FEATURES

- Easy To Use - Drives Large Capacitive Loads
- Very High Slew Rate $\left(A_{V}=+1\right)$.

1300 V/ $\mu \mathrm{s}$ Typ

- Bandwidth $\left(A_{V}=+1\right)$ 90MHz Typ
- Low Supply Current
6.5 mA Typ
- Bandwidth Independent of Gain
- Unity-Gain Stable
- Power Shutdown Pin

- For devices processed in total compliance to MIL-STD-883, add/883 atter part number. Consult factory for 883 data sheet.
\dagger Burn-in is available on extended industrial temperature range parts in CerDIP and plastic packages.
tt For availability and burn-in information on SO package, contact your local sales office.

GENERAL DESCRIPTION

The OP-160 is an easy-to-use high-speed, current feedback op amp. Designed to handle large capacitive loads, the OP-160 resists unstable operation. The OP-160 combines PMI's highspeed complementary bipolar process with a current feedback
topology for very high slew rate and wide bandwidth performance.
Slew rate of the OP-160 is typically $1300 \mathrm{~V} / \mu \mathrm{s}$ and is guaranteed to exceed $1000 \mathrm{~V} / \mu \mathrm{s}$. In addition, the OP-160's current feedback design has the added advantage of nearly constant bandwidth versus gain. In a gain of +1 the -3 dB bandwidth is 90 MHz ! The OP-160 also requires only 6.5 mA of supply current, a considerable power savings over other high-speed amplifiers.

Applications using the OP- 160 can be implemented with the same circuit assumptions utilized for conventional voltage feedback op amps. With its high speed and bandwidth, the OP-160 is ideal for a variety of applications including video amplifiers. RF amplifiers, and high-speed data acquisition systems.

The OP-160 is an easy-to-use alternative to the AD844, AD846, EL2020 and EL2030.

For applications requiring a high-speed, wide bandwidth dual anpliffer, see the OP-260.

DRIVES CAPACITIVE LOADS

OP-160

\square
ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=820 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Continued

OP-160

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=820 \Omega,-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, for the OP-160A, unless otherwise noted.

OP-160

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=820 \Omega,-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, for the OP-160F/G, unless otherwise noted.

OP-160

DICE CHARACTERISTICS

NOTES:

1. Guaranteed by CMR test.

Electrical tests are performed at water probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed tor slandard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.
OP-160

TYPICAL PERFORMANCE CHARACTERISTICS

GAIN vs FREQUENCY
$A_{V}=+5$

PHASE SHIFT vs FREQUENCY

OP-160

TYPICAL PERFORMANCE CHARACTERISTICS continued

TYPICAL PERFORMANCE CHARACTERISTICS Continued

FIGURE 1: The conventional op amp (a) can be modelled as a voltage-controlled voltage source. In contrast, the current feedback op amp (b), resembles a current-controlled voltage source.

This current, multiplied by the transimpedance stage, causes
the amplifier's output voltage to rise until the current flowing into
R_{2} from the amplifier's output equalizes the current through R_{1},
replacing the buffer's output current. At steady state, only a very
small buffer output current must flow to sustain the proper out-
put voltage. The ratio ($+\mathrm{R}_{2} / \mathrm{R}_{1}$) determines the closed-loop
gain of the circuit. The result is that when designing with current
feedback amplifiers the familiar op amp assumptions can still be
Used for circuit analysis:
The voltage across the inputs equals zero.
2. \quad The current into the inputs equals zero.
BANDWIDTH VERSUS GAIN
A unique feature of the current feedback amplifier design is that
the closed-loop bandwidth remains relatively constant as a
function of closed-loop gain. Voltage feedback op amps suffer
fromabandwidth reduction as closed-loop gain increases, as
fuantified by the gain-bandwidth product (GBWP). This is illus-
FIGURE 3: Simple frequency response model of the current feedback amplifier.

