

Precision Monolithics Inc.

FEATURES

- .
- Gain-Bandwidth Product 15MHz Min
- Common-Mode Rejection 86dB Min
- . Bias Current 200pA Max
- Excellent AC CMR and PSR
- **Radiation Hard** .

ORDERING INFORMATION[†]

The OP-44 is a fast precision JFET-input operational amplifier delivering a 120V/µs typical slew rate in closed-loop gains of three or more. Full-power bandwidth is 2MHz for a 20Vp-p sine-wave, and 4MHz for a $10V_{p-p}$ signal. Gain-bandwidth product is typically 23MHz. Settling time to 0.1% is 200ns, and to

 (\mathbf{f})

(Ŧ

O NULL (1)

O NULL (5)

SIMPLIFIED SCHEMATIC

+IN C

INC

8 N.C.

7 V+

10/87, Rev. B1

-O VOUT

0 V-

AAA-

by only $12nV/\sqrt{Hz}$ flatband noise. Excellent DC precision makes the OP-44 unique among high-

speed amplifiers. Offset voltage below 750µV and 10µV/°C maximum drift eliminates the need for external nulling potentiometers in most applications. Common-mode rejection of 86dB minimum and an open-loop gain of 500V/mV ensures high linearity. Errors due to bias current are virtually eliminated with the OP-44's 200pA maximum input current.

N.C

V

12 bits (0.01%) is 800ns, typical. Wideband noise is minimized

PIN CONNECTIONS

NULL 1

-IN 2

Applications for the OP-44 include data acquisition systems, pulse amplifiers, RF, IF and video amplifiers, and signal generators.

The OP-44 conforms to the standard 741 pinout with nulling to V–. It offers an excellent upgrade for circuits using the LF400 and AD509. The HA-2520/22/25 are easily upgraded by removing any external nulling components.

For a unity-gain stable amplifier sharing many of the OP-44's characteristics, consult the OP-42 data sheet.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage±20V
Internal Power Dissipation (Note 3) 500mW
Input Voltage (Note 2) ±20V
Differential Input Voltage (Note 2) 40V
Peak Output Current 50mA
Storage Temperature Bange65°C to 175°C

Operating Temperature Range

OP-44A (J, Z) –	-55°C to +125°C
OP-44E, F (J, Z)	-25°C to +85°C
Junction Temperature	-65°C to 175°C
Lead Temperature Range (Soldering, 60 sec)	300°C
NOTES:	

 Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

2. For supply voltages less than \pm 20V, the absolute maximum input voltage is equal to the supply voltage.

3. See table for maximum ambient temperature and derating factor.

MAXIMUM AMBIENT TEMPERATURE FOR RATING	DERATE ABOVE MAXIMUM AMBIENT TEMPERATURE
80°C	7.1mW/°C
75°C	6.7mW/°C
72°C	7.8mW/°C
	MAXIMUM AMBIENT TEMPERATURE FOR RATING 80°C 75°C 72°C

				OP-44E			OP-44F		OP-44A			
PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Offset Voltage	Vos	$) - \rangle$	$\setminus / - /$	0.3	0.15	\square –	0.4	1.5	_	0.3	1.0	m۷
Input Bias Current	IB	$V_{\rm CM} = 0$ $T_{\rm j} = 25^{\circ} \rm C$) [-[80	200	=	130	250		80	200	pА
Input Offset Current	I _{OS}	V _{CM} = 0V 1 = 25°C		4	101	-	e	50		4	40	pА
Input Voltage Range	IVR	(Note 1)	±T	+12.5 -12.0	/-/	±11	+125 -12.0		±11	+12.5	\exists_{f}	V
Common-Mode Rejection	CMR	$V_{CM} = \pm 11V$	86	96		80	7 92	_	86	96	- L	dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 10V$ to $\pm 20V$		9	40	_	12	50	Ł	9	40	μ ψ/ν
Largo-Signal		$R_L = 10k\Omega$ $V_{-} = \pm 10V$	500	900	_	500	900	-	500	900		<u> </u>
Voltage Gain	Avo	$R_L = 2k\Omega$ $T = 25^{\circ}C$	200	260	_	200	260	_	200	260		V/n/V
vonage dam		$R_L = 1k\Omega$	100	170	-	100	170		100	170	_	
Output Voltage Swing	Vo	$R_L = 1k\Omega$	±11.5	+12.5 -11.9	-	±11.5	+12.5 -11.9	-	±11.5	+12.5 -11.9	_	V
Output Current	I _{OUT}		±20	+33 -28	_	±20	+33 -28	_	±20	+33 -28	_	mA
Supply Current	I _{SY}	No Load V _O = 0V	-	6.5	7.5	_	6.5	7.5		6.5	7.5	mA
Slew Rate	SR	$R_L = 2k\Omega$ $C_L = 50pF$	100	120	_	80	100		100	120	_	V/µs
Full-Power Bandwidth	BWp	V _O = ±10V (Note 2)	1.5	2.0		1.2	1.6		1.5	2.0		MHz
Gain-Bandwidth Product	GBW	A _V = 10 (Note 3)	15	23		15	23		15	23		MHz
Settling Time	ts	10V Step 0.1% (Note 4)		0.2	_		0.2	_		0.2		μs
Rise Time	t _r	V _O = ±200mV (Note 3, 4)		25	50		25	50	_	25	50	ns
Overshoot		V _O = ±200mV (Note 3, 4)		25	40	_	25	50	_	25	40	%
Overload Recovery Time	t _{OR}			700	-	_	700	-		700	_	ns
Capacitive Load Drive Capability	CL	A _{VCL} ≥3 (Note 3)	50	150	_	50	150	_	50	150		pF

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted. (Continued)

/(2π10V_{PEAK}).

