / \mathrm{A}$) alloys the use of low impedance loads so that settling times remairksort - eves with higher output voltage levels. The ability to drive ford apacitance is at least 3 times that of other 12 -bit D/A's thus providing capability to drive a terminated transmission line directly. The MDS-815 and MDS-1020 provide similar performance at 8 and 10 bits, while the MDS-E units provide it with ECL logic. MDSL-0825, MDSL-1035 and MDSL-1250 also utilize this reliable hybrid construction. The use of laser trimmed resistor networks within the D/A's not only eliminates thermal time lag errors but provide the linearity tempco of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; guaranteeing monotonic operation over the extended temperature range of $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The power dissipation of the MDSL series is one-half that of competitive D/A's, but a full 5 mA output current is maintained. This allows driving transmission lines or other low impedance loads directly.
(continued on page 195S)
Table 1.

SPEED WITH PRECISION

Analog Devices' model MDS-1240 is the first D/A converter available with highly reliable, internal hybrid construction to

SPECIFICATIONS

(typical @ $+25^{\circ} \mathrm{C}$ unless otherwise specified)

-Specifications same as MDS-0815.

NOTES

${ }^{1} 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for current output. Op amp is $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. (See tables in Figures 15, 16 and 17.
for overall TC in various configurations.)
${ }^{2}$ For Full Scale Step.
$\left.\begin{array}{l}\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array} \text { to }+5 \mathrm{~V} \text { Out } \\ { }^{5} \pm 5 \mathrm{~V} \text { Out Out }\end{array}\right\}$ See Figures 15 and 16 for test circuits.
Specifications subject to change without notice.

MDS-0815, $0815 \mathrm{E}, 1020,1020 \mathrm{E}$ OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

MDS-1240, MDSL-0825, 1035, 1250 OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

MATING SOCKET MSA-1

MDH-0870, 1001, 1202
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

MATING SOCKET MSA-1

MDS and MDSE Block Diagram

MDS-1240 and MDSL Series Block Diagram Page 4 of 8

MDH Series Block Diagram

MPH SERIES APPLICATIONS

By using external feedback resistor and capacitor as shown in Figures 15 and 16, other full scale output ranges from 2 V to 10 V may be obtained.

Figure 15. Binary Coding Unipolar Output Clefiguratid

NOTES:

 OUTPUT

TIME
70 ns
100 ns
100 ns
20 ns
Figure 16. Offset Binary
(MDS-1240, MDSL-0825, 1035, 1250 continued)

Figure 13. Noninverting Unipolar or Bipolar Voltage Output

APPLICATIONS

Figure 14. Ultra High-Speed Deglitched D/A

ANALOG OUTPUT BIPOLAR, NONINVERTING
+FS, -1LSB
$+1 / 2 \mathrm{FS}$
0
$-1 / 2 \mathrm{FS}$
-FS

ANALOG OUTPUT
UNIPOLAR, NONINVERTING

+ FS, -1 LSB
+3/4 FS
$+1 / 2 \mathrm{FS}$
$+1 / 4$ FS
0

STRAIGHT BINARY
$111 \ldots . .$.
$110 \ldots . .$.
$100 \ldots . .$.
$010 \ldots . .$.
$000 \ldots . .$.

Table 2. Input Coding

Figure 4. Voltage Equivalent Circuit

Figure 5. VOUT vs. Load Resistance MDS-0815,-1020

Page 7 of 8

Figure 7. Unipolar Output Current

Figure 8. Bipolar Output Current
MDS-1240, MDSL-0825, 1035, 1250

Figure 9. Unipolar Current Output
(continued from page 191S)
Each D/A is housed in industry standard size cases, and each has an internal precision reference. Bipolar operation is achieved by external pin interconnection. In normal circumstances, no external components are required for operation into low inpedance loads. Designed primarily for PCB mounting, these D/A's may also be plugged into standard DIL sockets mounted on $1.8^{\prime \prime}$ centers (MDS series $2^{\prime \prime}$ centers).
For ultra-high reliability, this D/A series is optionally available with burn-in extended beyond the Analog Devices standard of 96 hours at $+25^{\circ} \mathrm{C}$.