The model shown in Figure 3 can be used to determine the frequency response of a current feedback amplifier. With this mo pet, the frequency response dependency on the value of the fed dback resistanfe is easily seen.

where $I_{1}=\frac{V_{\text {IN }}-V_{1}}{R_{\text {INV }}}=V_{1}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{V_{\text {OUT }}}{R_{2}}$, and $V_{\text {OUT }}=V_{2}$
Combining these equations yields:
$V_{\text {OUT }}=\left[\left(\frac{V_{\text {IN }}\left(\frac{R_{2}}{R_{I N V}}\right)+V_{\text {OUT }}}{1+\frac{R_{2}}{R_{1}}+\frac{R_{2}}{R_{\text {INV }}}}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)-\frac{V_{\text {OUT }}}{R_{2}}\right] \frac{R_{T}}{1+s R_{T} C_{C}}$
If the transimpedance of the amplifier, R_{T}, is " R_{2} and $R_{I N V}$, then the transfer function may be simplified to:

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}} \approx \frac{1+\frac{R_{2}}{R_{1}}}{1+s\left[R_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) R_{\text {INV }}\right] C_{C}}
$$

OP-160

The transier function shows that the dominant clased-loop pole is mainly dependent on the value of the feedback resistance, R_{2}, and the internal compensation capacitor, C_{C}. For example, at unity gain, where R_{1} is infinite, R_{2} determines the $-3 d B$ frequency.
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{1}{1+s R_{2} C_{C}}$
$f^{-3 d B}=\frac{1}{2 \pi R_{2} C C}$
where R_{2} " RINV
For higher gains, the $-3 d B$ frequency is determined by R_{2} plus the output resistance of the buffer, $\mathrm{R}_{\text {INV }}$ (typically 60 2), which is multiplied by the closed-loop gain. As the closed-loop gain increases, the multiplying effect on $\mathrm{R}_{\mathrm{INV}}$ becomes dominant,
causing the bandwidth to decrease. However, the closed-loop bandwidth of a current feedback amplifier still far exceeds that of a voltage feedback op amp for moderate values of gain.
Figure 4 shows the effect of the feedback resistance on the bandwidth of the OP-160 for various closed-loop gains.

SLEW RATE AND GAIN

The simplified schematic in Figure 5 shows the three stages of the OP-160. The input stage consists of a unity-gain emitterfollower amplifier. Q_{5} and Q_{6} form a class $A B$ output stage at the inverting input which can source or sink current. The current flowing through the inverting input is sensed by the top current mirror, formed by Q_{7}, Q_{9}, and Q_{10}, or the bottom current mirror, formed by Q_{8}, Q_{11}, and Q_{12}. When the buffer sources current to a load, current flows out of the inverting input, increasing Q_{s} 's collector current and causing more current to flow through Q_{9}

FIGURE 4: Bandwidth will vary with feedback resistance. Peaking increases as the feedback resistance is decreased. $R_{f}=820 \Omega$ is the recommended value. All graphs are normalized to OdB.
\square

FIGURE 6: Slew rate of the OP-160 in noninverting (a) and inverting (b) configurations.
and Q_{15}. This increases the base drive to the output transistor Q_{17}. Simultaneously, the increased current in Q_{9} drives Q_{13} which reduces base drive to the complementary output transistor Q_{18}. This push-pull action produces a very fast output slew rate. For a small voltage step, the OP-160's slew rate is dependent on the available current from the two current sources (I_{A} and I_{B}) that drive Q_{5} and Q_{6}.

To increase the slew rate, transistors Q_{1} and Q_{2} have been added to boost the base drive to Q_{5} and Q_{6}. In low gains, a large input step will turn on Q_{1} or Q_{2} increasing the slew rate dramatically as illustrated in Figure 6.
 The OP-160 is capable of driving capacitiveradsat high speld. Output stage compensation is used to reduce the effeds of capacitive loading. With low capacitive loads, the gain from the compensation node to the output is unity and C_{0} does not contribute to the overall compensation. As the load capacitance is increased, a pole is formed with the output resistance of the amplifier. The gain is reduced and C_{0} begins to contribute to the overall compensation capacitance leading to a reduction in bandwidth. As the load capacitance is increased, the bandwidth
is further reduced and the amplifier remains stable. Figure 7 shows the OP-160 in a gain of +1 and -1 driving a 1000 pF load without any sign of oscillation. Table 1 shows the effects of capacitive load on the -3 dB bandwidth for $\mathrm{A}_{\mathrm{V}}=-1$.