15V.

SI

S at

PARAMETER					OP-44E			OP-44F			OP-44/	1	
	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Resistance	R _{IN}	(Note 3)	10 ⁸	10 ¹²		10 ⁸	10 ¹²	_	10 ⁸	10 ¹²	_	Ω	
Open-Loop Output Resistance	R _O		_	50	-	—	50	—	_	50	_	Ω	
Voltage Noise	e _{n p-p}	0.1Hz to 10Hz		2	_		2	_	_	2	_	μV_{p-p}	
		$f_0 = 10Hz$	_	38	—		38	_	_	38	_		
Voltage Noise		$f_0 = 100Hz$	_	16	_		16	_	_	16		all /La	
Density	en	$f_0 = 1 kHz$		13			13		-	13	_	11/1/11/11/2	
		$f_0 = 10 kHz$	_	12	—	—	12	—	—	12	—		
Current Noise Density	i _n	$f_{O} = 1 kHz$	_	0.007			0.007	_	-	0.007	_	pA/√Hz	
External V _{OS} Trim Range		$R_{pot} = 10k\Omega$	_	4	—	_	4	-	_	4	_	mV	
Long Term V _{OS} Drift	\geq		_	5	_	_	5	-	-	5	_	μV/ month	
Supply Voltage Range		(Note 3)	±8	±15	±20	±8	±15	±20	±8	±15	±20	V	

Guaranteed by CMR te 2. Guaranteed by slew-rate test and f

NOTES

Guaranteed but not tested. See test circuit, page 7.

C for E/F grades, and

ELECTRICAL CHARACTERIST atad

st.

ormula RW

otherwise noted.			$\overline{}$	~	L		\sim	7		\neg		-
PARAMETER	SYMBOL	CONDITIONS	MIN	ОР-445 ТҮР	MAX		OP-44F	МАХ	MIN	OP-44/ TYP	MAX	
Offset Voltage	V _{OS}		_	0.4	1.2	-	0.6	2.5	-	0.5	2.0	mV
Offset Voltage Temperature Coefficient	TCV _{OS}		_	4	10	_	8	-		4		μV/°C
Input Bias Current	I _B	(Note 1)		0.5	1.2	_	0.6	2.0		6	20	nA
Input Offset Current	Ios	(Note 1)	—	0.05	0.2	_	0.06	0.4	-	0.2	1.0	nA
Input Voltage Range	IVR	(Note 2)	±11	+12.5 -12.0		±11	+12.5 -12.0		±11	+12.5 -12.0	_	V
Common-Mode Rejection	CMR	$V_{CM} = \pm 11 V$	84	94		80	92	_	84	94	_	dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 10V$ to $\pm 20V$	_	2	40	. –	6	50	_	10	50	μV/V
Large-Signal Voltage Gain	Avo		200 100	500 160	_	200 100	500 160		160 80	350 110	_	V/mV
Output Voltage Swing	vo	$R_L = 2k\Omega$	±11.0	+12.3 -11.8	-	±11.0	+12.3 -11.8	_	±11.0	+12.3 -11.8	_	V
Output Current	I _{OUT}		±8	_	_	±8			±8	_	_	mA
Supply Current	I _{SY}	No Load V _O = 0V		6.5	7.5	_	6.5	7.5	-	6.5	7.5	mA
Slew Rate	SR	$R_L = 2k\Omega; C_L = 50pF$	80	100	_	70	90	-	80	100		V/µs
Capacitive Load Drive Capability	CL	A _{VCL} ≥3 (Note 3)	50	100	_	50	100		50	100	_	pF

NOTES:

1. $T_{j}=85^{\circ}C$ for E/F Grades; $T_{j}=125^{\circ}C$ for A grade.

2. Guaranteed by CMR test.

3. Guaranteed but not tested.

125°C for A grade, unless

 $55^{\circ}C \le T_A \le$

DICE CHARACTERISTICS

DIE SIZE 0.098 × 0.070 inch, 6860 sq. mils (2.49 × 1.78 mm, 4.43 sq. mm)

For additional DICE ordering information, refer to 1988 Data Book, Section 2.