NOTES ON FAST-SETTLING D/A CONVERTERS

Invariably, fast-settling D/A converters use current rather than voltage switching.
There aye inherent advantages to current-switching converters, since it eliminates ansoutput amplifier. If there is no output amplifier, th re in slew ate limitation which slows settling. The absence of an outp it amplifier also means there are no over shoot a hd ringing problem os ot en soc anted with feedThe settling time of curcent-switioing $/$ A onv/rter, th on, is based on:

1. The RC time constant of
2. The settling time of the output current change.

If the settling time of the D/A converter under consion is determined by the RC time constant, the output capacitance and output impedance become very important.
As a typical example in the Analog Devices' D/A converters, output capacitance is 5 pF , and nominal output impedance is 165Ω.
For test purposes, the output of these D/A converters are loaded with approximately 150Ω. (There is no "trick" or "gimmick" in loading the output of the converter; it is done to provide an output voltage of approximately 1.0 V to 1.2 V .) This loading means RC $=80 \times 5 \times 10^{-12}=0.4 n \mathrm{n}$. Since setthing time is approximately 7 RC , the overall settling time, if determined by the RC time constant, would be 2.8 ns .
Based on this, it becomes obvious the RC time constant of such converters outputs is not the limiting factor in establishing setting time. Instead, the settling time of the converters is based primarily on the settling time of the overall (output) current change, since the effect of the RC time constant is "swamped." Expressed in another way, this means settling time for the MDS series converters is relatively independent of load restsnance, unless substantial load capacitance is present. The setthing time of the output current, in turn, is based on:

1. The settling time of each switch within the converter.
2. The time skew among the digital inputs which cause the switching action.
Some manufacturers of fast-settling D/A converters spec setthing time under the conditions of all digital inputs changing from " 0 " to " 1 ", or vice versa. At first glance, it would appear this is the "worst case" condition for measuring settling time, since maximum current is being switched.
Unfortunately, this method of specifying neglects an important characteristic of saturated logic ... the propagation delay for negative-going inputs is different from the delay fopageig of 8
going inputs on all forms of saturated logic. The TTL or DTL driving logic, and the D/A input circuits for current-switching D/A's are subject to this same characteristic.
Thus, the time skew of the individual current switches within the converter is worse when one or more input bits are out of phase with the others. This is true even for ideal inputs in which the digital inputs arrive simultaneously; if there is time skew among the bit inputs, of course, the problem becomes more pronounced.
Note, settling times even better than those specified for the MDS series become possible if digital input bit arrivals are deskewed.
These differences among the switches cause a discontinuity or "glitch" in the output. The true "worst case" glitch always occurs at the switching point of the Most Significant Bit or the center point of the output range, because nearly equal and opposite currents are being switched within the converter.
In addition, all " 0 " to all " 1 " switching overlooks the proctical aspects involved. There are relatively few times when all of the input bits will be changing from one state to the other pincuccessive input changes; however, the MSB will switch out of have with all other bits each time the analog output of the converter crosses the midpoint.
I. considering the choices a "rastsertling" D/A converter, hen, the use should look for the following points in the 1 1 If the settling time spec has al bit k changing state idensid calls, it beglectsthe phenom nor associa ed whit saturated logic discussecterlien.
3. Is the settling time specified an impractically-lowimpedance load?
If the RC time constant of the converter output is the thajor factor in establishing settling time (because of high output capacitance and/or resistance), a low impedance load helps make settling time look better.
A low impedance load means the voltage being developed at the output is oftentimes too small to be useful.
A higher-impedance load which can develop a useable output of 1.0 V or more sometimes negates the fast settling time of the spec sheet.
A test setup for this worst-case measurement is shown in Figare 1. Two pulse generators are used to generate the required out-of-phase pulses, and the delays are adjusted for minimum skew. Figure 2 is an unretouched photo of the oscilloscope trance of an MDS-815 under test.

Figure 1.