TABLE 1: -3 dB Bandwidth vs. Capacitive Load; $\mathrm{A}_{\mathrm{V}}=-1$, $R_{F}=820 \Omega, R_{L}=500 \Omega, V_{S}= \pm 15 \mathrm{~V}$.

CAPACITANCE $(\mathbf{p F})$	-3dB BANDWIDTH (MHz)
0	55
20	55
50	50
75	48
100	40
200	24
500	13
1000	9

AMPLIFIER NOISE PERFORMANCE

Sinplifiepoise models of the OP-160 in the noninverting and nvegrtind amplifier configurations are shown in Figure 8. All refistors are assumed to be noiseless.
For the nf ninverting ampiniex th q quivalent input voltage nolise reterred to the inple is:

b)

FIGURE 8: Simplified noise models for the OP-160 in noninverting (a) and inverting (b) gain.
\square

For the inverting amplifier, the equivalent input voltage noise, referred to the input, is:
$E_{N}=\sqrt{e_{n}^{2}\left(\frac{1+\left|A_{V C L}\right|}{\left|A_{V C L}\right|}\right)+\frac{\left(R_{2} i_{n i}\right)^{2}}{\left|A_{V C L}\right|}}$
assuming R_{S} « R_{1}. $A_{\text {VEL }}=$ closed-loop gain $=-R_{2} / R_{1}$.
Typical values @ 1 kHz for the noise parameters of the OP-160 are:

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{n}}=5.5 \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
& \mathrm{i}_{\mathrm{nn}}=5 \mathrm{pA} / \sqrt{\mathrm{Hz}} \\
& \mathrm{i}_{\mathrm{ni}}=20 \mathrm{pA} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

SHORT-CIRCUIT PERFORMANCE

To avoid sacrificing bandwidth and slew rate performance the OP-160's output is not short-circuit protected. Do not short the amplifiers output to ground or to the supplies. Also, the buffer outporcorent shophar not exceed a value of $\pm 20 \mathrm{~mA}$ peak or

Proper power spell bypass sing is crical all high (-frequency) circuit applications. For stable aeration of the OP 160 , the power supplies must maintain a pw poedance. to-grpund over an extremely wide bandwidth. This is most crit cal when driving a low resistance or large capacitance, since the cur tent hequired to drive the load comes from the power supplies. A $1 \mu \mathrm{~F}$ and
$0.1 \mu \mathrm{~F}$ bypass capacitor are recommended for each supply, as shown in Figure 9, and will provide adequate high-frequency bypassing in most applications. The bypass capacitors should be placed at the supply pins of the OP-160. As with all high frequency amplifiers, circuit layout is a critical factor in obtaining optimum performance from the OP-160. Proper high-frequency layout reduces unwanted signal coupling in the circuit. When breadboarding a high-frequency circuit, use direct point-topoint wiring, keeping all lead lengths as short as possible. Do not use wire-wrap boards or "plug-in" prototyping boards.

FIGURE 10: High-Speed Settling Time Fixture (for 0.1 and 0.01%)

FIGURE 11: Settling Time Performance of the OP-160 to 0.1% (a) and 0.01% (b) $A_{V}=-1$

SETTLING TIME

Settling time is the time between when the input signal begins to change and when the output permanently enters a prescribed error band Figure 10 illustrates the artificial summing node test confifuration, usd to characterize the OP-160 settling time. The OP $160 /$ sseth ag女in of the 10 V step input. The error bands and the output ale 5 s mV and 0.5 mV , espectively, for 0.1% and

The test circuit, built on a copper clad circuit board, has a FET input stage which maintains extremely low loading capacitance at the artificial sum node. Preceding stages are complementary emitter follower stages, providing adequate drive current for a 50Ω oscilloscope input. The OP-97 establishes biasing for the input stage, and eliminates excessive offset voltage errors.