NOTES:

1. Guaranteed by CMR test.

2. Guaranteed but not tested.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

FREQUENCY (Hz)

FREQUENCY (Hz)

5

10/87, Rev. B1

FREQUENCY (Hz)

TYPICAL PERFORMANCE CHARACTERISTICS

10/87, Rev. B1

APPLICATIONS INFORMATION

The OP-44 is a high-speed amplifier internally compensated for closed-loop gains of 3 or more. Slew rate is typically $120V/\mu s$, which allows the OP-44 output to handle a $20V_{p-p}$ sine wave at 2MHz. Stability is ensured by the OP-44's guaranteed capacitive load drive ability of 50pF.

The input capacitance of high-speed op amps often causes a noticeable degradation of pulse response, resulting in excessive overshoot and ringing. The pole introduced by the input capacitance can be compensated by placing a similar capacitance in the feedback loop of the amplifier. For the OP-44, the input capacitance is typically 6pF.

Supply decoupling must be used to overcome inductance and resistance associated with the supply lines to the amplifier. For most applications, a 0.1μ F to 0.01μ F placed between each supply pin and ground is adequate. If supply lines are extremely long and/or noisy, an additional tantalum capacitor between 3.3μ F and 10μ F should be placed in parallel with each of the smaller decoupling capacitors.

The OP-44 displays excellent resistance to radiation. Radiation hardness data is available by contacting the factory.

FIGURE 3: Transient Response Test Circuit

Digital offset correction is possible using the nulling pins. The circuit of Figure 5 will correct for greater than \pm 4mV of offset, allowing correction of some system errors in addition to the OP-44's offset voltage. One of the four voltage-output DACs on the PM-7226 is used to apply a voltage between 0V and 10V to the 200k Ω resistor, while the 255k Ω resistor is tied to the +10V reference. One LSB of the 8-bit PM-7226 is equivalent to approximately 35 μ V of offset change around the zero offset point.

FIGURE 5: Digital Offset Correction

A common problem with many high-speed amplifiers is a requirement for more DC precision than the amplifier's capability. While the OP-44 already offers an order of magnitude or more improvements in precision over previous high-speed amplifiers, some users may find a need for even greater precision.

Figure 6 shows a combination amplifier melding the precision DC characteristics of an OP-97 with the high speed of the OP-44. The OP-97 reacts for low-frequency and DC signals, while the OP-44 is dominant at higher frequencies. Over-compensation of the OP-97 ensures that it operates only at low frequencies. Resistor matching is important to optimize this circuit's transient response. The overall supply current of this combination amplifier is only slightly higher than that of the OP-44 alone. This is due to the minimal consumption of the OP-97, only 600μ A. Transient response of this circuit is shown in Figure 7. Its initial offset voltage is 20μ V, while TCV_{OS} is less than 0.6μ V/°C.

FIGURE 6: High-Speed, Low-Offset, Low-Drift Amplifier

FIGURE 7: Combination Amplifier Transient Response

10/87, Rev. B1

PMI

)

Baseline restoration is anothe useful te hique for correcting errors introduced by amplifier drift, or by electromagne ic pickup. High-impedance sources, such as a human body, a notorious for large DC drifts. In many cas where pulse 20 br A measurements are being made, and the pulse height above a nominal DC line contains the important information

While a simple high-pass filter may be adequate for some situations, the baseline restorer shown in Figure 9 allows a wide degree of flexibility for analog adaptive filtering techniques, and offers some benefits not available with a frequency-domain filter.

The baseline restorer behaves as a nonlinear filter, acting upon the slew rate of the input signal rather than its frequency. Its output will restore the base of the pulses to an arbitrary level, set by V_{REF} . The slew rate cutoff of the filter is set by the current flowing through Q1, which is in turn set by $V_{PROGRAM}$. V_{REF} and $V_{PROGRAM}$ may be controlled by a voltage-output DAC such as the PM-7226. If current programming is desired, $R_{PROGRAM}$ may be removed and replaced by a current-source, such as a bipolar DAC.

To understand the circuit's operation, assume that capacitor C has charged to the DC baseline. If the output swings above the baseline, IC2 swings low, reverse biasing diode D2. D1 is pulled low, and forward biases. A current $(I_2 - I_1)$ discharges the capacitor until equilibrium is restored. If the output drops below the baseline, IC2 swings high, and D2 becomes forward biased. I_2 is supplied by the output of IC2 while I_1 charges C until the baseline is restored. The rate of restoration depends upon the current available to charge or discharge C.

For symmetric operation, with the same restoration rate for positive or negative excursions from the baseline, I_2 must be twice I_1 . This provides an equal current for charging and discharging the capacitor. I_1 is set by the current flowing through Q1 in the MAT-04. An identical current flows through each transistor. The MAT-03 matched PNP pair, Q5 and Q6, act as a current mirror to reflect the current through Q2 (I_1). Q3 and Q4 create I_2 , which is twice I_1 . I_1 may be set anywhere between a few nanoamps to several mA. Higher currents will result in rejection of faster-slewing signals, while lower currents will allow passage of slower signals.

The OP-44 is configured for a gain of -1, but gain is adjustable by R1 and R2, and is simply -(R2/R1). OP-44 stability is maintained by the dominant pole introduced by C.