TRANSIENT OUTPUT IMPEDANCE

Settling characteristics of operational amplifiers also includes an amplifier's ability to recover, i.e., settle, from a transient current Dytput load condition. An example of this includes an op amp driying the 7 nput from a SAR type A/D converter. Although the corpapiso point of the comerter is usually diode clamped, the inp it fwing of plus-ard-minus a dity de drop still gives rise to a sion nif can modulation of nput current. If the ctosed-loop output inpedance is low enpugh and bandwidth pithe ampliper sufficiently Large, the oftpytwill settle befor o the converfer makes a conparison gec/sio which will prevent/linearity er ors on
missing codess. Figure 12 shows a settling surement fircuit tor eyaluating recovery from an output current transizat An output disturbing current generator provides the transient change boutputiond current of 1 mA . As seen in Figure 13, the OP-160 has extren fast recovery of 80 ns , (to 0.01%), for a 1 mA load transient. The performance makes it an ideal amplifier for data acquisition systems.

FIGURE 13: OP-160's Extremely Fast Recovery Time from a 1 mA Load Transient to 1 mV (0.01%)

FIGYRE 14. Input Offset Voltage Nulling
\oint FFSET VOLTA \&E NDJUSTAJENT
\$ffset voltage is दdjusted with o) 20 a potentid neter as shown in Figure 14. Th \& potentiometer shoul be cpnnpcted been iins 1 and s wifh its wiper chnnested the the spply. The typlcaltim range is $\Delta 40 \mathrm{~m}\rangle$. DISABLE AMPLIFIER SHUTDOWN
Pin 8 of the OP-160, DISABLE, is an aplifiet shuldont contr input. The OP-160 operates normally when Pin 8 is feft floating. When greater than $1000 \mu \mathrm{~A}$ is drawn from the DISABLEpin, the OP-160 is disabled. To draw current from the DISABLE pin, an open collector output logic gate or a discrete NPN transistor can be used as shown in Figure 15. An internal resistor limits the DISABLE current to around $500 \mu \mathrm{~A}$ if the DISABLE pin is grounded with the OP- 160 powered by $\pm 15 \mathrm{~V}$ supplies. These logic interface methods have the added advantage of level

FIGURE 16: $\overline{\text { DISABLE }}$ Turn-On/Turn-Off Test Circuit shfting the TTL signal to whatever supply voltage is used to op we the OP-16
Th the DISABLE/mode, the OP- 60 maintains 40 dB of input-toputput isolation/if the input signatremains betqw +1.5 V . Output reslstance is very high, Ovq 100 ks ., if the altof fit is driven by signatofiess tha 1 ± 1.5 higher signfis will ble diptoted. Figure sh pws a circuit for mepasuring the erin-on and turn-off times forthoep-180. The OP 160 is ip a gain of +7 with $a+1$ V DC input. As the input puls to the invefter ises its cutput falls, drawing current from the DISABLE pi and disabling the

FIGURE 15: Simple circuits allow the OP-160 to be shut down.

FIGURE 18: Overdrive Recovery Test Circuit

FIGURE 20: The OP-160 as a voltage follower or noninverting amplifier.
closed-loop response. For large noninverting gains, R_{1} is small, creating a very high-frequency open-loop pole which has limited effect on the closed-loop response. As the noninverting gain is decreased, R_{1} becomes larger and the stray zero becomes lower in frequency, having a much greater effect onthe closed-loop response. To reduce peaking at low noninverting gains, place a series resistor, R_{C}, in series with the noninverting input as shown in Figure 20. This resistor combines with the stray capacitance at the noninverting input to form a low-pass filter that will reduce the peaking. The value of R_{C} should be determined experimentally in the actual PCB layout. Less peaking will occur in inverting gain configurations since the inverting input is a virtual ground which forces a constant voltage across the stray capacitance.
A common practice to stabilize voltage feedback op amps is to use a capacitor across the feedback resistance. This creates a zero in the voltage feedback amplifier response to offset the loss of phase margin due tha parasitic pole. In current feedback amplifiers, this ect pique nill coluse the eapifier to become unstable because the closed-loop pandwigh will increfse beyond the stable operating frequency.
迆 OP-160 s also cepable pi operation as-an invortings amplitior (see figure 21). The transie) fundtion olvis cirquit is ide tical to that using a voltagedback opp: $\frac{V_{\text {OUI }}}{V_{\text {IN }}}=-\frac{R_{2}}{R_{1}}$

FIGURE 21: The OP-160 as an inverting amplifier.

USING CURRENT FEEDBACK OP AMPS IN INTEGRATOR APPLICATIONS

The small-signal model of a current feedback op amp shown earlier in Figure 3 assumes a non-varying value of feedback impedance. A non-varying feedback impedance ensures that the bandwidth of the amplifier does not extend beyond its 180° phase shift point and create unwanted oscillations. In integrator circuits, the feedback element is a capacitor whose impedance does vary with frequency. By definition then, integrator applications using current feedback amplifiers should be unstable. However, a simple trick, shown in Figure 22, enables highspeed, wide bandwidth current feedback op amps to be used in integrator applications.
Resistor R_{F} is placed between an artificial sum node and the inverting input of the amplifier. This resistor maintains a minimum value of feedback impedance over all frequencies. At high signal frequencies, the integrator capacitor, C_{1}, is a short circuit; the feedback impedance is equal to R_{F} only and the amplifier has maximum bandwidth. At low frequencies, C_{1} adds to the overall feedback impedance. This lowers the amplifier's bandwidth but not enough to affect the integrator's performance.

FIGURE 22: An Integrator Using a Current Feedback Op Amp

OP-160

Figure 23 shows the gain and phase performance of the integrator. The integrator has the desired one-pole response for signal frequencies
$f_{C} \gg 1 /\left(2 \pi R_{2} C_{1}\right) \approx 16 \mathrm{kHz}$.
A more strenuous test of integrator performance is the pulse response. Ideally, this should be a linear ramp. The current feedback integrator's pulse response is exhibited in Figure 24. The response closely approximates the ideal linear ramp.

FIGURE 24: Pulse response of the current feedback integrator. $f=2 \mathrm{MHz}$.

ACHIEVING FLAT GAIN RESPONSE WITH CURRENT FEEDBACK OP AMPS

In high-performance systems, flat gain response is often required. Current feedback op amps provide wide bandwidth performance but even these may not fulfill the gain flatness requirements of some systems.

Current feedback op amps exhibit both gain roll-off and peaking as shown in Figure 25. Peaking is primarily due to parasitic

FIGURE 25: Gain roll-off and peaking of current feedback amplifiers is dependent upon a number of factors including loading and parasitic capacitance.

FIGURE 26: A current feedback op amp configured for noninverting gain. Parasitic capacitances affecting gain are also shown.
capacitance; gain roll-off is determined by the amount and type of load on the amplifier. Peaking is controlled by careful layout and circuit design; however, its cause can provide a method of improving gain flatness over a desired frequency range.
Consider the noninverting amplifier of Figure 26. The gain equals:
$1+\frac{R_{2}}{R_{1} / / Z_{\left(C_{C} / / C_{\mathrm{S}}\right)}}$,
and at low frequencies
$A_{v}=1+\frac{R_{2}}{R_{1}}=1+\frac{910 \Omega}{910 \Omega}=2$

OP-160

At higher frequencies the gain increases or peaks due to the effect of the parasitic capacitance, C_{S}, on the gain equation. Any capacitance at the inverting input will create a zero in the amplifier's response. This fact can be used to compensate for gain roll-off due to loading on the amplifier.
Begin by measuring or estimating the amplifier's -6 dB point (this is the frequency at which the output signal is half its original amplitude). This can be easily determined from a network analyzer plot of the amplifier's frequency performance. From this the amount of capacitance, C_{C}, which will double the gain at the -6 dB frequency and restore the original gain, can be determined.
From the -6 dB frequency. C_{C} can be calculated:

Figure 27 is an expanded scale plot of the gain performance of the compensated amplifier at $A_{V}=+2$. Gain performance is flat to $\pm 0.1 \mathrm{~dB}$ out to beyond 9 MHz . For low gains $\left(A_{v} \leq 5\right)$ peaking

FIGURE 27: Expanded Gain/Frequency Graph of the Compensated Amplifier, $A_{V}=+2$
will be increased. At higher gains, gain flatness can be significantly improved without gain peaking. Figure 28 depicts the OP-160 with $A_{V}=+10$. In this example $f_{-6 d B} \approx 22 \mathrm{MHz}$ so.
$\mathrm{C}_{\mathrm{S}}=9 \mathrm{pF}+\frac{1}{2 \pi(91 \Omega) 22 \mathrm{MHz}}+\frac{1}{2 \pi(820 \Omega 2) 22 \mathrm{MHz}}$
$=97 \mathrm{pF}$
The nearest standard capacitor value is 100 pF .
Gain performance is flat to 0.5 dB to 30 MHz and the amplifier's -3 dB point is 38 MHz . This gives the amplifier an effective gainbandwidth of 380 MHz ! Compensating the OP-160 does not effect the pulse response as shown in Figure 29.

FIGURE 28: Gaikequenqy grapi for the compensated an plifier, $A_{v}=+10$, showing ind effect of the compenfation acalacitance, C_{C}, on gain flatness.

FIGURE 29: Pulse Response of the OP-160 in a Gain of +10 Compensated for Gain Flatness

OP-160

OP-160 SPICE MACRO-MODEL

Figures 30 and 31 show the SPICE macro-model for the OP- 160 high-speed, current feedback operational amplifier. This model was tested with, and is compatible with PSpice* and HSpice**. The schematic and net-list are included here so that the model can easily be used. This model uses a unique current feedback topology to accurately model both the AC and DC characteristics of the OP-160. In addition, this model can accommodate any number of poles and zeros to further shape the AC response.

The OP-160 SPICE macro-model uses four BJT transistors to create the input buffer as in the actual device. However, the rest of the model contains only ideal linear elements and ideal diodes to model the OP-160's behavior. Using only four transistors reduces simulation time and simplifies model development. It simulates important DC parameters such as $V_{O S}, I_{B}, C M R, V_{O}$ and 1/sy. AC para peters such as slew rate, open-loop transimperanc and hale response and CMR changes with frequenc are also simulated py the mpdel. In addition, the model inqludes the change in Inpyt bias uurnent yith varsing commonmqde and powfisyppy voltaged. Bo h qutp (sting and supply closed-loop gain. Slewte of the basic nodel is set to the typical values for the OP-160 in a gain of + . Ford geins, the
rising and falling slew rates can be adjusted by varying the values of V_{1} and V_{2} in the model. Slew rates for various gains can be determined from Figures $6 a$ and $6 b$.

Rising Slew Rate $=\frac{V_{1}+0.6 \mathrm{~V}}{(1 \mathrm{k} \Omega 2)(5 \mathrm{pF})}$
Falling Slew Rate $=\frac{\mathrm{V}_{2}+0.6 \mathrm{~V}}{(1 \mathrm{k} \Omega)(5 \mathrm{pF})}$
To keep the OP-160 model as simple as possible and thus save computer and development time, not all features of the op amp were modelled as listed below:

- PSR
- Crosstalk
- No limits on power supply voltages
- Maximum input voltage range
- Temperature effects (i.e., model parameters are assumed at $25^{\circ} \mathrm{C}$)
- Input noise voltage and current sources
- Parameter variations for Monte Carlo analysis (i.e., all parameters are typical only)
ese parameters are considered second-order effects and are no conssidfred necessary for circuit simulation under normal operat ing fonditions. Hower, users can easily add these functions a s needed.

[^0]

FIGURE 30: OP-160 SPICE Model

OP-160

FIGURE 31: OP-160 SPICE Net-List

[^0]: * PSpice is a registered trademark of MicroSim Corporation
 * HSPICE is a tradename of Meta-Software. Inc.

